

Some sample spaces are not "numerical"

Example: Sequence of three free throws

 $S = \{MMM, MMH, MHM, MHH, HMM, HMM, HHM, HHH\}$ There's no natural way to order this state space.

Some sample spaces are numerical

Example: Sum of points after three free throws.

Question II: How many baskets will the basketball player make total?

 $S = \{0, 1, 2, 3\}$

- This is a naturally "numerical" sample space.
- Every outcome can be assigned a value

Definition

^A **Random Variable ...**

... is a variable whose value is a numerical outcome of a random phenomenon.

Or (more technically) a **random variable** X is a function that takes each element of a sample space S and assigns it to a real number.

Discrete random variable

- Every value that a random variable can take is associated with a probability
- The probabilities sum to 1

Example: Number of heads after 5 coin flips

- \bullet X is the total number of heads after 5 coin flips
- Possible values of X are: $\{0,1,2,3,4,5\}$
- Probability distribution of X is: $P(X = k) = Binomial(k|n = 5, p = 1/2)$

Question: How many heads do we expect to get?

One way to think of this problem is that if we repeated the experiment many many times - what would the average score be?

Definition

Expectation

The **expected value** or **expectation** of a discrete random variable ^X with probability function $f(x)$ is

$$
E(X) = \sum_{i=1}^n x_i f(x_i)
$$

where $\{x_1, x_2, \ldots, x_n\}$ is the set of all values that X can take. It is essentially the mean of possible values weighted by their probability. In statistics, $E(X)$ it is often denoted μ or μ_X .

Question: How many heads do we expect to get?

So, the **expected value** of ^X is **2.5**.

Expectation of the binomial distribution

Binomial distribution:

$$
f(x|n, p) = Pr(X = x) = \frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x}
$$

Solving for the expectation of the binomial distribution:

$$
E(X) = \sum_{i=0}^{n} f(x|n, p)
$$

\n
$$
= \sum_{i=0}^{n} x \frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}
$$

\n
$$
= \sum_{i=0}^{n} \frac{n!}{(x-1)!(n-x)!} p^{x}(1-p)^{n-x}
$$

\n
$$
= np \sum_{i=0}^{n} \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1}(1-p)^{n-x}
$$

\n
$$
= np \sum_{i=0}^{n} Binomial(x-1|n-1,p) = np
$$

Example of the binomial expectation

- \bullet How many heads to we expect after 8 tosses?
	- $p = 0.5$, $n = 8$, $E(X) = np = 4$
- How many baskets do we expect Shaq to make in 10 attempts?

 $p = 0.37, n = 10, E(X) = 3.7$

- How many baskets do we expect Ray Allen to make in 20 attempts?
	- $p = 0.96$, $n = 20$, $E(X) = 19.2$

is often denoted μ and called the **mean** of a distribution.

- The expectation tells you the **true mean** of any known, theoretical, distribution
- \bullet It is not quite the same as the **sample mean** which we obtain empirically for data.

Some basic arithmetical property of expectations

 $E(A + B) = E(A) + E(B)$ $E(kA) = kE(A)$; where k is a constant $E(AB) = E(A)E(B)$; only if A and B are independent

Variance

- Another very important quantity is the **variance** of a distribution.
- \bullet It is the Expected Squared Deviation from the Mean
	- Convert that to math notation:

 $Var(X) = E ((X – E(X))^{2})$

Use the properties of expectation to simplify:

$$
Var(X) = E(X2 - 2XE(X) + E(X)2)
$$

= E(X²) - 2E(XE(X)) + E(X)²
= E(X²) - 2E(X)E(X) + E(X)²
= E(X²) - E(X)²

Example: Variance of 4 coin flips

- \bullet X is the total number of heads after 4 coin flips
- Possible values of X are: $x = \{0, 1, 2, 3, 4\}$
- \bullet Probability distribution of X is: $P(X = x) = Binomial(k|n = 4, p = 1/2)$
- Expected value of X is: $E(X) = \mu = np = 2$

 $Var(X) = 1$

The **Variance**

• The **variance** of a random variable X is defined by the following expressions:

Var(X) = E((^X [−] E(X))²) Var(X) = E(^X ²) − E(X) 2

• For **discrete random variables**, $X \in \{x_1, x_2, x_3...x_n\}$, with known probability function $P(X = x) = f(x)$:

$$
\begin{array}{rcl} \mathsf{Var}(X) & = & \sum_{i=1}^{n} \left((x_i - \sum_{i=1}^{n} x_i f(x_i))^2 f(x_i) \right) \\ & = & \sum_{i=1}^{n} x_i^2 f(x_i) - \left(\sum_{i=1}^{n} x_i f(x_i) \right)^2 \end{array}
$$

Variance of the binomial distribution

Binomial distribution:

$$
f(x|n, p) = Pr(X = x) = \frac{n!}{x!(n-x)!}p^{x}(1-p)^{n-x}
$$

Solving for the variance of the binomial distribution:

$$
\begin{array}{rcl}\n\text{Var}(X^2) & = & \sum_{i=0}^n x^2 f(x|n, p) - \mathsf{E}(X)^2 \\
& = & \dots \\
& = & \text{ lots of algebra similar to last time} \\
& = & \dots \\
& = & n p(1 - p)\n\end{array}
$$

The **Variance**

...is often denoted σ^2 .

- It tells you something quantitative about the amount of spread in a distribution from the **mean**.
- The square root of the variance, *^σ* is the standard deviation - which is the units of the random variable X .
- This quantity is the **true variance** of any known, theoretical, distribution
- It is not exactly the same as the **sample variance** which we obtain empirically for data.

Example of the binomial variance

- A What's the variance of heads after 8 coin tosses?
	- $p = 0.5, n = 8, E(X) = 4,$ $Var(X) = np(1 - p) = 2$
- What's the variance of Shaq's 10 FT attempts?
	- $p = 0.37$, $n = 10$, $E(X) = 3.7$, $Var(X) = 2.331$
- What's the variance of Ray Allen's 20 FT attempts?
	- $p = 0.96$, $n = 20$, $E(X) = 19.2$, $Var(X) = 0.768$

Basic arithmetical property of variances

- $Var(kA) = k^2Var(A)$
- \bullet If A and B are independent,

$$
Var(A + B) = Var(A) + Var(B)
$$

Components of a probability distribution

- ^X: The **random variable** (r.v.)
- ^x: The possible values (or **support**) of ^X
	- $\bullet X \in \{x_1, x_2, x_3...x_n\}$
- $P(X = x | \theta) = f(x, \theta)$: The **probability mass functions**
	- Often contracted to "p.m.f." of "pmf"
	- for continuous r.v.'s, called "**probability density function**" (p.d.f.)
- *^θ*: The **parameters** of the pdf.
- \bullet E(X) = μ : The theoretical **mean** of the pdf.
- $Var(X) = \sigma^2$: The theoretical **variance** of the pdf.

Bernoulli distribution

The Bernoulli distribution is the distribution of a **single** event with probability p.

$$
P(X = x) = \begin{cases} 1 - p & \text{for } x = 0 \\ p & \text{for } x = 1 \end{cases}
$$

Examples: a single coin flip, a single FT.

Question: What is the expected value and variance of the Bernoulli distribution?

Relationship between Binomial and Bernoulli distribution

- A Binomial (n, p) is the sum of n Bernoulli (p) trials
- Formally, if $X_1, X_2, X_3, \ldots, X_n$ are each independent variables with:

 X_i ∼ Bernoulli(p)

then

$$
Y = \sum_{i=1}^{n} X_i \sim \text{Binomial}(n, p)
$$

Using arithemetic properties of Expectation and Variance Question: What is the expectation and variance of $Y = \sum_{i=1}^{n} X_i$ where X_i are Bernoulli(p) trials?

• Recall

$$
E(A + B) = E(A) + E(B)
$$

And (if A and B are independent)

$$
Var(A + B) = Var(A) + Var(B)
$$

Then:

$$
E(Y)
$$
 = $E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} p = np$

• And (very similarly):

$$
Var(Y) = Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) = \sum_{i=1}^{n} p(1-p) = np(1-p)
$$

These are much easier ways to calculate the mean and variance of the Binomial distribution!

Example Problem: The Lottery

Rules of Washington State Powerball

- Buy a ticket for \$1
- Pick 6 numbers from 1, ..., 53
- Win \$1,000,000 if your numbers are identical to winning numbers (in any order).
- $Q1$: What is the probability of winning the jackpot?
	- Uniform sample space: Choose 6 from 53
	- $\binom{53}{6}$ = 22, 957, 480
	- $\frac{P(Winning)}{P(Winning)} = \frac{1}{22957480}$

Example Problem: The Lottery

 $P(Winning) = 1/22957480$

- Q2: What are your expected winnings?
- \bullet Call X the dollar amount of your winnings
	- ^X ∈ {−1*,* ⁹⁹⁹⁹⁹⁹} $P(X = x)$ $\begin{cases} 22957479/22957480 & \text{for } x = 0 \\ 0 & \text{otherwise} \end{cases}$ $F(X = x)$ {1/22957480 for $x = 10000000$
E(X) = -1 × $\frac{22957479}{22957480}$ + 999, 999 × $\frac{1}{22957480}$ ≈ -0.956
- So: You will lose 0.96 cents, on average, every time you play.
- **Good luck!**

Geometric distribution

Questions:

- How long (how many rolls) will it take me to roll a 6 on average?
- How long will it take Shaq to make a free throw?
- If I bought a lottery ticket every day, how long would it take me to win?

The Geometric Distribution

- The geometric distribution described the number of Bernoulli trials with probability p before a success - the waiting time of a distribution.
- $P(X = k) = p(1-p)^k$ where $k = \{0, 1, 2, 3, ...\}$
- Note: one p is for success, $k(1-p)$'s for failure.

Geometric distribution: examples

Geometric distribution: examples

- \bullet What is the probability that Shaq (p=0.3) will miss exactly three times before making it? $p(1-p)^3 = \text{dgeom}(3, 0.3) = 10.3\%$
- \bullet What is the probability that Shaq (p=0.3) will miss less than three times in a row?

 $\sum_{i=0}^{2} p(1-p)^{i} = \text{pgeom}(2, 0.3) = 65\%$

 \bullet What is the probability that Shaq (p=0.3) will miss more than three times in a row?

 $\sum_{i=4}^{\infty} p(1-p)^i = 1$ - pgeom(4, 0.3) = 17%

What is the probability that you will have won SuperLotto at least once after 20 years of playing daily?

 $\sum_{i=0}^{356*20} p(1-p)^i = \text{pgeom}(365*20, \text{ p} = 1/22e6) = 0.03\%$

Geometric distribution: Memorylessness

- After 3 misses, what is the probability Shaq will miss 3 more times? ALSO 10.3%!
- After 20 years of trying, what is the probability you might win after another 20 years? ALSO 0.03%!
- It does not matter how long you have been trying to get a success, the waiting time will always have the same distribution.
- This is called "memorylessness" and is very special.

$$
P(X > m + n|X > m) = P(X > n)
$$

Geometric distribution

$$
E(X) = \sum_{i=0}^{\infty} k p (1-p)^{k} = \frac{1-p}{p}
$$

Var(X) = $\sum_{i=0}^{\infty} k^{2} p (1-p)^{k} - E(X)^{2} = \frac{1-p}{p^{2}}$

How long (how many flips) will it take me before I get a head from a fair coin on average?

Answer: $\mu_x = (1 - 1/2)/1/2 = 1$ flip, $\sigma_x = \sqrt{2}$

- \bullet How long will it take me to roll a 6 on average? Answer: $\mu_x = (1 - 1/6)/1/6 = 5$ rolls, *sigma*_x = $\sqrt{30}$
- \bullet How long will it take Shaq to make a free throw? Answer: $\mu_x = (1 - 0.3)/0.3 = 2.333$ attempts, $\sigma_x = 2.789$
- **How long would it take me to win Powerball?** Answer: $\mu_x = (1 - 1/23e6)/23e6 = 22e6$ days = 63,013 years, $\sigma_x = 22e6$ days

