
7C4
Swarm Explorer for the matching algorithm 

of the 
University of Maryland’s Electron Ring -

???

A short of fiction and mathematics,
by Benjamin Gruey

Hosted by the University of Maryland TREND Program
Funded by the NSF



2

7C4’s story
“To The Swarm, 7C4 and neighbors  from iteration 1, reporting minimum of 

8.076326--”
“To 7C4, Swarm reports less than 7.041 for iteration 1. Standby for Swarm 

Throw.”
“To The Swarm, 7C4 and neighbors copy.”
I placed my hand against the cliff, staring back up at where we’d come. One hun-

dred units down, and surely somewhere below us here we would find a minimum. My 
neighbors all looked away, wondering which way The Swarm would will them to fly 
now that we were out of the running.

“To 7C4 and neighbors, we have your flight plan in 3... 2...”
We looked at one another, tensed and waiting to be thrown.
“1.”
I flew backwards, right back up and over the cliff we had been so excited to get 

tossed down on the previous iteration. The sky was as it always is, blank and black. 
As I tumbled through space I could see hundreds of those cliffs, close to the same size, 
scattered out to the horizon. What were these structures? Some were hundreds of units 
long. Some were plateau’s, others were ridges and off in the distance, I could just make 
out an entire forest of razor-thin fingers stretching towards the heavens.

I flew through the 6FF and we exchanged the looks of two professionals caught up 
in someone’s race. As 6FF hurtled into the forest, I felt The Swarm Throw loose its grip 
and let me coast towards the ground, rising up to meet me. I crashed, bounced, skidded 
and tumbled over the uneven surface until I found myself rattling down sides of one 
of Alice’s Rabbit Holes. I came to rest and found my surroundings to be 3.2075483. 
Finally!

The radio crackled to life with my neighbor’s chatter: “Over one hundred... Same 
here... Well I’m better than last time... Seventeen...” I responded with my own mini-
mum, “3.2 plus here.” The cackling died out, then one last neighbor: “3.2558?” The 
radio was again silent. “I’m at 3.20 plus, who’s tagged to call?”

“That’s me, 7D8. What’s your code?”
“To 7D8, 7C4 reports 3.207583.”
“To 7C4, copy your 3.207583.”
The minutes passed as 7D8 called The Swarm to report our minimum.
“We’ve got the new minimum neighbors, prepare for bombardment and shaking.”
First my neighbors shook and settled down into the ground even further. I could 

hear them rattling against the walls as they found ever smaller nooks and crannies mov-
ing down, down down toward zero. Next came a hundred more neighbors screaming, 
skidding and skipping across the plateau above of and crashing down into our holes.

As the creaking slowed to silence, 7D8 barked over our radios: “Previous min-
imum here was 3.208 minus, report if you’re lower.” A few moments of shuffling 
followed as my neighbors took stock of their surroundings. Finally a couple of voices 
spoke up: “3.203 plus... 3.20278 plus.” Another moment of quiet: “I’m over sev-
en-eight.”

Once again 7D8 filled the radio,  “Taking the seven-eight, what’s your code?”



3

Mathematics behind 7C4
And so the saga continued as the particle swarm sought the minimum of their 

landscape...
The above story is a flight of fancy from the author thinking about the Particle 

Swarm Optimization algorithm used in his work, which centered around finding a 
minimum difference between an injected beam of electrons and electrons in a ring, but 
we›ll get back to that in a moment.

First, finding a minimum of a function is a mathematical problem that arises in 
many fields of science and business. Companies want to minimize their costs for pro-
duction, particles like to stay in the lowest possible energy levels, and pilots want their 
planes to keep a minimum difference between their ideal course and any turbulence 
the experience along their trip. All of these problems, and many more, fall under the 
mathematical problem of finding the minimum of a function.

One problem that arises in finding a minimum is if there are several minimums 
of a function, such as the function in Fig 1. We can look at the entire plot and see the 
minimum with the magenta dot is lower, but computers cannot see an entire plot like 
we can. They have to explore it one tiny step at a time.

One standard technique for finding a minimum is to start somewhere and look 
at the slope there. Next, take a small movement down the slope and look at the slope 
there. Continue this process until the slope is zero (or close to zero, computers rarely 
find it to actually be zero, but 0.000000000000001 might be small enough, depending 
on the question at hand). This is how the points in Fig. 3 arrive at the minimums.

This process works in a number of situations, and it can work in our test case of 
Fig. 1, but it might also fail. Depending on the function, the minimum found can vary 

Fig. 1: This function has two minimums: the blue point and the magenta point. 
-Drawn with ROOT

https://en.wikipedia.org/wiki/Particle_swarm_optimization
https://en.wikipedia.org/wiki/Particle_swarm_optimization


4
on the starting position. As you can guess, our test case depends on where we start as 
we look for the minimum.

One way to get around this problem is to start in many places, as we did with our 
three starting positions in Fig. 3. However, this requires us to know something about 
the shape of the function, so we can start in the correct place. Simple enough for our 
sample function, but what if we have more than one variable we need to alter, so our 
line becomes a surface? (Think of a sheet draped over a living room furniture to build 
a fort, and finding the lowest point on the sheet.) From there, maybe we have three free 
parameters and we wouldn’t be able to draw the function as a picture. See Fig. 6 on the 
back cover for an example of two free parameters.

In my project, I had six free parameters, so getting a look at the six dimensional 
surface was out of the question.

Another approach was to use many random test points and take the one that landed 
on the lowest point of the graph. This has the advantage of checking many areas of the 
function, but it is also requires us the evaluate the function at every point. That’s fine 
for a simple function, but some functions can take serious time to compute. In Fig. 
4 I used 50 random points and took the best point. That’s 50 tests, and only one free 
parameter.

For my project, using only 20 points per free parameter required sixty four million 
tests.

Considering I could run my test function three times per second, it would take me 
215 days to run those points--far too long!

Clearly, I need a smarter way to look for a solution: The Particle Swarm!
The algorithm that influenced the beginning story uses a combination of many test 

points (a swarm of points) and moving around the function to find a better minimum. 

Fig. 2: Three solutions from the injection tube into the ring. The solution starts off far from the ring solution (left). After finding a few closer minimums, the solutions start to get closer 
(center). Finally, the last solution, the lowest minimum found, as a solution from the injection tube into the ring that is much closer than the original (right).

-Drawn with Python’s Gist Package



5
The actual algorithm also employs a few more ideas, but the basic idea is there from 
this outline.

So what was this project? Teaching an electron beam to land on its feet, instead of 
its head.

At the University of Maryland Electron Ring, an electron gun shoots a bunch of 
electrons down a straight injection tube that is connected to a ring almost twenty feet 
in diameter. In order to keep the beam together and steer it around the ring the beam 
needs to be matched to the magnetic fields in the ring. The injection tube’s job is make 
sure the electron beam enters the ring ready to follow the path of a matched beam 
around ring, i.e. landing on its feet in the ring. The injection tube does this by varying 
its own magnetic fields.

A simplified model of the beam is shown on the back cover. The surface represents 
the edge of the beam of electrons. First the electrons are focused in the X direction, 
thus the beam gets taller in the Y direction. Then the beam is focused in the Y direction, 
and it becomes wider in the X direction. This focusing is done by devices called quad-
rupoles in the ring and they are fixed in place.

So if the beam entered the ring already focused in the X direction, the first quad-
rupole would focus it even more. Then two things would happen: the electrons would 
be too close together in X direction and would push each other apart. Secondly the 
electrons would be too spread out in the Y direction and we would lose the electrons.

In practice, we don’t need to look at the whole beam as in Fig. 5, we only need to 
know how wide is the beam in X, and how tall is the beam in Y. To this end we plotted 
both the width of X and the height of Y against the distance the beam had traveled, 
along with the solution to the ring in Fig. 2 below. The black lines are zero in the injec-
tion line, then represent the correct X and Y in the ring on the right side of the graph.

Fig. 2: Three solutions from the injection tube into the ring. The solution starts off far from the ring solution (left). After finding a few closer minimums, the solutions start to get closer 
(center). Finally, the last solution, the lowest minimum found, as a solution from the injection tube into the ring that is much closer than the original (right).

-Drawn with Python’s Gist Package



6
So in order for the electron beam to land on its feet, we changed the quadrupole 

magnets until the beam from the injection tube matched the beam in the ring, as seen 
in the last frame of Fig. 2. This was my test function: how close is the beam from the 
injection line to the beam in the ring? This question took about a third of a second to 
answer--a long time for a computer than can add two numbers millions or billions of 
times per second.

Even after taking all this into account, it still took up to six hours to run a particle 
swarm, and often those solutions weren’t perfect and required other fine tunings with 
other algorithms.

Afterword
The particles are named in hexadecimal, a way of representing number often used 

in computers, such as to name colors.
The hero of our story is named after the year I was born. The tagged particle to call 

is named after the first presidential election I was old enough to vote in and the particle 
the hero flew through, they don’t bump into each other, is the birth year  of one my 
favorite scientists.

Fig. 3: Depending on where we start, faint points, we will roll towards one of two pos-
sible minimums, brighter points.

-Drawn with ROOT

http://www.famousbirthdays.com/


7

Fig. 4: Using 50 random test points, you’ll usually get luck enough to test near the min-
imum. This technique however, is very copmutationally expensive for large problems.

-Drawn with ROOT

Notes on Images, Scientific Work 

The landscape with particles on the cover were drawn with Wolfram’s Mathemati-
ca program.

The example minimum plots were made with ROOT, CERN’s C++ Data Analysis 
Framework, Figs. 1,3,4.

The beam visualization was drawn with Mathematica, though it takes a general 
shape from what we know about the beam. It does not reflect any experimental or sim-
ulated data, and is used for illustrative purposes only, Fig. 5.

The example beam plot was drawn in gist, after running the simulation in Warp, 
Fig. 5.

https://root.cern.ch/
https://www.wolfram.com/mathematica/
http://hifweb.lbl.gov/public/software/gist/pygist_html/node12.html
http://hifweb.lbl.gov/Warp/


8

Fig. 5: This is a simplified 3D visualization of the beam. The bulge indicates altered 
shape in the injection line. The beam is squashed horizontally and vertically, alternating.

-Drawn with Mathematcia

Fig. 6: Here is an example of a test function with two free parameters. Even though we 
can visualize it, the hidden minimum is not easy to see, and what if the pits were too 
small to see?

-Drawn with ROOT


