1. (50 points) Consider an infinite, hollow cylindrical conductor of radius "a" which is sliced at $z = \pm L$. The segment |z| < L is maintained at a potential V. The remainder of the cylinder is grounded. In the following consider only the region with $\rho < a$. Laplace's equation in cylindrical coordinates is

$$\nabla^2 \Phi = \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial \Phi}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 \Phi}{\partial \phi^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0.$$

- (a) Sketch the electric field E in the vicinity of the ring of potential V.
- (b) Consider the limit in which $a \ll L$. Sketch the electric field in the region $\rho \ll a$ in this limit and sketch E_z as a function of z for $\rho = 0$. What is the scale length over which E_z becomes small outside of the region of potential V. Estimate the maximum value of E_z for $\rho = 0$.
- (c) Derive an exact expression for the potential Φ in the region $\rho < a$ for arbitrary L/a. Your answer will consist of an integral over a wavevector k. You do not need to evaluate this integral.

Hint: See the various equations at the end of the exam.

2. (50 points) Consider a infinitely long hollow grounded square conductor whose interior is defined by $x \in (0, a)$ and $y \in (0, a)$. A charge q is positioned at the center of the cavity at z = 0. Assume that the charge is constrained to remain in this location. The Poisson equation for the potential inside of the cylinder is given by

$$\nabla^2 \Phi = -\frac{\varrho}{\epsilon_0}$$

where $\varrho = q\delta(x - a/2)\delta(y - a/2)\delta(z)$ is the charge density.

- (a) Evaluate the potential $\Phi(x, y, z)$ inside the cavity. What is the behavior of the potential for large, positive z?
- (b) A dielectric with $\epsilon > \epsilon_0$ is added to the region inside of the cavity where $z > z_0 > 0$. What is the direction of the force on the particle before the dielectric is inserted? After? Why?

- (c) The potential inside of the cavity was observed to change by an amount $\delta\Phi(x,y,z)$ when the dielectric was added. Write an explicit expression for the function form of this potential change for all values of z. Is this potential continuous across z=0? Across $z=z_0$? Outline how you would go about obtaining an expression for the potential $\delta\Phi$. You do not have to do the calculation.
- (d) Once you obtained the correction $\delta\Phi$, how would you calculate the force on the charge q?

Bessel's equation is given by

$$\rho \frac{d}{d\rho} \rho \frac{dJ_{\nu}(k\rho)}{d\rho} + (k^2 \rho^2 - \nu^2) J_{\nu}(k\rho) = 0.$$

The modified Bessel equation is given by

$$\rho \frac{d}{d\rho} \rho \frac{dQ_{\nu}(k\rho)}{d\rho} - (k^2 \rho^2 + \nu^2) Q_{\nu}(k\rho) = 0.$$