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Cartoon PIC
Adapted from
https://www.lanl.gov/science/NSS/issue2_2010/story4.shtml

E and B are known on the grid. Particles move freely.

https://www.lanl.gov/science/NSS/issue2_2010/story4.shtml


Why Doing Plasma Physics via Computer Simulations
Using Particles Makes Good Physical Sense
Inspired by Birdsall & Langdon, Plasma Physics via Computer Simulation

I Debye length λD = vth/ωpe � L; we care about λ & λD.
I For a meaningful plasma ND = nλ3

D ≫ 1
I But that means

KE (thermal kinetic energy)
PE (electrostatic potential energy)

= N2/3
D � 1

I ∴ Particles interact collectively, not discretely.
I Grids with ∆x . λD capture the important physics without

the unimportant inter-particle effects.



Cartoon Timestep

Update E, B
at particles

Update x, v
for particles

Update
J on grid

Update E,
B on grid



Updating x, v, J, B, and E

I Field advancement:

∂B
∂t

= −c∇× E
∂E
∂t

= c∇× B− 4πJ

I Particle advancement:

dx
dt

= v
d(γv)

dt
=

q
m

(
E +

v
c
× B

)

I Current density update:

J =
∑

i

qiviS(X− xi)

where S(X− x) is a shape function.



Translating Between Particles and the Grid
Adapted from https://www.particleincell.com/2010/es-pic-method/

https://www.particleincell.com/2010/es-pic-method/


Effective Particle Shapes (1D)
Adapted from https://perswww.kuleuven.be/~u0052182/weather/pic.pdf

I Nearest gridpoint

I First-order (cloud-in-cell)

I Quadratic spline

https://perswww.kuleuven.be/~u0052182/weather/pic.pdf


Does PIC Satisfy∇ · B = 0 and∇ · E = 4πρ?

Numerically,∇ · (∇×) = 0

∂

∂t
(∇ · B) = −c∇ ·∇× E = 0

If∇ · B = 0 at t = 0, it remains so (ignoring round-off)

In contrast,

∂

∂t
(∇ · E) = c∇ ·∇× B− 4π∇ · J = −4π∇ · J

To satisfy Gauss’s Law requires

∂ρ

∂t
+∇ · J = 0



Unfortunately · · ·
Continuity is not, in general, satisfied

Corrections fall into two broad categories
I “Fix” E
I “Fix” J

An approach of the first type: Suppose a Φ exists such that

E′ = E−∇Φ where ∇ · E′ = 4πρ

Find Φ by solving

∇2Φ =∇ · E− 4πρ ≡ b

This (∇2Φ = b) is Poisson’s equation and can be solved many
different ways: FFTs, matrix methods, multigrid methods, · · ·



An Alternative: Fluid vs. PIC Simulations
Fluid (MHD)
Advantages:

I Correct on large scales
I Computationally fast

Disadvantages:
I Wrong at small scales

Kinetic (PIC)
Advantages:

I ≈ All of the physics
Disadvantages:

I Must resolve important scales
I Computationally painful



Resolution for Explicit PIC

For timestep ∆t , grid spacing ∆x , and velocity u a general
constraint is

I CFL (Courant-Friedrichs-Lewy):

u∆t
∆x

≤ 1

For plasmas also need to resolve important physical scales
I ∆x < (λD, ωpe, ρLe)

I ∆t < (ωpe, ωce)

Not resolving generally leads to numerical instability.



Kinetic Scales
How painful?

I Solar corona: B = 50 G, n = 109 cm−3, L ≈ 109 m,
τ ≈ 103 s

I dp ≈ 10 m
I Ω−1

pc ≈ 2× 10−6 s
I ω−1

pi ≈ 2× 10−8 s

I Magnetosphere: B = 2× 10−4 G, n = 20 cm−3,
L ≈ 104 km, τ ≈ 103 s

I dp ≈ 50 km
I Ω−1

pc ≈ 0.5 s
I ω−1

pi ≈ 2× 10−4 s

I Tokamak: B = 3× 104 G, n = 2× 1013 cm−3, L ≈ 102 cm,
τ ≈ 10−2 s

I dp ≈ 5 cm
I Ω−1

pc ≈ 3× 10−9 s
I ω−1

pi ≈ 2× 10−10 s



The Annoyances of Reality
And How to Get Around Them

Besides real systems being much larger than kinetic scales,
nature insists on making the situation worse.

I mp/me ≈ 1836
I c/vA � 1

The resulting separation of scales is computationally
challenging. To combat it, artificial values are often used

I mp/me = 400, 100, 25
I c/vA = 20− 50

Potential unwanted side-effects (e.g., vth,e → c) must be kept in
mind.



PIC on Supercomputers
Domain Decomposition

A useful simulation (& 1010 particles) needs many cores
working in parallel. Communication should be minimized.



Supercomputer Performance



Brief Notes on PIC-Related Topics



Accurate Numerical Differentiation
Not PIC-Specific

From the Taylor series

f (x0 + ∆x) = f (x) + ∆x
df
dx

∣∣∣∣
x0

+
(∆x)2

2
d2f
dx2

∣∣∣∣
x0

+O(∆x3)

comes the approximation

df
dx

=
f (x + ∆x)− f (x)

∆x
+O(∆x)

Incorporating a variation

f (x0 −∆x) = f (x)−∆x
df
dx

∣∣∣∣
x0

+
(∆x)2

2
d2f
dx2

∣∣∣∣
x0

+O(∆x3)

gives something more accurate

df
dx

=
f (x + ∆x)− f (x −∆x)

2∆x
+O(∆x2)



Symmetry Reduces Errors and Helps Stability
From https://www.particleincell.com/2011/velocity-integration/

Basic leapfrog algorithm

https://www.particleincell.com/2011/velocity-integration/


Gridding Systems
Adapted from https://commons.wikimedia.org/wiki/File:Yee-cube.svg

The Yee lattice is a popular – but not the only – choice.
E is known on edges, B/H on faces.

The finite-difference versions of Maxwell’s equations are nice,
but bookkeeping is an annoyance.

https://commons.wikimedia.org/wiki/File:Yee-cube.svg


Explicit Versus Implicit Algorithms

Consider
∂u
∂t

= D
∂2u
∂x2

Explicit discretization:

un+1
j − un

j

∆t
= D

[
un

j+1 − 2un
j + un

j−1

(∆x)2

]

Implicit discretization:

un+1
j − un

j

∆t
= D

[
un+1

j+1 − 2un+1
j + un+1

j−1

(∆x)2

]

Implicit is typically much more stable but requires much more
work to solve.


