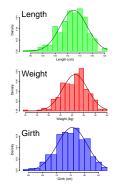


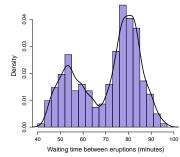
Concepts

- Types of distributions: skewed, right-skewed, left-skewed, multi-modal
- Summary statistics
 - Measures of center: arithmetic mean, median, geometric mean
 - Measures of spread: variance, standard deviation, quantiles,
- Visualizing Data
 - boxplots
 - scatterplots
 - more!

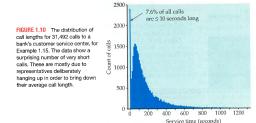
Distributions: Unimodal, "symmetric"



Distributions: Bimodal



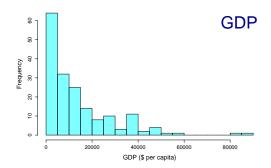
Distributions: Right-skewed



Most values bunched LOW, but a few values very LARGE

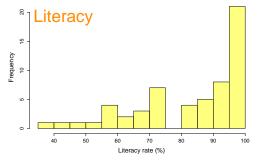
Distributions: per capita GDP

Distributions: per capita GDP

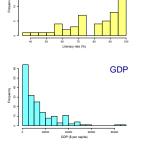


Consider countries: Literacy

Consider countries: Left-skewed

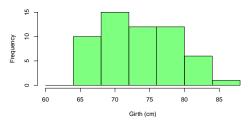


Most values bunched HIGH, fewer values very LOW.



iteracy

Question: How do describe the MIDDLE and the SPREAD of a distribution?



G: 69, 76, 72, 73.5, 72, 75, 67, 77, 71, 74, 79, 77, 67.5, 71, 76, 74, 84, 77.5, 67, 80, 67, 78, 76, 70, 81, 77, 69, 66, 71, 77, 88, 71.5, 67, 76, 70, 78, 80.5, 69.5, 72.5, 79, 73, 74.5, 73, 65.5, 66.5, 72, 80, 82, 83, 71, 71, 70, 82, 78, 64.5, 66

Definition of Mean

Given $\{X_1, X_2, X_3, ... X_n\}$, the mean is defined as:

$$\overline{X} = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_i$$
(2)

$$= \frac{1}{n} \sum_{i=1}^{n} X_i \tag{2}$$

The mean is also known as: arithmetic mean or, non-technically, average.

Definition of Mean

So ...

 $\sum G_i = 69 + 76 + 72 + 73.5 + 72 + 75 + 67 + 77 + 71 + 74 + 79 + 77 + 67.5 \\ + 71 + 76 + 74 + 84 + 77.5 + 67 + 80 + 67 + 78 + 76 + 70 + 81 + 77 + 69 + 66 + 71 + 77 + 88 + 71.5 + 67 + 76 + 70 + 78 + 80.5 + 69.5 + 72.5 + 79 + 73 \\ + 74.5 + 73 + 65.5 + 66.5 + 72 + 80 + 82 + 83 + 71 + 71 + 70 + 82 + 78 + 64.5 + 66$

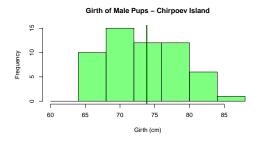
n = 56

 $\overline{G} = \frac{1}{n} \sum_{i=1}^{n} G_i = \frac{1}{56} \times 4135.5 = 73.85$

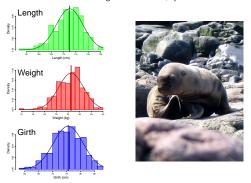
R code: calculating means

- > mean(Girth)
- Γ17 73.84821
- > sum(Girth)/length(Girth)
- [1] 73.84821

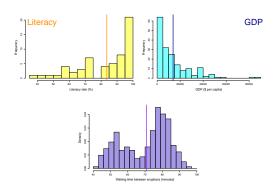
Means for different kinds of data



The mean is most meaningful for unimodal, symmetric distributions



The **mean** is somewhat less *mean*ingful for multimodal or asymmetric distributions



Another measure of center: median

Definition: The **median** is the point of a distribution that splits the data into two equal sized halves.

Median

First, order the data:

 $G_{(7)} = 64.5, \, 65.5, \, 66, \, 66, \, 66.5, \, 67, \, 67, \, 67, \, 67, \, 67.5, \, 69, \, 69, \, 69.5, \, 70, \, 70, \, 70, \, 71, \, 71, \, 71, \, 71, \, 71, \, 71, \, 52, \, 72, \, 72, \, 72, \, 72.5, \, 73, \, 73, \, 73.5, \, 74, \, 74, \, 74.5, \, 75, \, 76, \, 76, \, 76, \, 76, \, 77, \, 77, \, 77, \, 77, \, 77, \, 77, \, 57, \, 78, \, 78, \, 78, \, 79, \, 79, \, 80, \, 80, \, 80.5, \, 81, \, 82, \, 82, \, 83, \, 84, \, 88$

Note the notation:

- X_(i) is the minimum value of X
- X_(n) is the maximum value of X.

Second, find the point that splits the data in half.

- If n is odd, you take point: X = X_{(n+1)/2}.
- If *n* is *even*, you take the mid-point between: $\widetilde{X} = \frac{1}{2} (X_{(n/2)} + X_{(n/2+1)}).$

Example - Pup Girth: n=56, so we take data points 28 and 29, and average.

So
$$\widetilde{G} = (73 + 73.5)/2 = 73.25$$
. (Compare to $\overline{G} = 73.85$.)

Medians

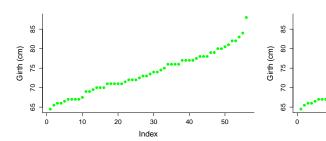
Male girth = 64.5, 65.5, 66, 66.6, 66.5, 67, 67, 67, 67, 67.5, 69, 69, 69, 57, 70, 70, 70, 71, 71, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 73, 73, 73, 74, 74, 74, 74, 75, 76, 75, 76, 76, 77, 77, 77, 77, 77, 77, 5, 78, 78, 78, 79, 79, 80, 80, 80, 80, 81, 82, 82, 83, 84, 88

So
$$\widetilde{G} = (73 + 73.5)/2 = 73.25$$
.

R code: calculating median

- > median(Girth)
- [1] 73.25
- > # creating a customized "median function" is an exercise

Median of Girth



Geometric mean

Given $\{X_1, X_2, X_3, ... X_n\}$, the geometric mean is defined as:

A little bit of math:

$$\log(\check{X}) = \log\left(\left(\prod_{i=1}^{n} X_{i}\right)^{1/n}\right)$$
$$= \frac{1}{n}\log\left(\prod_{i=1}^{n} X_{i}\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}\log X_{i}$$

So ...

Geometric mean

```
R code: calculating geometric means
> X <- 1:170
> prod(X)^(1/length(X))
[1] 63.83567
> # But note that things break down at high numbers.
> X <- 1:171
> prod(X)^(1/length(X))
[1] Inf
> # This is where logarithms are most useful!
> exp(mean(log(X)))
[1] 64.20457
```

Comparison of measures

Example: $X = \{1, 2, 3, 4, 5\}$

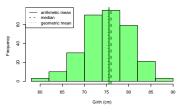
Measure	Notation	Result
Arithmetic Mean	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	3
Median	$\widetilde{X} = X_{(n/2)} \text{ or } X_{(n+1/2)}$	3
Geometric Mean	$reve{X} = \left(\prod_{i=1}^n X_i\right)^{1/n}$	2.67

Comparison of measures

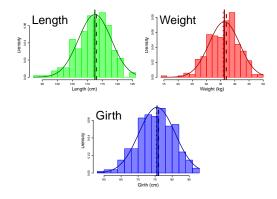
Example: $X = \{1, 10, 100, 1000, 10000\}$

Measure	Notation	Result
Arithmetic Mean	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	2222.2
Median	$\widetilde{X} = X_{(n/2)} \text{ or } X_{(n+1/2)}$	100
Geometric Mean	$\breve{X} = \left(\prod_{i=1}^n X_i\right)^{1/n}$	100

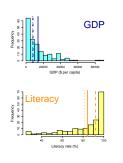
Compare median and mean



Median and mean for symmetric distributions



Median and mean for asymmetric distributions



Measure	GDP	Literacy
\overline{X}	\$13,871	84.10%
\widetilde{X}	\$8,080	91.95%
X	\$7,228	81.16%

Measure of spread: Variance

Given data $x_1, x_2, x_3...x_n$, the population variance is

$$s_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

and the sample variance is

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

We will talk about the difference between these and where the n-1 comes from later in the course. For now, we mostly use the "sample variance", because we typically do not assume that we have measured the entire population.

Measure of spread: Standard Deviation

Population standard deviation:

$$s_x = \sqrt{s_x^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}$$

Sample standard deviation:

$$s_x = \sqrt{s_x^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Measures of spread

Some girth data: G = 69, 76, 72, 73.5, 72, 75, 67, 77, 71, 74, 79, 77, 67.5, 71, 76 Mean: $\overline{G} = 73.133$.

	G		
1	69.00		
2	76.00		
3	72.00		
4	73.50		
5	72.00		
6	75.00		
7	67.00		
8	77.00		
9	71.00		
10	74.00		
11	79.00		
12	77.00		
13	67.50		
14	71.00		
15	76.00		
	G	G – G	
1	69.00	-4.13	
2	76.00	2.87	
3	72.00	-1.13	
4	73.50	0.37	
5	72.00	-1.13	
6	75.00	1.87	
7	67.00	-6.13	
8	77.00	3.87	
9	71.00	-2.13	

Measures of spread

Mean: $\overline{G} = 73.133$.

	G	$G - \overline{G}$	$(G - \overline{G})^2$
1	69.00	-4.13	17.08
2	76.00	2.87	8.22
3	72.00	-1.13	1.28
4	73.50	0.37	0.13
5	72.00	-1.13	1.28
6	75.00	1.87	3.48
7	67.00	-6.13	37.62
8	77.00	3.87	14.95
9	71.00	-2.13	4.55
10	74.00	0.87	0.75
11	79.00	5.87	34.42
12	77.00	3.87	14.95
13	67.50	-5.63	31.73
14	71.00	-2.13	4.55
15	76.00	2.87	8.22
Σ:	1097	0	183

Variance:

$$s_G^2 = 183/(15-1) = 13.07 \text{ cm}^2$$

Standard devation:

$$s_G = \sqrt{13.07 \text{cm}^2} = 3.617 \text{ cm}.$$

Measures of spread

Variance:

$$s_G^2 = 183/(15-1) = 13.07 \text{ cm}^2$$

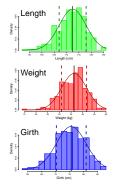
Standard devation:

$$s_G = \sqrt{13.07 \text{cm}^2} = 3.617 \text{ cm}.$$

R code: variance and standard deviation > var(g)

- [1] 13.0881
- > # by "hand"
- > sum((g-mean(g))^2)/(length(g)-1)
- [1] 13.0881 > # but not:
- > sum((g-mean(g))^2)/(length(g))
- [1] 12.21556 > # standard deviation
- > sd(g)
- [1] 3.617747
- > sqrt(var(g))
- [1] 3.617747

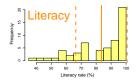
Median and mean for symmetric distributions

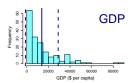


	\overline{X}	S
Length	112.46	5.46
Weight	36.30	5.38
Girth	75.55	5.33

Some features of sample standard deviation...

- They are the most common measurement of spread for a distribution
- They are always positive and have the same units as the measurements (unlike variance)
- Points that are more distant from the mean have a larger contribution to the standard deviation.
- For "normal" distributions, the range:
 x̄ − 2s_x to x̄ + 2s_x includes about 95% of the observations.





Warning

As with means (\overline{x}) , standard deviations are most meaningful for symmetric and "normal" distributions.

Measures of Spread II: Quartiles

- Take ordered observations.
- Separate them into 4 groups of equal size.
- Report: Q₀, Q₂₅, Q₅₀, Q₇₅ and Q₁₀₀
 - (split the differences between neighboring observations)

Male girth = 64.5, 65.5, 66, 66, 66.5, 67, 67, 67, 67, 67, 67.5, 69, 69, 69.5, 70, 70, 70, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72.5, 73, 73, 73.5, 74, 74, 74.5, 75, 76, 76, 76, 76, 77, 77, 77, 77, 77, 78, 78, 78, 78, 79, 79, 80, 80, 80.5, 81, 82, 82, 83, 84, 88, 64.5, 65.5, 66.0, 66.0, 66.5, 67.0, 67.0, 67.0, 67.0, 67.5, 69.0, 69.0, 69.5, 70.0, 70.0, 71.

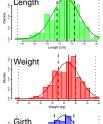
0% 25% 50% 75% 100% 64.5 70 73.25 77.75 88

Quartiles

0%	25%	50%	75%	100%
64.5	70	73.25	77.75	88

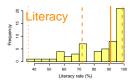
R code: quantiles				
>quantile(Girth)				
0%	25%	50%	75%	100%
64.5	70	73.25	77.75	88

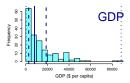
Median and mean for symmetric distributions



Girth		
	Girth (cm)	

	weight	girth	length
0%	15.50	58.50	93.00
25%	32.50	72.00	109.00
50%	37.00	76.00	113.00
75%	40.00	79.00	116.00
100%	48.50	88.00	126.00



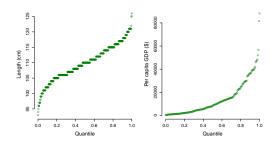


	Literacy	GDP
0%	36.00	329
25%	72.00	2721
50%	91.00	8080
75%	98.75	18841
100%	100.00	88222

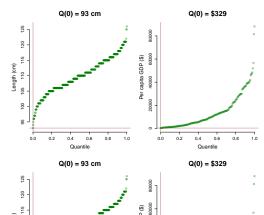
Quantiles...

provide a *flexible*, *empirical*, *robust* description of ANY kind of distribution.

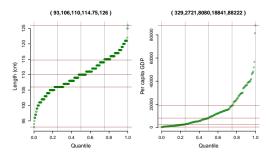
Quantiles vs. Quartiles



Quantiles vs. Quartiles

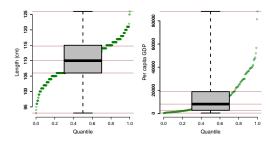


Quantiles vs. Quartiles



The **quartiles** are the 0th, 25th, 50th, 75th and 100th **quantile**: Q(0), Q(25), Q(50), Q(75), Q(100). Note that: Q(0) = minimum, Q(50) = median, Q(100) = maximum.

Boxplots (aka Box-and-whiskers plots)



The box spans Q(25)-Q(75) aka the inter-quartile range (IQR). The whiskers span Q(0)-Q(100) - the range

Summary statistics: Review

Measures of center mean mean(X) median median(X) geometric mean exp(mean(log(X)))

```
\begin{tabular}{lll} \textbf{Measures of spread} \\ sample variance & var(X) \\ sample standard deviation & sd(X) \\ range & range(X) \\ & c(min(X), max(X)) \\ quantile(X, c(0,1)) \\ quartiles & quantile(X) \\ inter-quartile range & quantile(X, c(.25, .75)) \\ \end{tabular}
```

Getting summary statistics for different groups

```
R code: The long way

> mean(Length[Island == "Chirpoev"])
[i] 109,9798

> mean(Length[Island == "Antsiferov"])
[i] 110.57

> mean(Length[Island == "Lovushki"])
[i] 109.38

> mean(Length[Island == "Lovushki" & Sex == "M"])
[i] 112.3
```

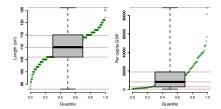
But this is very tedious!

```
R code: The slick way
> tapply(Length, Island, mean)
Antsiferov Chirpoev Lovushki
                               Raykoke
                                         Srednova
          109.9798
                    109.3800 110.7600
  110.5700
                                        108.5152
> tapply(Length, paste(Island, Sex), sd)
Antsiferov F Antsiferov M Chirpoev F Chirpoev M Lovushki F
    4.837619 5.607867
                         5.383314
                                    5.574495
                                                4.046717
  Lovushki M Raykoke F Raykoke M
                                    Srednova F
                                                Srednova M
    6.071849
            4.734624
                         4.677942
                                      4.454222
                                                 5.339355
```

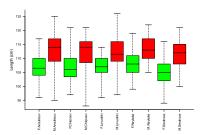
Visualizing relationships: Boxplots

Boxplots

- Allow you to easily see if the distribution is "skewed".
- Allow you to easily compare distributions of different groups.
- Allow us to visualize relationships between quantitative and categorical variables

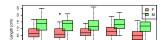


Boxplot examples

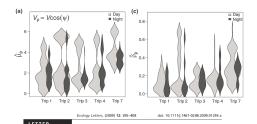


R code: boxplots

 ${\tt boxplot(Length} \, \sim \, {\tt Sex} \, + \, {\tt Island)}$



Violin plots



in animal movement data

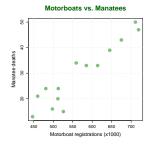
Eliezer Gurarie. 1* Russel D. Andrews² and Kristin L. Laidre³

A novel method for identifying behavioural changes

Manatees and motorboats

Year	Motorboat Registrations (thousands)	Manatee Motorboat Deaths
1977	447	13
1978	460	21
1979	481	24
1980	498	16
1981	513	24
1982	512	20
1983	526	15
1984	559	34
1985	585	33
1986	614	33
1987	645	39
1988	675	43
1989	711	50
1990	719	47

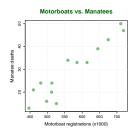
Manatees and motorboats: Scatterplot



Note: Typically, the **explanatory** variable is on the x-axis, the **response** is on the y-axis.

Manatees and motorboats: Scatterplots

allow us to visually characterize the relationships between continuous/quantitative variables.



Identify:

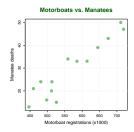
- direction (positive/negative),
- form (linear/non-linear),
- strength (strong/weak)

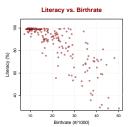
Of a relationship

Direction of relationship

Positive relationship

Negative relationship

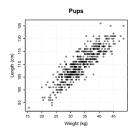


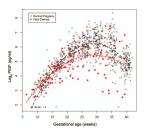


Form of relationship

Linear relationship

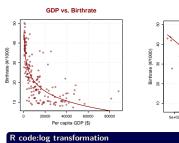
Non-linear relationship

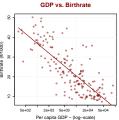




Form of relationship

Non-linear ... linearized!

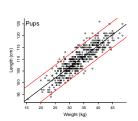




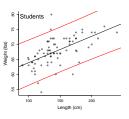
R code:log transformation plot(GDP, Birthrate, log="x")

Strength of relationship

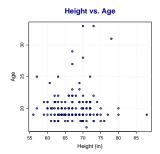
Stronger relationship



Weaker relationship

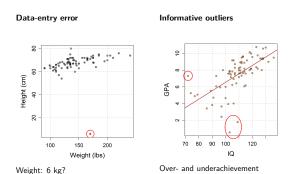


No relationship



Knowing your height tells me basically nothing about your age.

Scatterplots help identify outliers

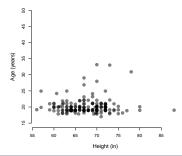


Scatterplots show 2-dimensions

Year	Motorboat Registrations (thousands)	Manatee Motorboat Deaths		
1977	447	13		
1978	460	21		
1979	481	24		
1980	498	16		
1981	513	24		
1982	512	20		
1983	526	15		
1984	559	34		
1985	585	33		
1986	614	33		
1987	645	39		
1988	675	43		
1989	711	50		
1990	719	47		

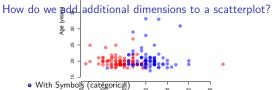
Many datasets have MANY dimensions!

	A	В	С	D	E	F	G
1	Section	Sex	Age	Height (in)	Weight (lbs)	Shoe Size	Right/Left-Handed
2	AA	Male	25	74	205	10.5	R
3	AA	Female	19	64	105	7	R
4	AA	Male	19		150	13	R
5	AA	Male	20	74	185	12	R
6	AA	Female	18	66	110	8.5	R
7	AA	Female	20	63	90	6.5	R
8	AA	Male	20	68	132	9.5	R
9	AA	Female	21	62	108	6.5	R
10	AA	Male	21				R
11	AA	Male	19	70	200	12	R
12	AA	Male	32	71	130	10.5	R
13	AA	Female	19	68	117	7.5	R
14	AA	Male	21	70	142	10	R
15	AA	Male	19	74	200	11.5	R
16	AA	Male	19	68	130	10	R
17	AA	Male	19	68	160	8.5	R
18	AA	Male	20	74	175	11	R
19	AA	Male	20	68	134	9.5	L
20	ΔΔ .	Male	28	6	170	10	R



R code

plot(h2, a2, ylim=c(15,50), col=rgb(0,0,0,.5), pch=19)



- 80 With Colors (categorical or quantitative)

R code a Also ... animations (especially for processes in time) cols <- c(rgb(1,0,0,.5), rgb(0,0,1,.5)) plot(h2, a2, ylim=c(15,50), col=cols[Sex], pch=19)</pre>

Commentary...

In times like this when unemployment rates are up to 13% and income has fallen by 5% and suicide rates are climbing I get so angry that the government is wasting money on things like collection of statistics.

Hans Rosling quoting a radio talkshow guest.

http://www.gapminder.org/