192 Using basis functions square-wave function example: $f(x)$ Denvodic oven 2T $f(x) = \sum_{m=1}^{\infty} C_5^m$ sin mx $\overline{\mathcal{N}}$ $+\sum_{m=0}^{\infty}$ C^m $\cos mx$ $\overline{}$ $f(x)$ is odd around $x=0$ $f(x) = \sum_{m=1}^{\infty} C_5^m sin(mx)$ $f(x)$ is even a round $x = \frac{\pi}{2}$
 \Rightarrow keep odd m $m=3$ ৴ৗৼৄৄৗ $f(x) = \sum_{m \text{ odd}} C_5^m$ sin(mx) Multiply by Sin(ux) and integrate (π,\overline{v}) $\frac{\sqrt{dx} f(x) \sin nx}{\pi} = \frac{\sum c_{s}^{m} \sin \frac{2\pi}{2}}{\pi^{2} \sin \frac{2\pi}{2}} = \pi c_{s}^{n}$ $V = V$
 $V = V$
 $V = -\int dx sin nx + \int dx sin nx$
 $V = -\int dx sin nx + \int dx sin nx$ $\frac{\cos nx}{h} \int_{\frac{\pi}{h}}^{\infty} - \frac{\cos nx}{n} \int_{0}^{\frac{\pi}{4}} = \frac{1}{h} \left[1 - (-1)^n - (-1)^n + 1 \right]$ = o for neven, 40 for nodd

198 $f(x) = \frac{4}{\pi} \sum_{mod 0} \frac{1}{m} sin m x$ $example$ $f(x) = |x| over (-1, 1)$ => use Legendue polynomials $|x| = \frac{z}{n=0} C_u P_u(x)$ Since $|x|$ is even, need
only & neven $x \rightarrow$ $S_{\alpha}dx$ (xl P_m(x) = $C_{m} \frac{2}{2m+1}$ $C_m = \frac{2m+1}{2} \int dx$ (x | Produst = (2m+1) $\int_0^1 dx$ x Produs) $= 0$ for mode $C_m = (2m+1) \int dx \times \frac{1}{m! \, 2^m} \frac{d^m}{dx^m} (x^2) \, m$ = $-\frac{(2m+1)}{m! 2m}$ $\frac{du}{dx}$ $\frac{d}{dx}$ $\frac{m-1}{m-1}$ $\frac{(x^2-1)}{2}$ $\frac{2m+1}{m^2-2^m}$ $\frac{d^{m-2}}{dx^{m-2}}$ $(x^2+1)^m$ No de la $Since (x^2-1)^{M} = (x-1)^{M}(x+1)^{M}$ => taking m-2 devivatives feaves power

of $(x-1)^p$ with $P \ge 2$ \Rightarrow value at $x=115$ zemo $C_m = \frac{2^{m+1}}{m! \cdot m}$ d^{m-2} $(x^2 + y^2)$ Binomial expansion $\frac{m}{(x^2-1)^m} = \frac{m}{z} \frac{m!}{z!m-z!} x^{2} (-1)^{m-q}$ Only surviving term with $x=0$ is $m-z = 2l$ = $2l = \frac{m-2}{2} = m-1$ $C_m = \frac{2m+1}{m! \cdot 2^m} \frac{m!}{(\frac{m}{2}-1)! (m-\frac{m}{2}+1)!}$ $C_{11} = \frac{(2m+1)}{2^{m}} \frac{(m-2)!(-1)^{\frac{m}{2}+1}}{\frac{(m}{2}+1! (\frac{m}{2}-1)!}$ Inevey $= 0$ modd

 $\left(200\right)$ Representing Garcens Eunctions with eigen functions $f(x_{1}x_{2}) + \lambda w G(x_{1}x_{2}) = f(x-x_{2})$ where λ is a fixed value but $G_{7}(x,x')=\sum_{m}C_{m}(x')Q_{m}(x)$ memember that & is an operator Since the Clink) and basis functions, $\oint Q_m(x) + \lambda_m \omega Q_m = 0$ Inserfed Substituting Gr(x,x') into the $\sum_{m} w C_m(\lambda - \lambda_m)C_m(x) = S(x-x')$ Multiply by $\mathcal{C}_{n}^{*}(x)$ and integrate (a, b)
 \Rightarrow using outhogonality $\sum_{m} \mathcal{B}_{m}(x-\lambda_{m}) \int dx \mathcal{C}_{n}(x) \mathcal{C}_{m}(x) w = \mathcal{C}_{n}(x^{*})$ $C_n = \frac{C_n^*(x')}{\lambda - \lambda_n}$ $G_7(x,x') = \sum_{m} \frac{C_m^*(x')C_m(x)}{\lambda - \lambda_m}$ => no Gueras function^{for} > an eigen value

Wase equation in spherical coor dinates We previously solved wave equations in on (OSC) series. What about cylinduical Consider a spherically symmetric couve $(n - 3 \frac{\partial^2}{\partial x^2} \times -C^2 \nabla^2 y = 0$ $\nabla^2 = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{6^2}}$ with initial conditions $y(r, t=0) = \S(r-r_0)$ $\frac{1}{\gamma}(r, t=0) = 0$ and BCs \vee $(a, t) = 0$ $\overline{\mathcal{L}}=\overline{O}$

 $\left(\frac{202}{2} \right)$ Want a set of basis functions for this $\overline{\varphi(r)} = \sum_{m=1}^{\infty} C_m(t) Q_m(n)$ \sum_{m} $\overline{C}_{m}(t)$ $\overline{C}_{m}(r) - c^{2}$ \sum_{m} \overline{C}_{m} \overline{Y}^{2} $\overline{C}_{m}(r) = 0$ Choose $\nabla^2 \mathcal{Q}_{\mathfrak{m}}(v) + k_{\mathfrak{m}}^2 \mathcal{Q}_{\mathfrak{m}}(v) = 0$ $\Rightarrow \sum_{m} (\ddot{c}_{m} (t) + K_{m}^{2} c^{2} c_{m}) Q_{m} = 0$ S atisfied for all n if $C_{m} + k_{m}^{2}c^{2}C_{m} = 0$ \Rightarrow $C_{41} \sim cos(K_m c t)$, $sin(K_m c t)$ \Rightarrow Keep (OS() since $\frac{\partial}{\partial t} \frac{\partial}{\partial t} = 0$ \Rightarrow $\epsilon_m(t) = \epsilon_m(0) \cos(k_m ct)$ $\overline{Y^{(r_1t)}} = \sum_{m} C_m(\sigma) \cos(kmct)$ $Q_m(r)$ Qm(1) still unknown

 $\left[2\nu_3\right]$ $\frac{1}{\sqrt[3]{v}} \frac{1}{v^2} \frac{1}{\sqrt[3]{v}} \frac{C \ln(v) + k^2 w^2 C \ln(v)}{1 - C}$ => this is of Stürm-Liouville form $r^{2}Cl_{m}'' + 2rCl_{m}'+K_{m}^{2}r^{2}Cl_{m} = 0$ Bessel's egn is siven by $r^{2}g'' + rg' + (k^{2}r^{2} + k^{2})g = 0$ Let $Q_w = \frac{Q_w}{v^{1/2}}$ r^{2} $\frac{Q_{m}}{V^{1/2}}$ $\frac{Q_{m}}{V^{3/2}}$ $+\frac{1}{2}$ $\frac{3}{2}$ $\frac{Q_{m}}{V^{5/2}}$ + 25 $\frac{Qu}{v^{1/2}}$ + $\frac{Qu}{v^{3/2}}$ + $\frac{ku}{v^{3/2}}$ + $\frac{Qu}{v^{1/2}}$ = 0 $r^2 Q_{m}' + r Q_{m}' + (3 \over 4 - 1) Q_{m} + K_{m}^2 r^2 Q_{m} = 0$ $r^2 Q_m'' + r Q_m' + (K_m^2 r^2 - \frac{1}{4}) Q_m = 0$ \Rightarrow Bessel's equ with $v=\frac{1}{2}$ and $k=k$ m Solutions are $J_{\frac{1}{2}}(k_{m}n)$, $Y_{\frac{1}{2}}(k_{m}n)$

 $\bigcircled{z_0}$ Behaviou of Bessel solutions near r=0 \Rightarrow RSP $r^2g'' + v g' - \nu^2 g = 0$ $q \sim r^{P}$ $P(p-1) + P - V^2 = O$
 $P(1-p) + P - V^2 = O$ $\frac{1}{2}$ (kmn) \sim n $\frac{1/2}{2}$ $\frac{-1/2}{2}$ The required $S-L$ BCs at $r=0$ $r^2 Q_m Q'_n \Big|_{r=0} = 0$ \Rightarrow $Y_{\frac{1}{2}}$ does not satisfy this r^{2} $\frac{1}{r^{1/2}}$ $\frac{1}{r^{3/2}}$ \neq 0 at r=0 Thus, $Q_m = \frac{1}{\sqrt{12}} \frac{1}{2} (kmn)$ BC at $r=0$ ok since $Q_m \sim const$ $r^2 Q_m Q_m'$ = 0

At r=a regume $Q_{m}(r=a) = 0 = \frac{1}{a^{12}} \int f(k_{m}a) = 0$ \Rightarrow $\tau_{f}(k_{m}a) = 0$ $\overline{\mathcal{L}^{\mathcal{F}}(\mathbf{x})}$ $x_{\frac{1}{2}}$ 3 As X increases $J_{\frac{1}{2}}(x)$ is oscillatory. $\frac{1}{2}$ X_{pm} is the mith zero of a Bessel function of order $v \Rightarrow$ these are tabulated Thus $K_{m}a = K_{\pm}m$ $K_m = \frac{X \pm m}{d}$ is the eigenvalue Thus, $C(m(v)) = \frac{1}{n^{1/2}} J_{\frac{1}{2}}(X_{\frac{1}{2}m}v)$ CQ_{1} Ave they
orthogonal? Q_{2}

 $\left(\frac{1}{206} \right)$

 $Nomncl_1$ zation: $w(r) = r^2$ $\int \frac{u}{\sqrt{v^2 - \theta_m^2(v)}} = \int \frac{dv}{v^2 + \frac{v^2}{2}} \left(\frac{k_m v}{w}\right)$ Let $s = \frac{v}{a}$ $k_m = \frac{X_{\frac{1}{2}m}}{a}$ = $a^2 \int ds \leq J_{\frac{1}{2}}^2 (x_{\frac{1}{2}m} s)$ = $\frac{a^{2}}{2} \frac{c^{2}}{3} (\chi_{\pm m}) \equiv \omega_{m}^{2}$ Initial conditions $y(v, o) = \overline{\delta(v - v_0)} = \overline{\epsilon}$ Cm(o) $Qun(v)$ H ultiply by $r^2 Q_p^X(r)$ and integrate $C_n(0) M_n^2 = \int d\nu r^2 Q_n(n) \sqrt[n]{v-v_0}$ $=$ v_{o}^{2} $Q_{n}(r_{o})$ $C_{\mu}(\sigma) = V_{\sigma}^{2} Q_{\mu}(\nu_{\sigma})$
 W_{μ}^{2} $y(v,t) = \sum_{m=1}^{\infty} \frac{v_0^2}{\frac{a^2}{2} \int_{\frac{3}{2}}^{a} (x_{\pm m}) v_0^{1/2}} \frac{1}{v_0^{1/2}} \int_{\frac{1}{2}}^{x_{\pm m}} (x_{\pm m} \frac{r_0}{a})$ $\frac{U_{\frac{1}{2}}(X_{\frac{1}{2}}mv/a)}{ln^{1/2}}$ $cos(X_{\frac{1}{2}}mc\zeta)$

<u> ၁</u>၀>) Each Clu(1) cornesponds to a standing Each wave has its own characteristic $w_m = \frac{X_{\pm m}C}{a}$ Each oscillates independently S You generally want to choose
your basis functions to match the the system.

 208 Luplaces egn in a cylindrical system. Laplace's ean emenges when solving for
the electro static potential in a system $9.5 = 472 = 0$ PX長二〇 ⇒ 長三- 70 V $\Rightarrow \nabla^2 V = 0$
with V typically specified on conducting
boundances. example solving for V in a wedge a
 e^{π}
 $\frac{a}{\sqrt{2\pi}}$
 $\frac{a}{\sqrt{2\pi}}$
 $\frac{1}{\sqrt{2\pi}}$
 $Choose$ $\overline{V} = \sum_{m} c_m \Phi(Q) R_m(P)$ $7^{2} \bar{V} = \frac{g}{m} C_{m} \left[\frac{F(q)}{m} \frac{1}{e} \frac{1}{\sqrt{e}} e \frac{1}{\sqrt{e}} R_{m}(\epsilon) + \frac{R_{m}(\epsilon)}{e^{2}} \frac{1}{\sqrt{e}} e^{\frac{1}{2}m} \right]$
= $\frac{G}{m} C_{m} \bar{E}_{m}(\epsilon) R_{m}(\epsilon) \left[\frac{1}{R_{m}} \frac{4}{\sqrt{e}} e \frac{1}{\sqrt{e}} e \frac{1}{\sqrt{e}} R_{m} + \frac{1}{\frac{d}{E_{m}} \sqrt{e}} \frac{1}{\sqrt{e}} \$

Since \overline{Y}^2 it must be zero for all e, φ must have $rac{1}{R_m}$ C_{DE} C_{SE} $R_m + \frac{1}{R_m}$ C_{CE} $R_m = O$
 C_{E}
 C_{E} C_{E} C_{E} C_{E} C_{E} => must each be constant $\Rightarrow \frac{1}{\Phi_{u_1}} \frac{3^2}{\Psi_{u_2}} \Phi_{u_1} = -\frac{3^2}{2}$ $\frac{\partial}{\partial \omega} \Phi_m + \frac{\partial u^2}{\partial \omega} \Phi_m = 0$ Du V SIN timel 105 time Choose $\sin 4\pi$ cl $\sin c$ $\sqrt{20}$ at $\sqrt{20}$ Require $sin \theta_0 = 0$ so $\overline{v} = 0$ at $\overline{v} = \theta_0$ \Rightarrow $V_{m}\mathcal{C}_{o}$ = $m\pi$ $V = \sum_{m=1}^{\infty} C_m$ Sin ($\frac{m\pi}{c\epsilon_0}$ co) R_m (e) Also have $\frac{1}{e}$ $\frac{1}{e}$ $\frac{1}{e}$ e $\frac{1}{e}$ $R_m - \frac{1}{e^2}$ $R_m = 0$

 $P \frac{\partial}{\partial e} P \frac{\partial}{\partial e} R_m - V_m^2 R_m = 0$ $e^{2} \frac{\partial^{2}}{\partial e^{2}} R_{m} + e \frac{\partial}{\partial e} R_{m} - \gamma_{m}^{2} R_{m} = 0$ => Euter egu Rm~ p#8 $8(x-1) + x - y_{m}^{2} = 0$ 8^2 = $1/m^2$ = $8 = 5/m$ $R_m \approx e^{\frac{1}{2}V_m}$ Dequine Ru remain baended at e=0 $R_{m} \sim e^{m} \sim e^{\frac{m_{0}}{c_{0}}}$ $V = \frac{80}{m}$ C_m $sinh\theta$ e^{V_m} $Y_m = \frac{m \tau T}{c\rho_0}$ Determine Cm by matching the solution $V_{0} = \frac{Q}{W}$ C_{V1} S_{V1} V_{W} Q Q W

 $(2i)$

To solve fou Cm must eliminate the Sum Over m and integrate (e, c) $\frac{\varphi_{c}}{\sqrt{\frac{d\varphi}{D}}\sin\psi_{u}\varphi}=\frac{\frac{\varphi_{c}}{\hbar}\sqrt{d\varphi}}{\frac{\varphi_{u}}{\hbar}\sqrt{d\varphi}}\sin\psi_{u}\varphi\sin\psi_{u}\varphi}$ Sintale, sintale are outbogoine/ Why? \mathscr{C}_{σ} $rac{cosuQ}{du} = \frac{2}{u} \frac{u}{\frac{1}{2}} \frac{1}{u} \frac{1}{\frac{1}{2}}$ $a^{\frac{1}{2}}$ fco cn $cos(m\pi)$ = a^{4u} + φ c_u $C_n = \frac{4V_0}{C_0} \frac{1}{r^{\gamma_n}}$ neucu nodd $\frac{4V\delta}{Q\delta}$ $\frac{1}{m=1}$ $\frac{S_{in}V_{in}Q}{V_{in}}$ $\frac{P}{Q}$ odd $L'_{W} = \frac{W T T}{C_{P}}$

 212 Note the the functions in Q are
oscillatory while those in Q are not. => because of Laplace's equ $rac{1}{Rm}$ $C \frac{2}{3}eC \frac{2}{3}Rm + \frac{1}{Rm} \frac{22}{3}Rm = 0$
 V_m^2

not oscillatory oscillatory => the Rm are not basis functions => the Φ_m are basis functions Always choose oscillatory functions
along the boundary whiche a
nonzene V is specified $\frac{secil\,ccl/atov}{fuct/ousin e}$ $\frac{what\ a\,60u}$ $\frac{1}{\sqrt{1-\frac{1}{1-\$