require(smartwolf)
data(smartwolf2)
analyzeWolf <- function(wolf.data, wolf.zones = NULL, n.zones = NULL,
filename = paste0(ID, ".fit.rda"),
coerce = FALSE, plotzones = FALSE, ...){
try(load(paste0("../results/", filename)))
if(!exists("wolf.fit") | coerce){
if(is.null(wolf.zones))
wolf.zones <- createZones(wolf.data, n.zones = n.zones, plotme = plotzones) else
n.zones <- length(wolf.zones$zone.polys)
wolf.data$Zone <- wolf.zones$zone.vector
wolf.fit <- estimateFixedParameters(data = wolf.data, plotme = FALSE, .parallel = TRUE, cluster = cl, ...)
save(wolf.fit, file = paste0("../results/", filename))
}
print(wolf.fit$estimates)
plotLagTauFits(wolf.fit)
return(wolf.fit)
}
Analyzing Viki:
Viki <- subset(smartwolf, ID == "Viki")
Prepping a bunch of objects:
palette(rich.colors(7))
Viki.4zones <- createZones(Viki, n.zones = 4, plotme = TRUE)
## [1] 1
## [1] 2
## [1] 3
## [1] 4
Viki.5zones <- createZones(Viki, n.zones = 5, plotme = TRUE)
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
Viki.6zones <- createZones(Viki, n.zones = 6, plotme = TRUE)
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
Viki.7zones <- createZones(Viki, n.zones = 7, plotme = TRUE)
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
lags <- seq(2,13,.5)
taus = seq(0.1,3,.2)
Set up parallel processing:
setupParallel <- function(){
require(doParallel)
n.clusters <- detectCores()
cl <- makeCluster(n.clusters)
registerDoParallel(cl)
clusterEvalQ(cl, library(smartwolf))
clusterExport(cl, c("Viki", "Viki.4zones", "Viki.5zones", "Viki.6zones", "Viki.7zones"))
return(cl)
}
cl <- setupParallel()
Viki.z4.g1.fit <- analyzeWolf(Viki, Viki.4zones, gamma = 1, filename = "Viki.z4.g1.rda", plotzones = FALSE)
## lambda tau beta aic.lambda aic.tau
## 1 6.7272727 0.9070707 0.5 134.7381 134.3033
## 2 0.9069978 0.5728359 NA NA NA
title("4 zones, gamma = 1", outer=TRUE)
Viki.z4.g2.fit <- analyzeWolf(Viki, Viki.4zones, gamma = 2, filename = "Viki.z4.g2.rda", plotzones = FALSE)
## lambda tau beta aic.lambda aic.tau
## 1 6.7272727 1.6707071 0.5 134.7381 133.5951
## 2 0.9069978 0.5622199 NA NA NA
title("4 zones, Gaussian", outer=TRUE)
Viki.z5.g1.fit <- analyzeWolf(Viki, Viki.5zones, gamma = 1, filename = "Viki.z5.g1.rda", plotzones = FALSE)
## lambda tau beta aic.lambda aic.tau
## 1 6.8181818 0.6242424 0.5 157.9584 161.2055
## 2 0.5670938 0.3884279 NA NA NA
title("5 zones, gamma = 1", outer=TRUE)
Viki.z5.g2.fit <- analyzeWolf(Viki, Viki.5zones, gamma = 2, filename = "Viki.z5.g2.rda", plotzones = FALSE)
## lambda tau beta aic.lambda aic.tau
## 1 6.8181818 1.3030303 0.5 157.9584 160.9359
## 2 0.5670938 0.5753056 NA NA NA
title("5 zones, gamma = 2", outer=TRUE)
Viki.z6.g1.fit <- analyzeWolf(Viki, Viki.6zones, gamma = 1, filename = "Viki.z6.g1.rda", plotzones = FALSE)
## lambda tau beta aic.lambda aic.tau
## 1 7.0000000 0.6242424 0.5 187.5983 179.0833
## 2 0.7217854 0.1743752 NA NA NA
title("6 zones, gamma = 1", outer=TRUE)
Viki.z6.g2.fit <- analyzeWolf(Viki, Viki.6zones, gamma = 2, filename = "Viki.z6.g2.rda", plotzones = FALSE)
## lambda tau beta aic.lambda aic.tau
## 1 7.0000000 1.2181818 0.5 187.5983 177.6719
## 2 0.7217854 0.2243542 NA NA NA
title("6 zones, gamma = 1", outer=TRUE)
Viki.z7.g1.fit <- analyzeWolf(Viki, Viki.7zones, gamma = 1, filename = "Viki.z7.g1.rda", plotzones = FALSE)
## lambda tau beta aic.lambda aic.tau
## 1 6.9090909 0.5959596 0.5 195.754 193.9275
## 2 0.5010358 0.2285884 NA NA NA
title("7 zones, gamma = 1", outer=TRUE)
Viki.z7.g2.fit <- analyzeWolf(Viki, Viki.7zones, gamma = 2, filename = "Viki.z7.g2.rda", plotzones = FALSE)
## lambda tau beta aic.lambda aic.tau
## 1 6.9090909 1.1616162 0.5 195.754 193.0045
## 2 0.5010358 0.3830448 NA NA NA
title("7 zones, gamma = 1", outer=TRUE)
n.zones | aic.lambda | aic.tau.exp | aic.tau.gauss | lambda.hat | tau.exp | tau.gauss |
---|---|---|---|---|---|---|
4 | 134.7381 | 134.3033 | 133.5951 | 6.727273 | 0.9070707 | 1.670707 |
5 | 157.9584 | 161.2055 | 160.9359 | 6.818182 | 0.6242424 | 1.303030 |
6 | 187.5983 | 179.0833 | 177.6719 | 7.000000 | 0.6242424 | 1.218182 |
7 | 195.7540 | 193.9275 | 193.0045 | 6.909091 | 0.5959596 | 1.161616 |