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Big picture: Thing are changing in the Arctic
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Big picture: Things are changing
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Trend in date of snowmelt (days / year) 2002-2016.



Big Question: How are animals responding to these
changes?

» SRR
@ NASA: Arctic Boreal Vulnerability Experiment | Animals on the Move
o Very large-scale, multi-institute/agency collaboration
@ Enormous movement dataset (millions of locations / 6 species)



(only slightly) Smaller Question:

What are the environmental drivers of caribou spring migration?
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@ Globally / across taxa: spring phenological events
are trending early at different rates

@ potential mismatch? (e.g. Post et al. in
W. Greenland).

© SM links boreal forest to tundra - with divergent
climate trends

@ Precedes calving - may be linked to demographics?

@ Clearly identifiable mass movement



(only slightly) Smaller Question:

What are the environmental drivers of caribou spring migration?

Why spring migration?

@ Globally / across taxa: spring phenological events
are trending early at different rates

e potential mismatch? (e.g. Post et al. in
W. Greenland).

@ SM links boreal forest to tundra - with divergent
climate trends

© Precedes calving - may be linked to demographics?

@ Clearly identifiable mass movement

and because it's mysterious!

Photo: Peter Mather



Known results

LE CORRE ET AL —WEATHER CONDITIONS AND MIGRATION PHENOLOGY
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Riviere-George / Riviére-aux-Feuilles - Québec/Labrador

Lots of variability, no trend, some relationship with temperature (warmer =
earlier) but conditioned by snow quality (wetter/more = longer migration)

LeCorre et al 2015, Journal of Mammalogy, 98(1):260-271, 2017



Hypotheses

Spring migration phenology might ...

e Trending earlier

o Be linked to snowmelt timing (surfing
the snow edge)

e Be linked to snow quality

o Reflect body condition / physiology

Porcupine caribou on Porcupine River <
photo: Madison Makayla Lord e T



Movement Data
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Barrenground & tundra caribou herds
@ Porcupine () sahtu Bluenose East North Slave Bathurst @ South Slave Beverly & Ahiak:

) Western Arctic

region study n.ind n.obs years n.years
N. AK Western Arctic 119 43 405 2010-2017 8
Yukon Porcupine 175 77 827  1998-2017 20
NWT / Nvt  Sahtu Bluenose East 166 62938 2005-2017 20

North Slave Bathurst 151 40 428 1996-2017 19

South Slave Beverly and Ahiak 124 65492 1995-2017 10




Movement Data (recently added)

 Bluenose West
Cape Bathurst
Tuktoyaktuk Peninsula
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) Western Arctic @ Porcupine () sahtu Bluenose East North Slave Bathurst @ South Slave Beverly & Ahiak:
region study n.ind n.obs years n.years
N. AK.  Central Arctic 54 33899 2003-2007 5
NWT Bluenose West 159 83144  1996-2017 22
Cape Bathurst 83 56775 1996-2017 22

Tuktoyaktuk Peninsula 46 27430 2006-2016 11




Long time series!
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Estimating migration




Migratory /Range Shift Analysis model

2(t) = u(t) + r(t)
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(a)

(b)

©

MRSA: applied to individual tracks!

Estimates (with Cl’s):

@ timing

@ ranging locations

@ ranging areas

Rigorous tests of :
@ range shift
@ stop-overs

o site-fidelity

Bl R package:

marcher

Journal of Animal Ecology

A framework for modelling range shifts and
migrations: asking when, whither, whether and will it
return
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o Lots and lots of animals,
o Non-independent,
o High level of individual variability,

o Unit of interest isn't the individual ... it's
the Herd-Year
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Hierarchical spring migration model

Each individual:
MWN(A my, mo, ty, dt)
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Hierarchical spring migration model

Each individual:
MWN(A, my, mo, ty, df)

Lots of individuals!

Herd Range:
winter: My ~ BivarNormal(u1,21)
calving M, ~ BivarNormal(uo, X>)

Migration Timing;:
start: t* ~ N (e, 04)
duration: At* ~ N (uat,on).




Fitted model: 2011

Migration Timing:
t* ~ N(pt, o)
At* ~ N(pae,on)

Herd Ranges:

M; ~ BivarNormal(u1,%1)
My ~ BivarNormal(u2, £2)
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Fitted model: 2005

Slave-Bathurst Caribou: 2005
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Fitted model: 1996
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Covariates

@ Intrinsic: estimates in migration model
@ Phenology: spatially explicit, 1
measurement per year

© Climate: single variable time series
(monthly)

@ Weather: location + time specific

E. Gurarie

October 30, 2018 20/49



Phenology: Snow Departure Day 2

SDD - 2011

@ gap-filled and smoothed measure of last day a pixel was snow-covered
@ reduces complex dynamic snow cover data to a single variable.

@ collected for each Herd-Year in Winter and Calving range

2courtesy Anne Nolin, Oregon State University



Climate indices

Strength of differences in atmospheric pressure /
oceanic temperature, high / lows. Mainly associated
with winter conditions, but measured monthly.

Pacific Decadal Oscillation:
+ = warm, wet winters in AK
Worm Phase P00 Arctic Oscillation:
+ = more severe winter in northern N. America
North Atlantic Oscillation:
AO / NAO + = Cold dry winters in N. Canada

Negative phase Positive phase

Linked to: Pacific salmon (Mantua et al. 1997), songbirds
(Ballard et al. 2003), mountain caribou (Hegel et

al. 2010), Greenland caribou (Post and Forchhammer
2002), more.

Winter 2009-10




Weather variables

What did the caribou actually experience?

e Temperature, Precipitation, Snow-water Equivalent

o NASA-ORNL Daymet V3
e daily summaries 1km x 1km.

@ Wind speed

o NASA GLDAS-2: Global Land Data Assimilation System
e 0.25 x 0.25 arc degrees

All (daily mean) caribou locations annotated.



Variables: Broken down seasonally

Response / Intrinsic n. vars.
Migration:  Start ( Tswar); Duration (dT); End (Tenq); Distance 4
Predictors
Climate: PDO, NAO, AO
(season) (definition)
prev. summer  Jul & Aug 3
winter Jan & Feb 3
spring Apr 3

Weather: Temp, Precip, SWE, Wind

prev. summer Jul 15 to Aug 31 4

winter Jan 1 to Feb 28 4

spring Mar 15 to (Tstare - 14 d) 4

pre-migration  (Tstare - 14 d) to Tstare 4

migration Tstart 10 Tend 4
Phenology:  Snow departure day (SDD)

winter range 75% MCP 14 d. pre-migration locs. 1

calving range  75% MCP 14 d. post-migration locs. 1



Results




Basic summaries

Start date

May 15

May 01~

> I s % 66 herd-year estimates obtained (all available years /

Apr 16-
L herds except where sample size less than 5 ind.)

W-Duration . study start  (sd) dur. (sd) | end (sd)

: . WAH 4-25 8.53 35.93  6.87 5-31 5.90

PCH 424 744 | 3252 650 | 527 430

o Bluenose 4-27 5.80 31.13 494 5-29 5.24

Bathurst | 4-28  6.15 | 30.19 7.63 | 5-28 6.63

%- Beverly 419 395 | 4259 6.13 | 6-01 533
] @ Mean start Date: variable (April 19 - April 29)

End date @ Mean end date: consistent (May 28-June 1)

Jun 11+
Jun 04- 5 o
May2s- ¥ il

May 21~

@ Only one significantly earlier / longer herd.

.
WAH PCH Bluenose Bathurst Beverly
study



start.date

start end duration
Jun 15 Jun 15
50+
Jun 01+ Jun 01+
. . .
. N stud
40 | Y
° . ‘ WAH
.
May 15+ . § May 15+ 5 — PCH
s S
T 5 == Bluenose
[3) T 304
May 01 - May 01 - 30 == Bathurst
Beverly
Apr15- ; Apr15- 20
1995 2000 2005 2010 2015 1995 2000 2005 2010 2015 1995 2000 2005 2010 2015
year year year

Basically NONE. Definitely not EARLIER (as hypothesized).



Late start = fast migration

Duration (days)

50

40+

301

20+

Apr 15

Start date

May 01

May 15

study

WAH
== PCH
=o= Bluenose
=e= Bathurst

Beverly

Duration of migration can compensate for a late start, VERY consistently across

all herds.



More wind = fast migration

Modeling residuals of the Start Time v. Duration regression:

Pre-migration wind

study

WAH
~— PCH
Bluenose
Bathurst

duration.res

bt

Beverly

15 20 25 3.0 35 4.0 45
wind.spring

Windier conditions = faster migrations, beating out all other variables.



Shifting of ranges

O wintering ground e
B calving ground
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Pretty consistent calving ranges, wintering ranges move around quite a bit.



SDD v. start time

e Western Arctic Porcupine Bluenose East Bathurst Beverly/Ahiak
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© end date | calving range
Mayt May16 i dmi6  May1 May16 i 6 Mayl May® i dmie  May1 Mayi Jmi Jmis M1 Mayt® i dmis
snow departure day

@ Start dates always before snow melt.

@ Arrival time: split

(]

Very weak relationship between Start date / Winter SDD or End data /
Calving SDD

o (except for WAH)



Key Discovery: Very high synchrony

May 15 + [
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= m
] /. herd
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Unbiased cross-correlation coefficient: 0.44 (p-value = 0.0002)
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- but ONLY for start date

May 15 ° herd
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Prediction plot

Migration time predicted

Other herds: 0.72

N
3

S
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110
Migration time observed

120

herd
Western Arctic
~— Porcupine
=+ Bluenose East
~ Bathurst
Beverly/Ahiak

Using only other herds as a
predictor, r> = 0.72.

Puts an onus on finding a way to
explain the variability in start
timing with environmental
covariates.



Large scale oscillations model

Coefficients:
Oscillations: main effects and interactior

NAO winter:PDO spring —_————

NAO spring e @ high spring PDO = more snow =

AO spring:PDO spring —— earlier migration

g NAOwintery emeemee & @ positive winter and spring AO = ?
ENAOsprmgNAmeler — — earlier m|grat|0n

AO winter —_— . . .

@ but spring NAO = later migration
AO spring —_— . .
(unless high winter NAO) ....
PDO spring{ ——@——




Weather model

Coefficients:
Weather: Interactions

wind last sumrmer - ——=o—— | Very few significant predictors
across herds, but:
temp early spring - —_—— A
@ Colder winter leads to LATER
2 . .
§ temp winter:wind last.summer - —_— mlgratlon
s @ Windy early spring leads to
temp winter - —_— EARLIER migration
@ Windy previous summer leads
i 4 _._ . .
wind early spring to LATER migration ...
50 25 00 25 50
beta

r’> = 0.40



On balance:

Synchrony (r? = 0.69) >
Climate (r?> = 0.55) >
Weather (r? = 0.39)

NOT what | would have expected!



What did the caribou experience?
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What did the caribou experience?
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(Mostly) just more snow



Conclusions




Migrations remain Mysterious!
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Migrations remain Mysterious!

but they:
@ seem pretty driven by the need to calve / are good at making up lost time
@ don't seem to care much about, e.g., quantity of snow or precipitation

@ move better under windier conditions (related to snow quality? forage
availability?)

possibly influenced by previous summer conditions, notably: windier, wetter
(i.e. better because more bug-free?) lead to /ater migration times.

E. Gurarie October 30, 2018 43 /49



Number 1 outstanding questions




Number 1 outstanding questions

How to explain migration synchrony!?

@ Perhaps more hypothesis driven predictors rather than trolling for results? If
so, what hypotheses?

@ Analyze against “experienced” NDVI - proxy of productivity.

o Energetic interpretations? Reserves / Expenditure?

or ...




Number 1 outstanding questions

How to explain migration synchrony!?

@ Perhaps more hypothesis driven predictors rather than trolling for results? If
so, what hypotheses?

@ Analyze against “experienced” NDVI - proxy of productivity.

o Energetic interpretations? Reserves / Expenditure?

@ Just go with the most parsimonious solution: They use their antlers as
antennae to communicate across herds and sails to take advantage of the
wind?

;.




Future directions ....

Linking to populations ...

@ Estimate calving times / rates from movement data
@ Link to population estimates / survey reports

o IDEA: Could migration timing tell us something about animal condition or
predict reproductive success?

@ Relate to population dynamics (which may also show some synchrony in
some places?)

;.




Inverse pyramid of collaboration
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