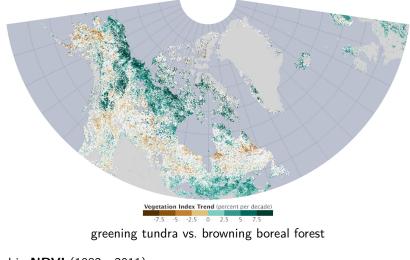
Drivers of Spring Migration in Barrenground Caribou

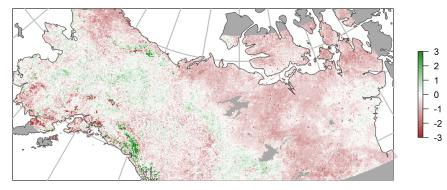
the state of the s

Elie Gurarie, Mark Hebblewhite, Sarah Davidson, Kyle Joly, Mike Suitor, Allicia

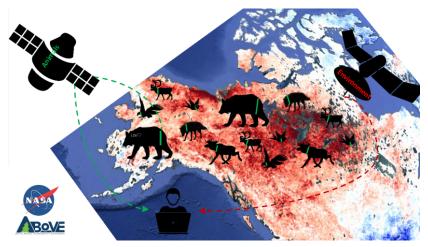

Kelly, Jan Adamczewski, William F. Fagan, Natalie Boelman

North American Caribou Workshop - Oct. 2018 - Ottawa, Canada

Motivation



Big picture: Thing are changing in the Arctic


Trend in NDVI (1982 - 2011)

Big picture: Things are changing

Trend in date of snowmelt (days / year) 2002-2016.

Big Question: How are animals responding to these changes?

- NASA: Arctic Boreal Vulnerability Experiment | Animals on the Move
- Very large-scale, multi-institute/agency collaboration
- Enormous movement dataset (millions of locations / 6 species)

What are the environmental drivers of caribou spring migration?

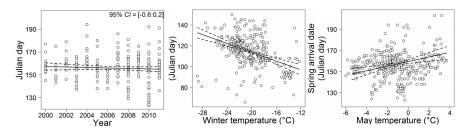
What are the environmental drivers of caribou spring migration?

Why spring migration?

- Globally / across taxa: spring phenological events are trending early at different rates
 - potential mismatch? (e.g. Post et al. in W. Greenland).
- SM links boreal forest to tundra with divergent climate trends
- Precedes calving may be linked to demographics?
- Clearly identifiable mass movement

What are the environmental drivers of caribou spring migration?

Why spring migration?


- Globally / across taxa: spring phenological events are trending early at different rates
 - potential mismatch? (e.g. Post et al. in W. Greenland).
- SM links boreal forest to tundra with divergent climate trends
- Precedes calving may be linked to demographics?
- Clearly identifiable mass movement

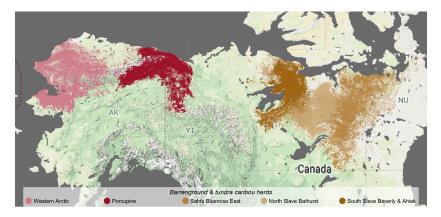
and because it's mysterious!

Photo: Peter Mather

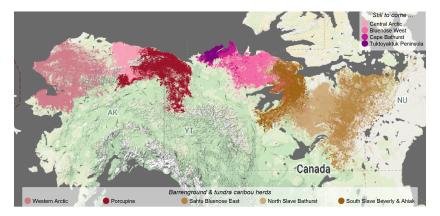
LE CORRE ET AL.-WEATHER CONDITIONS AND MIGRATION PHENOLOGY

Rivière-George / Rivière-aux-Feuilles - Québec/Labrador

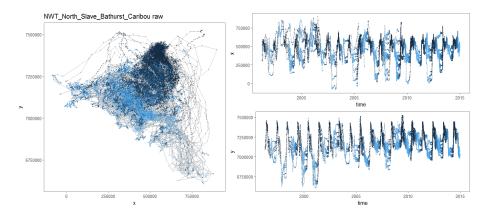
Lots of variability, no trend, some relationship with temperature (warmer = earlier) but conditioned by snow quality (wetter/more = longer migration)


LeCorre et al 2015, Journal of Mammalogy, 98(1):260-271, 2017

Spring migration phenology might ...

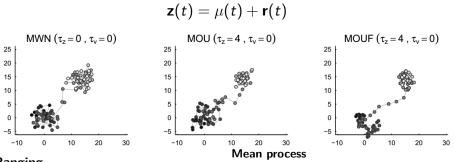

- Trending earlier
- Be linked to snowmelt timing (surfing the snow edge)
- Be linked to snow quality
- Reflect body condition / physiology

Movement Data



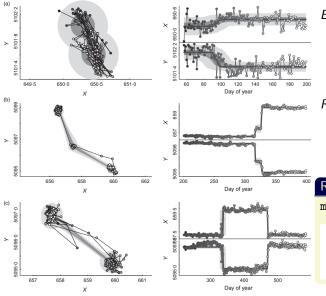
region	study	n.ind	n.obs	years	n.years
N. AK	Western Arctic	119	43 405	2010-2017	8
Yukon	Porcupine	175	77 827	1998-2017	20
NWT / Nvt	Sahtu Bluenose East	166	62 938	2005-2017	20
	North Slave Bathurst	151	40 428	1996-2017	19
	South Slave Beverly and Ahiak	124	65 492	1995-2017	10

Movement Data (recently added)


region	study	n.ind	n.obs	years	n.years
N. AK.	Central Arctic	54	33 899	2003-2007	5
NWT	Bluenose West	159	83144	1996-2017	22
	Cape Bathurst	83	56775	1996-2017	22
	Tuktoyaktuk Peninsula	46	27430	2006-2016	11

Estimating migration

Migratory/Range Shift Analysis model



Ranging

- uncorrelated (WN)
- position correlated (OU)
- position-velocity correlated (OUF)

$$\mu(t) = egin{cases} \mu_1 & t < t_1 \ \mu_1 + eta(t-t_1) & t_1 < t < t_2 \ \mu_2 & t > t_2 \end{cases}$$

MRSA: applied to individual tracks¹

Estimates (with CI's):

- timing
- ranging locations
- ranging areas

Rigorous tests of:

- range shift
- stop-overs
- site-fidelity

R package:

marcher

Journal of	Animal Ecology
loaned of Astend	Ecolory 2017 \$6, 943-629

ECOLOGIC SOCIETY

A framework for modelling range shifts and migrations: asking when, whither, whether and will it return

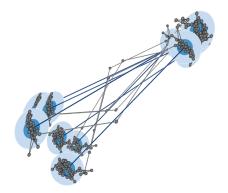
Eliezer Gurarie¹¹, Francesca Cagnacci^{2,3}, Wibke Peters^{2,4}, Christen H. Fleming^{1,8}, Justin M. Calabrese^{1,5}, Thomas Mueller^{6,7} and William F. Fagan¹

¹Gurarie et al. 2017

Barrenground caribou challenge:

- Lots and lots of animals,
- Non-independent,
- High level of individual variability,
- Unit of interest isn't the individual ... it's the Herd-Year

Hierarchical spring migration model

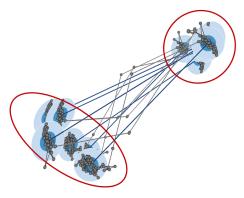

Each individual: $MWN(A, m_1, m_2, t_1, dt)$

Hierarchical spring migration model

Each individual: $MWN(A, m_1, m_2, t_1, dt)$

Lots of individuals!

Hierarchical spring migration model

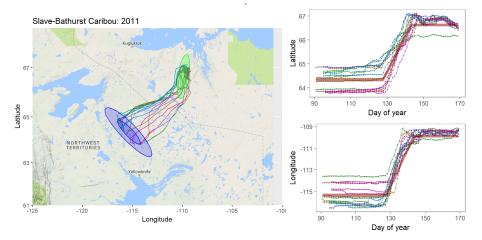

Each individual: $MWN(A, m_1, m_2, t_1, dt)$

Lots of individuals!

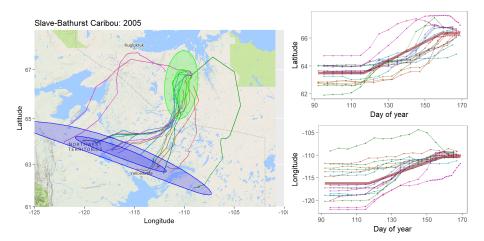
Herd Range:

winter: $M_1 \sim \text{BivarNormal}(\mu_1, \Sigma_1)$ calving $M_2 \sim \text{BivarNormal}(\mu_2, \Sigma_2)$

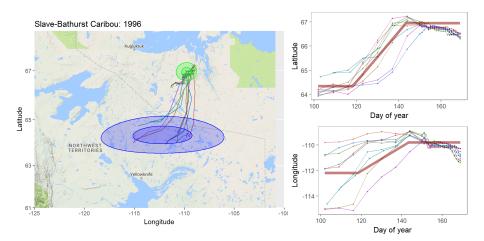
 $\begin{array}{l} \textbf{Migration Timing:} \\ \text{start: } t^{\star} \sim \mathcal{N}(\mu_t, \sigma_t) \\ \text{duration: } \Delta t^{\star} \sim \mathcal{N}(\mu_{\Delta t}, \sigma_{\Delta}). \end{array}$


Fitted model: 2011

Herd Ranges:

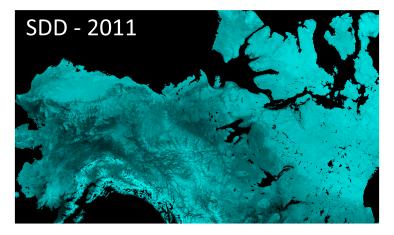

 $\mathbf{M}_1 \sim \mathsf{BivarNormal}(\mu_1, \Sigma_1)$ $\mathbf{M}_2 \sim \mathsf{BivarNormal}(\mu_2, \Sigma_2)$

Migration Timing:


 $t^{\star} \sim \mathcal{N}(\mu_t, \sigma_t)$ $\Delta t^{\star} \sim \mathcal{N}(\mu_{\Delta t}, \sigma_{\Delta})$

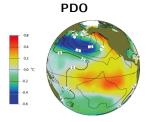
Fitted model: 2005

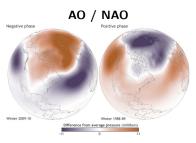
Fitted model: 1996



Covariates

- **Intrinsic:** estimates in migration model
- Phenology: spatially explicit, 1 measurement per year
- Climate: single variable time series (monthly)
- Weather: location + time specific


Phenology: Snow Departure Day ²


- gap-filled and smoothed measure of last day a pixel was snow-covered
- reduces complex dynamic snow cover data to a single variable.
- collected for each Herd-Year in Winter and Calving range

²courtesy Anne Nolin, Oregon State University

Climate indices

Warm Phase PDO

Strength of differences in atmospheric pressure / oceanic temperature, high / lows. Mainly associated with winter conditions, but measured monthly.

Pacific Decadal Oscillation:

+ = warm, wet winters in AK

Arctic Oscillation:

+ = more severe winter in northern N. America North Atlantic Oscillation:

+ = Cold dry winters in N. Canada

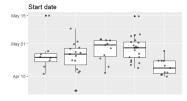
Linked to: Pacific salmon (Mantua et al. 1997), songbirds (Ballard et al. 2003), mountain caribou (Hegel et al. 2010), Greenland caribou (Post and Forchhammer 2002), more. What did the caribou actually experience?

• Temperature, Precipitation, Snow-water Equivalent

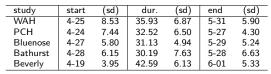
- NASA-ORNL Daymet V3
- daily summaries $1 \text{km} \times 1 \text{km}$.
- Wind speed
 - NASA GLDAS-2: Global Land Data Assimilation System
 - $\bullet~0.25$ $\times~0.25$ arc degrees

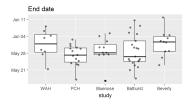
All (daily mean) caribou locations annotated.

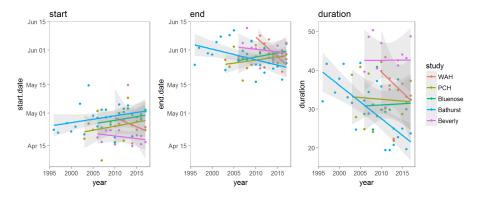
Variables: Broken down seasonally


Response / Intri	insic		n.	vars.	
Migration:	Start (T_{start}) ; Duration (dT) ; End (T_{end}) ; Distance			4	
Predictors					
Climate:	PDO, NAO, AO				
	(season)	(definition)			
	prev. summer	Jul & Aug		3	
	winter	Jan & Feb		3	
	spring	Apr		3	
Weather:	Temp, Precip, SWE, Wind				
	prev. summer	Jul 15 to Aug 31		4	
	winter	Jan 1 to Feb 28		4	
	spring	Mar 15 to (<i>T_{start}</i> - 14 d)		4	
	pre-migration	$(T_{start} - 14 \text{ d})$ to T_{start}		4	
	migration	T_{start} to T_{end}		4	
Phenology:	Snow departure day (SDD)				
	winter range	75% MCP 14 d. pre-migration locs.		1	
	calving range	75% MCP 14 d. post-migration locs.		1	

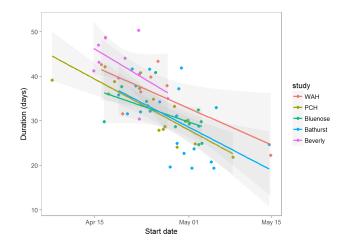
Results


a subscription of the second second


Basic summaries

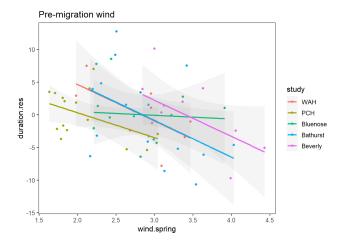

 $66\,$ herd-year estimates obtained (all available years / herds except where sample size less than 5 ind.)

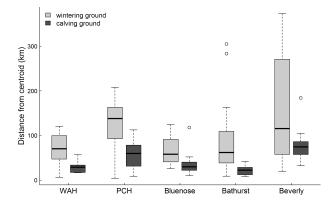
- Mean start Date: variable (April 19 April 29)
- Mean end date: consistent (May 28-June 1)
- Only one significantly earlier / longer herd.



Trends

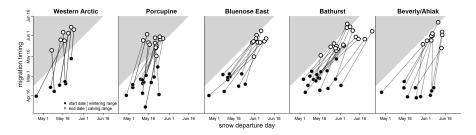
Basically NONE. Definitely not EARLIER (as hypothesized).


Late start = fast migration

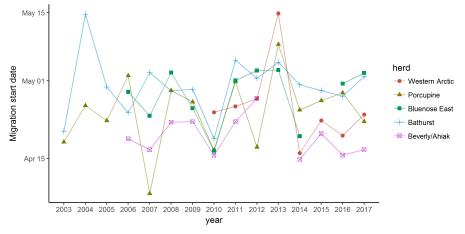

Duration of migration can compensate for a late start, VERY consistently across all herds.

More wind = fast migration

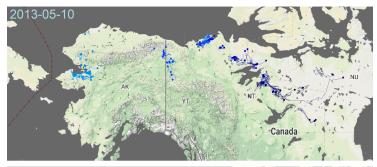
Modeling residuals of the Start Time v. Duration regression:

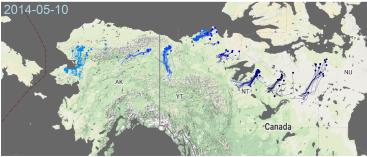


Windier conditions = faster migrations, beating out all other variables.

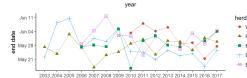

Pretty consistent calving ranges, wintering ranges move around quite a bit.

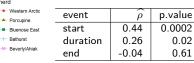
SDD v. start time

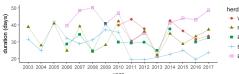



- Start dates always before snow melt.
- Arrival time: split
- Very weak relationship between Start date / Winter SDD or End data / Calving SDD
 - (except for WAH)

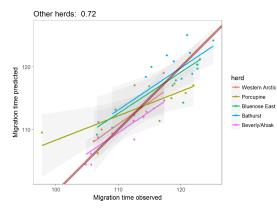
Key Discovery: Very high synchrony


Unbiased cross-correlation coefficient: 0.44 (*p*-value = 0.0002)



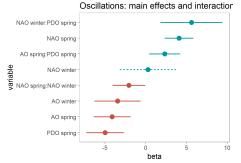


- but ONLY for start date



vear

year

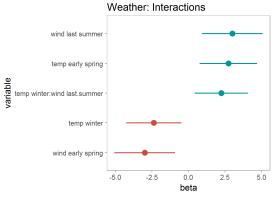


Using only other herds as a predictor, $r^2 = 0.72$.

Puts an onus on finding a way to explain the variability in start timing with environmental covariates.

Large scale oscillations model

Coefficients:



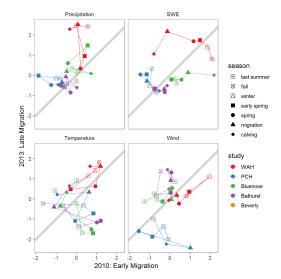
- high spring PDO = more snow = earlier migration
- positive winter and spring AO = ? = earlier migration
- but spring NAO = later migration (unless high winter NAO)

 $r^2 = 0.55$

Weather model

Coefficients:

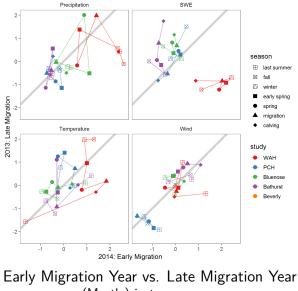
Very few significant predictors across herds, but:


- Colder winter leads to LATER migration ...
- Windy early spring leads to EARLIER migration ...
- Windy previous summer leads to LATER migration ...

 $r^2 = 0.40$

Synchrony
$$(r^2 = 0.69) >$$

Climate $(r^2 = 0.55) >$
Weather $(r^2 = 0.39)$


NOT what I would have expected!

What did the caribou experience?

Early Migration Year vs. Late Migration Year Higher temperatures and more precipitation in *late* year

What did the caribou experience?

(Mostly) just more snow

Conclusions

Caribou ...

Migrations remain Mysterious!

Caribou ...

Migrations remain Mysterious!

but they:

- \bullet seem pretty driven by the need to calve / are good at making up lost time
- don't seem to care much about, e.g., quantity of snow or precipitation
- move better under windier conditions (related to snow quality? forage availability?)
- possibly influenced by previous summer conditions, notably: windier, wetter (i.e. better because more bug-free?) lead to *later* migration times.

Number 1 outstanding questions

10 / 1

How to explain migration synchrony!?

- Perhaps more hypothesis driven predictors rather than trolling for results? If so, what hypotheses?
- Analyze against "experienced" NDVI proxy of productivity.
- Energetic interpretations? Reserves / Expenditure?

or ...

How to explain migration synchrony!?

- Perhaps more hypothesis driven predictors rather than trolling for results? If so, what hypotheses?
- Analyze against "experienced" NDVI proxy of productivity.
- Energetic interpretations? Reserves / Expenditure?

or ...

• Just go with the most parsimonious solution: They use their antlers as **antennae** to communicate across herds and **sails** to take advantage of the wind?

Linking to populations ...

- Estimate calving times / rates from movement data
- Link to population estimates / survey reports
- **IDEA:** Could migration timing tell us something about animal condition or predict reproductive success?
- Relate to population dynamics (which may also show some synchrony in some places?)

Institutions

- U. of Maryland
- U. of Montana
- Columbia U.
- Ohio State U.
- U. of Idaho
- NASA
- Max Planck Institute

Institutions

- U. of Maryland
- U. of Montana
- Columbia U.
- Ohio State U.
- U. of Idaho
- NASA
- Max Planck Institute

Agencies

- Northwest Territories Gov't
- Yukon Gov't
- National Park
 Service
- ADFG

Institutions

- U. of Maryland
- U. of Montana
- Columbia U.
- Ohio State U.
- U. of Idaho
- NASA
- Max Planck Institute

Agencies

- Northwest Territories Gov't
- Yukon Gov't
- National Park Service
- ADFG

- Communities!
- Local knowledge!

Inverse pyramid of collaboration

Institutions

- U. of Maryland
- U. of Montana
- Columbia U.
- Ohio State U.
- U. of Idaho
- NASA
- Max Planck Institute

Agencies

- Northwest Territories Gov't
- Yukon Gov't
- National Park Service
- ADFG

- Communities!
- Local knowledge!

Inverse pyramid of collaboration

- U. of Maryland
- U. of Montana
- Columbia U.
- Ohio State U.
- U. of Idaho
- NASA
- Max Planck Institute

Agencies

- Northwest Territories Gov't
- Yukon Gov't
- National Park Service
- ADFG

- Communities!
- Local knowledge!

Inverse pyramid of collaboration

Institutions

- U. of Maryland
- U. of Montana
- Columbia U.
- Ohio State U.
- U. of Idaho
- NASA
- Max Planck Institute

Agencies

- Northwest Territories Gov't
- Yukon Gov't
- National Park Service
- ADFG

- Communities!
- Local knowledge!