Particle-in-Cell (PIC) Simulations of Plasmas

Marc Swisdak University of Maryland

Physics 761 28 November 2017

Cartoon PIC

Adapted from

https://www.lanl.gov/science/NSS/issue2_2010/story4.shtml

E and B are known on the grid. Particles move freely.

Why Doing Plasma Physics via Computer Simulations Using Particles Makes Good Physical Sense Inspired by Birdsall & Langdon, *Plasma Physics via Computer Simulation*

- Debye length $\lambda_D = v_{th}/\omega_{pe} \ll L$; we care about $\lambda \gtrsim \lambda_D$.
- For a meaningful plasma $N_D = n\lambda_D^3 \gg 1$
- But that means

 $\frac{\text{KE (thermal kinetic energy)}}{\text{PE (electrostatic potential energy)}} = N_D^{2/3} \gg 1$

- ► ∴ Particles interact collectively, not discretely.
- ► Grids with ∆x ≤ λ_D capture the important physics without the unimportant inter-particle effects.

Cartoon Timestep

Updating **x**, **v**, **J**, **B**, and **E**

Field advancement:

$$rac{\partial \mathbf{B}}{\partial t} = -c \mathbf{\nabla} imes \mathbf{E} \qquad rac{\partial \mathbf{E}}{\partial t} = c \mathbf{\nabla} imes \mathbf{B} - 4\pi \mathbf{J}$$

Particle advancement:

$$\frac{d\mathbf{x}}{dt} = \mathbf{v} \qquad \frac{d(\gamma \mathbf{v})}{dt} = \frac{q}{m} \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right)$$

Current density update:

$$\mathbf{J} = \sum_{i} q_i \mathbf{v}_i S(\mathbf{X} - \mathbf{x}_i)$$

where $S(\mathbf{X} - \mathbf{x})$ is a shape function.

Translating Between Particles and the Grid

Adapted from https://www.particleincell.com/2010/es-pic-method/

Effective Particle Shapes (1D)

Adapted from https://perswww.kuleuven.be/~u0052182/weather/pic.pdf

Nearest gridpoint

First-order (cloud-in-cell)

Quadratic spline

Does PIC Satisfy $\nabla \cdot \mathbf{B} = 0$ and $\nabla \cdot \mathbf{E} = 4\pi\rho$?

Numerically,
$${oldsymbol
abla} \cdot ({oldsymbol
abla} imes) = 0$$

$$rac{\partial}{\partial t} (oldsymbol
abla \cdot oldsymbol B) = -c \, oldsymbol
abla \cdot oldsymbol
abla \cdot oldsymbol B = 0$$

If $\nabla \cdot \mathbf{B} = 0$ at t = 0, it remains so (ignoring round-off)

In contrast,

$$rac{\partial}{\partial t}(oldsymbol{
abla}\cdotoldsymbol{\mathsf{E}})=c\,oldsymbol{
abla}\cdotoldsymbol{
abla}\timesoldsymbol{\mathsf{B}}-4\pioldsymbol{
abla}\cdotoldsymbol{\mathsf{J}}=-4\pioldsymbol{
abla}\cdotoldsymbol{\mathsf{J}}$$

To satisfy Gauss's Law requires

$$\frac{\partial \rho}{\partial t} + \boldsymbol{\nabla} \cdot \mathbf{J} = \mathbf{0}$$

Unfortunately ····

Continuity is not, in general, satisfied

Corrections fall into two broad categories

- ► "Fix" **E**
- ▶ "Fix" **J**

An approach of the first type: Suppose a Φ exists such that

$$\mathbf{E}' = \mathbf{E} - \mathbf{\nabla} \Phi$$
 where $\mathbf{\nabla} \cdot \mathbf{E}' = 4\pi \rho$

Find Φ by solving

$$\nabla^2 \Phi = \boldsymbol{\nabla} \boldsymbol{\cdot} \boldsymbol{\mathsf{E}} - \boldsymbol{\mathsf{4}} \pi \rho \equiv \boldsymbol{\mathit{b}}$$

This ($\nabla^2 \Phi = b$) is Poisson's equation and can be solved many different ways: FFTs, matrix methods, multigrid methods, \cdots

An Alternative: Fluid vs. PIC Simulations

Fluid (MHD) Advantages:

- Correct on large scales
- Computationally fast

Disadvantages:

Wrong at small scales

Kinetic (PIC) Advantages:

 $\blacktriangleright\,\approx\,$ All of the physics

Disadvantages:

- Must resolve important scales
- Computationally painful

Resolution for Explicit PIC

For timestep Δt , grid spacing Δx , and velocity *u* a general constraint is

CFL (Courant-Friedrichs-Lewy):

$$\frac{u\Delta t}{\Delta x} \leq 1$$

For plasmas also need to resolve important physical scales

•
$$\Delta x < (\lambda_D, \, \omega_{pe}, \, \rho_{Le})$$

• $\Delta t < (\omega_{pe}, \omega_{ce})$

Not resolving generally leads to numerical instability.

Kinetic Scales

How painful?

- Solar corona: B = 50 G, $n = 10^9$ cm⁻³, $L \approx 10^9$ m, $\tau \approx 10^3$ s
 - *d_p* ≈ 10 m
 - ► $\Omega_{pc}^{-1} \approx 2 \times 10^{-6} \text{ s}$
 - ► $\omega_{pi}^{-1} \approx 2 \times 10^{-8} \text{ s}$
- Magnetosphere: $B = 2 \times 10^{-4}$ G, n = 20 cm⁻³, $L \approx 10^4$ km, $\tau \approx 10^3$ s
 - *d_p* ≈ 50 km
 - ► $\Omega_{pc}^{-1} \approx 0.5 \text{ s}$
 - ► $\omega_{pi}^{-1} \approx 2 \times 10^{-4} \text{ s}$
- ► Tokamak: $B = 3 \times 10^4$ G, $n = 2 \times 10^{13}$ cm⁻³, $L \approx 10^2$ cm, $\tau \approx 10^{-2}$ s
 - $d_p \approx 5 \text{ cm}$
 - ► $\Omega_{pc}^{-1} \approx 3 \times 10^{-9} \text{ s}$
 - $\omega_{pi}^{-1} \approx 2 \times 10^{-10} \mathrm{s}$

The Annoyances of Reality

And How to Get Around Them

Besides real systems being much larger than kinetic scales, nature insists on making the situation worse.

- *m_p/m_e* ≈ 1836
- $c/v_A \gg 1$

The resulting separation of scales is computationally challenging. To combat it, artificial values are often used

• $c/v_A = 20 - 50$

Potential unwanted side-effects (e.g., $v_{th,e} \rightarrow c$) must be kept in mind.

PIC on Supercomputers

Domain Decomposition

A useful simulation ($\gtrsim 10^{10}$ particles) needs many cores working in parallel. Communication should be minimized.

Supercomputer Performance

Brief Notes on PIC-Related Topics

Accurate Numerical Differentiation

Not PIC-Specific From the Taylor series

$$f(x_0 + \Delta x) = f(x) + \Delta x \left. \frac{df}{dx} \right|_{x_0} + \frac{(\Delta x)^2}{2} \left. \frac{d^2 f}{dx^2} \right|_{x_0} + \mathcal{O}(\Delta x^3)$$

comes the approximation

$$rac{df}{dx} = rac{f(x + \Delta x) - f(x)}{\Delta x} + \mathcal{O}(\Delta \mathbf{x})$$

Incorporating a variation

$$f(x_0 - \Delta x) = f(x) - \Delta x \left. \frac{df}{dx} \right|_{x_0} + \frac{(\Delta x)^2}{2} \left. \frac{d^2 f}{dx^2} \right|_{x_0} + \mathcal{O}(\Delta x^3)$$

gives something more accurate

$$\frac{df}{dx} = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x} + \mathcal{O}(\Delta x^2)$$

Symmetry Reduces Errors and Helps Stability

From https://www.particleincell.com/2011/velocity-integration/

Basic leapfrog algorithm

Gridding Systems

Adapted from https://commons.wikimedia.org/wiki/File:Yee-cube.svg

The Yee lattice is a popular – but not the only – choice. **E** is known on edges, B/H on faces.

The finite-difference versions of Maxwell's equations are nice, but bookkeeping is an annoyance.

Explicit Versus Implicit Algorithms

Consider

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

Explicit discretization:

$$\frac{u_j^{n+1}-u_j^n}{\Delta t}=D\left[\frac{u_{j+1}^{\mathbf{n}}-2u_j^{\mathbf{n}}+u_{j-1}^{\mathbf{n}}}{(\Delta x)^2}\right]$$

Implicit discretization:

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = D\left[\frac{u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1}}{(\Delta x)^2}\right]$$

Implicit is typically much more stable but requires much more work to solve.