Homework #10

Spring '18 Dr. Drake

Due on Thursday December 6.

- 1. Boas Chapter 13: 2.1, 2.14 (Hint: the boundary condition on the two sides is $\partial T/\partial x = 0$
- 2. Boas Chapter 13: 6.6 The book problem asked you to calculate only the energy levels but I want you to calculate the full time dependence $\psi(x, y, t)$ with initial conditions corresponding to the particle having equal probability of being anywhere in the domain. Choose the normalization of ψ so that the integrated probability of finding the particle is unity.

Hint: you will need two distince eigenvalues corresponding to the x and y directions.

- 3. Consider the oscillation of a circular membrane of radius R that is described by the wave equation with $\partial/\partial \phi = 0$. The oscillation amplitude u(r,t) is zero at the boundary. The initial displacement at t = 0 is uniform, $u(r, t = 0) = u_0$ with $\dot{u}(r, t = 0) = 0$. Construct the basis functions $R_n(r)$ for the motion and determine the eigenfrequency ω_n for each value of n. Determine the full time dependence u(r, t).
- 4. Consider the time-dependent Schroedinger equation in a box of length L with ψ equal to zero at x = 0 and x = L and V = 0. The goal is to show that the form of the equation guarantees that the integrated probability of the particle being in the box is a constant in time. To demonstrate this consider the local probability $P(x,t) = \psi^* \psi$. Take the time derivative of P and use the Schroedinger equation to evaluate $\dot{\psi}$. The time derivative of ψ^* can be obtained by taking the complex conjugate of the Schroedinger equation. Integrate the equation for \dot{P} over the entire domain and integrate by parts. You will then find that the integral of P is constant in time.