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Cartoon PIC

Adapted from
https://www.lanl.gov/science/NSS/issue2_2010/story4.shtml
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E and B are known on the grid. Particles move freely.


https://www.lanl.gov/science/NSS/issue2_2010/story4.shtml

Why Doing Plasma Physics via Computer Simulations
Using Particles Makes Good Physical Sense

Inspired by Birdsall & Langdon, Plasma Physics via Computer Simulation
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Debye length Ap = vin/wpe < L; we care about A = Ap.
For a meaningful plasma Np = n\3 > 1
But that means

v
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KE (thermal kinetic energy) ~ N2 s q
PE (electrostatic potential energy) P

v

.. Particles interact collectively, not discretely.
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Grids with Ax < Ap capture the important physics without
the unimportant inter-particle effects.



Cartoon Timestep
o

Spatial Domain

Update E, B Update E,

at particles B on grid

Update x, v

for particles




Updating x, v, J, B, and E

» Field advancement:
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» Particle advancement:
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» Current density update:
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where S(X — x) is a shape function.



Translating Between Particles and the Grid

Adapted from https://www.particleincell.com/2010/es-pic-method/
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https://www.particleincell.com/2010/es-pic-method/

Effective Particle Shapes (1D)

Adapted from https://perswww.kuleuven.be/~u0052182/weather/pic.pdf
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https://perswww.kuleuven.be/~u0052182/weather/pic.pdf

Does PIC Satisfy V-B=0and V - E = 47p?

Numerically, V - (Vx) =0

%(V-B):—CV-VXE:O

If V.-B=0att=0,itremains so (ignoring round-off)

In contrast,

%(V-E):CV-VXB—47rV-J:—47TV-J

To satisfy Gauss’s Law requires



Unfortunately - - -

Continuity is not, in general, satisfied

Corrections fall into two broad categories
» “Fix” E
» “Fix” J
An approach of the first type: Suppose a ¢ exists such that
E=E-V®d  where V- -E =41p
Find ¢ by solving
V2o =V-E-4rp=b

This (V2® = b) is Poisson’s equation and can be solved many
different ways: FFTs, matrix methods, multigrid methods, - - -



An Alternative: Fluid vs. PIC Simulations

Fluid (MHD) Kinetic (PIC)
Advantages: Advantages:
» Correct on large scales » ~ All of the physics
» Computationally fast Disadvantages:
Disadvantages: » Must resolve important scales

» Wrong at small scales » Computationally painful




Resolution for Explicit PIC

For timestep At, grid spacing Ax, and velocity u a general
constraint is

» CFL (Courant-Friedrichs-Lewy):
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For plasmas also need to resolve important physical scales
» Ax < ()‘Da Wpe, PLe)
> At < (wpe, Wee)

Not resolving generally leads to numerical instability.



Kinetic Scales

How painful?

» Solar corona: B=50G, n=10°cm=3, L~ 10°m
T~10%s
> dp%10m
> Q_c ~2x107%s
> Wy T~2x108%s

> Magnetosphere. B=2x10"%G,n=20cm™3,
L~10*km, 7 ~10%s
> dp~ 50 km
> QpCNOSS
> Wy T~2x10*s

> Tokamak. B=3x10*G,n=2x 10" cm=3, L ~ 10 cm,
r~102s
» dp~5cm
> Qpd ~3x1079s

-1 —10
> wy! A 2x10710s



The Annoyances of Reality
And How to Get Around Them

Besides real systems being much larger than kinetic scales,
nature insists on making the situation worse.

> Mmp/me ~ 1836
> c/vag > 1

The resulting separation of scales is computationally
challenging. To combat it, artificial values are often used

> mp/me == 400, 100, 25

» ¢/va=20—-50
Potential unwanted side-effects (e.g., vine — €) must be kept in
mind.



PIC on Supercomputers

Domain Decomposition
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A useful simulation (> 10'° particles) needs many cores
working in parallel. Communication should be minimized.



Supercomputer Performance

p3d: Weak Scaling on edison
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Brief Notes on PIC-Related Topics



Accurate Numerical Differentiation
Not PIC-Specific
From the Taylor series

B df (Ax)? d?f 3
f(Xo + Ax) = f(x)+Axa xo+ 5 o2 X0+(’)(Ax )
comes the approximation
df  f(x+ Ax) —f(x)
a = Ax + O(AX)
Incorporating a variation
B df (Ax)? d?f 3
f(xo — Ax) = f(x) — Ax ax . 5 4 . + O(Ax®)
gives something more accurate
df _ f(x + Ax) — f(x — Ax) L 0(Ax?)

dx 2AX



Symmetry Reduces Errors and Helps Stability

From https://www.particleincell.com/2011/velocity-integration/

Basic leapfrog algorithm
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https://www.particleincell.com/2011/velocity-integration/

Gridding Systems

Adapted from https://commons.wikimedia.org/wiki/File:Yee-cube.svg

The Yee lattice is a popular — but not the only — choice.
E is known on edges, B/H on faces.
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Ex

The finite-difference versions of Maxwell’s equations are nice,
but bookkeeping is an annoyance.


https://commons.wikimedia.org/wiki/File:Yee-cube.svg

Explicit Versus Implicit Algorithms

Consider
ou_ pofu
ot T ox2
Explicit discretization:
n+1 n
i utyy =20t +ul
At (Ax)
Implicit discretization:
n+1 n+1 n+1 n+1
utt = up _ | Y —2u7T + Ui
At (Ax)?

Implicit is typically much more stable but requires much more
work to solve.



