

Probability I: Sample spaces and counting

Elie Gurarie

Biol 799 - Lecture 4

January 4, 2017

Topics

- Random processes
- Sample spaces
- · Basic probability rules
 - Complementarity
 - Addition
 - Multiplication
- · Disjoint and independent sets
- The binomial distribution

Random

Can we predict a coin flip mechanistically?

No

Can we predict a coin flip probabilistically?

Yes!

Coin flips

50% chance Heads

50% chance Tails

This "random" result tells us everything we need to know about the very complex problem of the coin-flip.

In short ...

What does random mean?

1 + 1 = 2

- A random event X can take some values in $k = (x_1, x_2, x_3, ...)$... but we can not predict X exactly.
- BUT, if X were repeated many times, a fixed pattern would emerge. This pattern is the probability distribution

f(k) = P(X = k)

Note: the values k is called the sample space.

What does random mean?

We can not describe it well exactly ONCE, but we can describe what will happen if it is repeated many times. This is the *frequentist* interpretation of probability.

Definitions

- The sample space is a set (or list) of all, possible, non-overlapping outcomes of a random process.
- . An event is a subset of the sample space.
- A probability model (or *measure*) is the probability (0 < P < 1) for a given event in the sample space

Types of sample spaces

Enumerating discrete sample spaces

- Discrete, finite
 - All outcomes can be enumerated (even if it is a lot of outcomes)
 - Examples: coin tosses, rolls of the dice, card picks
- · Continuous, infinite
 - Like a continuous variable, there are an uncountable number of outcomes in a continuous sample space
 - Examples: time to your next text message, length of pups, colors in the visible spectrum
- Goal: to estimate the probability of an event P(A) in sample space S

- For discrete sample spaces, you can count or enumerate all possibilities.
- Under certain assumptions, you can build the probability model of an event.

Example: A single coin flip

The sample space of X = a single coin flip is:

- We denote this: S = {H, T}- possible events are just H or T.
- The probability model is written:
 P(X = H) = 0.5 and P(X = T) = 0.5

Example: Two coin flips

- The sample space of X = two coin flips is: S = HH: (X, Y) HT: (X, Y) TH: (X, Y) and TT: (X, Y)
- Is HT = TH? It depends on your question!
- · If NO, the probability model is:

P(X = HH) = 0.25, P(X = HT) = 0.25P(X = TH) = 0.25, P(X = TT) = 0.25

If YES, the probability model is:

P(X = HH) = 0.25P(X = HT) = 0.50P(X = TT) = 0.25

Example: Two coin flips



The sample space depends on the question!

A basketball player shoots three free throws.

Question I: What are the possible sequences of hits and misses?

S = {MMM, MMH, MHM, MHH, HMM, HMH, HHM, HHH} a Note: $k = 2^3 = 8$

The sample space depends on the question!

Continuous spaces are different

A basketball player shoots three free throws.

· Question II: How many baskets will the basketball player make total?

• S = {0, 1, 2, 3}

- · The sample space can not be enumerated.
- . When we work with these, we need to describe them with a mathematical function that takes values on the continuous real numbers
- For now, we'll stick to discrete spaces.

Goals and Rules of Probability

- Rules about sample spaces:
 - 0 ≤ P(A) ≤ 1 for any event A
- Rules about combining probabilities
 - Complement rule: For any event A, where A^c is the event "not A": P(A^c) = 1 - P(A)
 - Addition rule: If A and B are disjoint events, then: P(A or B) = P(A) + P(B)
 - Multiplication rule: If A and B are independent events, then: P(A and B) = P(A) × P(B)

Another example system

In the 2006 NBA playoffs, Shaq shot 37% from free throw line.

In the 2011 playoffs, Ray Allen shot 96% from free throw line.

Sample space rules

- 0 ≤ P(A) ≤ 1
 - P(heads) = 0.5
 - P(Shaq makes a FT) = 0.37
 - P(Allen makes a FT) = 0.96

P(S) = 1

- P(heads) + P(tails) = 1
- P(Shaq makes a FT) + P(Shaq misses a FT) = 1
- P(Allen makes a FT) + P(Allen misses a FT) = 1
- P(Shaq makes either 0,1,2,3 FT in 3 attempts) = 1

P(A^c) = 1 − P(A)

- P(heads) = 1 P(tails) = 0.5
- P(Shaq misses a FT) = 1-P(Shaq makes a FT) = 0.63
- P(Shaq makes 0/3) = 1-P(Shaq makes 1,2 or 3/3) = ?

Complements

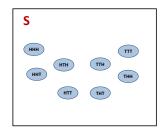
Rule of complements: $P(A^c) = 1 - P(A)$

Combining events: UNION

In a Venn diagram

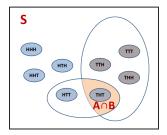
UNION: A or $B - A \cup B$

- · Example: Three coin tosses with exactly one head OR first flip is a tail
- $A = \{ \{HTT\}, \{THT\}, \{TTH\} \}$
- $B = \{\{THH\}, \{THT\}, \{TTH\}, \{TTT\}\}$
- $A \cup B = \{\{\mathsf{HTT}\}, \{\mathsf{THH}\}, \{\mathsf{THT}\}, \{\mathsf{TTH}\}, \{\mathsf{TTT}\}\}$
- $(A \cup B)^{c} = \{HHH\}, \{HHT\} \{HTH\}$



Combining events: INTERSECTION

In a Venn diagram

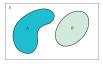


INTERSECTION: A and $B - A \cap B$

- · Example: Three coin tosses with exactly one head AND first flip is a tail
- $A = \{\{HTT\}, \{THT\}, \{TTH\}\}$
- $B = \{\{THH\}, \{THT\}, \{TTH\}, \{TTT\}\}$
- $A \cap B = \{\{\mathsf{HTT}\}\}$
- $(A \cup B)^{C} = \dots$

Addition rule for disjoint events

Two events A and B are disjoint if they have no outcomes in common and can never happen together. The probability that A OR B occurs is the sum of their individual probabilities



Addition rule for disjoint events:

 $P(A \text{ or } B) = P(A \cup B) = P(A) + P(B)$

Independence

- If events A and B are independent, then P(A) has no impact on P(B).
 - Example:
 - · You flip a coin twice,
 - P(Heads first) has no effect on P(Tails second)
 - Counterexample:
 - You draw a card from a deck of 52 once: *P*(black card on first draw) = 0.5.
 - You draw a second card from a deck without replacing the first: P(black card on second draw) = 25/51 < 0.5.
 - Possible counterexample:
 - You shoot a basketball once.
 - Is P(You make the second|You missed the first) = P(You make a second|You made the first)?

Multiplication rule for Independent Events

interpretation rate for independent Events

- If A and B are independent: $P(A \cap B) = P(A) \times P(B)$
- Note: P(B|A) = P(B)

Example 1: Three Heads

- What is the probability of flipping three heads in three tosses?
- Note: P(H) = 0.5;
- Coin flips are independent;
- So P(HHH) = P(H) × P(H) × P(H)

Example 2: A run of three

- What is the probability of getting three in a row?
- Now we combine "AND" and "OR":

- $P(HHH \cup TTT) = P(HHH) + P(TTT)$
 - $= P(H \cap H \cap H) + P(T \cap T \cap T)$
 - = P(H)P(H)P(H) + P(T)P(T)P(T)
 - $= (0.5)^3 + (0.5)^3 = 0.25$
- So what is the probability of a 2/1 split?
- $P(2/1 \text{ split}) = P((HHH \cup TTT)^c) = 1 P(HHH \cup TTT) = 0.75$

Note that every outcome has the same probability,

But that is only because
 P(H) = P(T) = P(H^c)

	Toss:							
	First	Second	Third					
1	н	н	н					
2	н	н	т					
3	н	т	н					
4	н	т	т					
5	т	н	н					
6	т	н	т					
7	т	т	н					
8	т	т	т					

Uniform probability spaces

- There is a class of random processes for which each outcome has equal probability, for example:
 - · Coin flips
 - Dice rolls
 - Cards from a shuffled deck

But not:'

Free throws

Part II: Permutations and Combinations

A surprising fact

A lot of the theory underlying classical statistical inference can be derived from considering (in great detail) *independent* events from *equal probability* sample spaces!

Example

Consider rolling 2 dice

Question: What is the probability that the sum is 5?

Lots of probability problems are just counting problems!

- What's the probability of 1 die giving an odd number?
 - \bullet S has 6 outcomes, A (Odds) had 3 outcomes, $N_A/N_S=3/6=0.5$
- What's the probability of 2 dice giving a sum > 9?
 - S has 36 outcomes, A (> 9) has six outcomes, $N_A/N_S = 6/36 = 0.166$
- What's the probability that at least 2 people in a class of 23 people have the same birthday?

Yikes!

- What's the probability that after 20 coin flips, you'll get exactly 10 heads?
 - Yikes!

What is the probability that the sum is 5?

The sample space consists of 36 equally probable events:

- How do we know? We counted: $N_S = 6 \times 6$
 - Note: A and B are independent, so P(A ∩ B) = P(A)P(B).
- How many sum to 5? We counted: (1,4), (2,3), (3,2), (4,1) • $N_A = 4$
- $P(D_1 + D_2 = 5) = N_A/N_S = 4/36 = 0.111$

Counting is not always easy!

Counting Rules

What's for lunch?

· Food: Sushi, Teriyaki, Udon noodle

• Drink: Fanta, Green Tea, H₂0

How many different meals can I make?

Fundamental counting rule

Let A_1 be a set with n_1 elements and A_2 be a set with n_2 elements. If one element is taken from A_1 and one element is taken from A_2 , there are:

 $n_1 \times n_2$

possible unique outcomes.

Answer

 $3 \times 3 = 9$

Counting Rules

What's for dinner?

- · Food: Escargots, Fondue, Grenouilles
- Drink: Bordeaux, Burgundy, Beaujolais
- · Dessert: Crème fraîche, Tarte aux pommes, Sorbet aux pêches

How many people at a table can have a unique meal?

Counting Rules

Multiplicative rule

Let A_1 , A_2 , A_3 be k sets with n_1 , n_2 , ... n_k elements (respectively) in each set. If one element is taken from each set, then there are

 $n_1 \times n_2 \times ... \times n_k$

possible unique outcomes.

Answer

 $3 \times 3 \times 3 = 27$

Counting Rules

How do I rank my favorite animals?

Some animals:

· Aardvark, Baboon, Cheetah, Dolphin

How many different ways can I rank them according to how cool I think they are?

Counting Rules

Factorial rule for permutations

A set of n elements can be ordered n! different ways

Definition of factorial

$$n! = n(n-1)(n-2)(n-3)...1$$

And: 1! = 0! = 1

Answer $4! = 4 \times 3 \times 2 \times 1 = 24$

Counting Rules

How do I rank my favorite four out of eleven animals?

Some animals:

 Aardvark, Baboon, Cheetah, Dolphin, Egret, Flamingo, Giraffe, Hippo, Iguana, Jackal, Kangaroo

How many different ways can I rank the 4 coolest ones?

Counting Rules

Permutations (order matters)											
selection	of	r elements	from	а	set o	of <i>i</i>	n total	elements	can	be	rank
rdered in					n!	_					
				(<i>n</i>	- r)	!					
ifferent wa	iys.										

Answer

 $\frac{11!}{(11-4)!} = \frac{11!}{7!} = 11 \times 10 \times 9 \times 8 = 7920$

Counting Rules

How do I pick four animals I want to study?

Some animals:

 Aardvark, Baboon, Cheetah, Dolphin, Egret, Flamingo, Giraffe, Hippo, Iguana, Jackal, Kangaroo

How many different ways can I separate this group into 4 that I want to study and 7 that I don't?

Counting Rules

Combinations (order doesn't matters)

A selection of r elements from a set of n total elements can be chosen in

$$\binom{n}{r} = \frac{n!}{r!(n-r)}$$

different ways.

"Choose" function

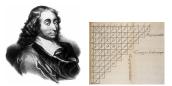
- We call this creature: ⁿ/_r "n choose r"
- It is the number of ways we can pick r unique cases from a set of n
- It is also written: rCn, and called: "the binomial coefficient".

Answer

 $\frac{11!}{4!(11-4)!} = \frac{11 \times 10 \times 9 \times 8}{4 \times 3 \times 2 \times 1} = 330$

Blaise Pascal (1623 - 1662)

Zhu Shijie 朱世杰 (1270 - 1330)



French mathematician - described "Pacal's triangle" in Treatise on the Arithmetical Triangle (1653).

- Great Chinese mathematician described the triangle in The Precious Mirror of the Four Elements (1303).
- Attributes it to Jia Xian (1050).
- Also attributed to Omar Khayyam (Persia: 1048-1131) - Khayyam's Triangle
- Who attributes it to Al-Karaji (Persia: 953-1029)
- a Though it was known by Pingala (India: 2nd century)

Back to the Birthday Problem

What is the probability that in a class of 23 students, at least 2 will have a matching birthday?

- What is S? All possible sequences of birthdays (multiplicative rule):
 - $N_S = 365^{23}$
- What is A? All possible sequences where at least 2 people have the same birthday.
 - That's a bit tricky.
- What is A^c? All possible sequences where NO ONE shares a birthday (permutations rule).
 - $N_A = 365 \times 364 \times 363 \times ... \times 343 = \frac{3651}{(365-23)1}$

•
$$P(A^c) = \frac{N_{A^c}}{N_c} = \frac{365!/342!}{265^{23}}$$

• $P(A) = 1 - P(A^c) = 1 - \frac{3651/3421}{36523} \approx 0.507$

Back to the Coin Problem

What is the probability that after flipping 10 coins, you'll get exactly 5 heads?

- Sample size (multiplicative rule)
 - $N_S = 2^{10}$
- What is the event size: N_A?
- We can define a sequence of events by 5 numbers chosen from 1 to 10. This is the same as choosing a combination of 5 unique numbers from 10 total, and we don't care about the order (combinations rule):

$$N_A = {10 \choose 5} = \frac{10!}{5!(10-5)}$$

•
$$P(5 \text{ heads in } 10 \text{ tosses}) = \frac{10!/(5!(10-5)!)}{2^{10}} \approx 0.246$$

A different way to look at the Coin Problem

What is the probability that after flipping 10 coins, you'll get exactly 5 heads?

- First: We need 5 heads (H) and 5 tails (T) to happen:
 - P(T) = P(H) = 1/2
 - P(HHHHH) = (1/2)⁵, P(TTTTT) = (1/2)⁵
- But there are many ways in which these sequences can happen!
 - P(5 heads in 10 tosses) = K(1/2)⁵(1/2)⁵
 - What is K?

Combinations Rule!

 $K = \binom{10}{5} = \frac{10!}{5!(10-5)!}$

• $P(5 \text{ heads in } 10 \text{ tosses}) = \frac{10!}{5!(10-5)!} (1/2)^5 (1/2)^5 \approx 0.246$

More flexible way of thinking about the problem ...

Example: what is the probability that Shaq will make 8 free throws out of 10?

• We need 8 successes (H) and 2 failures (M) to happen: • P(H) = p = 0.374 and P(M) = 1 - p = 0.526• $P(HH/HH/HH/H) = p^{0}, P(MM) = (1 - p)^{2}$ • How many ways can the sequence of 8 Nits happen? Combinations **Rule!** $K = {\binom{10}{8}} = \frac{10!}{8!2!}$ • P(8 hits in $10 \text{ FT}_{9}) = \frac{352}{9!} p^{0}(1 - p)^{2} \sim 0.67\%$

(Note: that number is written in PERCENT!)

Binomial Distribution

The Binomial Distribution...

... is a **discrete probability distribution** that tells you the exact probability of k successes out of n tries, if each try is an independent event with probability p:

$$f(k|n,p) = \Pr(X = k) = \frac{n!}{k!(n-k)!}p^k(1-p)^{n-k}$$

where $k = \{0, 1, 2...n\}$. Note the following properties:

$$\sum_{k=0}^{n} f(k|n,p) =$$

1

Note that we derived this distribution from **probability rules** and **counting rules**.