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Oscillatory tank-treading motion of erythrocytes in shear flows
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In this paper, we investigate the oscillatory dynamics of the tank-treading motion of healthy human erythrocytes
in shear flows with capillary number Ca = O(1) and small to moderate viscosity ratios 0.01 � λ � 1.5. These
conditions correspond to a wide range of surrounding medium viscosities (4–600 m Pa s) and shear flow rates
(2–560 s−1), and match those used in ektacytometry systems. For a given viscosity ratio, as the flow rate increases,
the steady-state erythrocyte length L (in the shear plane) increases logarithmically while its depth W (normal to
the shear plane) decreases logarithmically. In addition, the flow rate increase dampens the oscillatory erythrocyte
inclination but not its length oscillations (which show relative variations of about 5–8%). For a given flow rate,
as the viscosity ratio increases, the erythrocyte length L contracts while its depth W increases (i.e., the cell
becomes less deformed) with a small decrease in the length variations. The average orientation angle of the
erythrocyte shows a significant decrease with the viscosity ratio as does the angle oscillation while the oscillation
period increases. These trends continue in higher viscosity ratios resulting eventually in the transition from a
(weakly oscillatory) tank-treading motion to a tumbling motion. Our computations show that the erythrocyte
width S, which exists in the shear plane, is practically invariant in time, capillary number, and viscosity ratio, and
corresponds to a real cell thickness of about 2.5 μm. Comparison of our computational results with the predictions
of (low degree-of-freedom) theoretical models and experimental findings, suggests that the energy dissipation
due to the shape-memory effects is more significant than the energy dissipation due to the membrane viscosity.
Our work shows that the oscillatory tank-treading motion can account for more than 50% of the variations found
in ektacytometry systems; thus, researchers who wish to study inherent differences between erythrocytes within
a population must devise a way of monitoring individual cells over time so that they can remove the oscillation
effects.
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I. INTRODUCTION

The flow dynamics of red blood cells has long been
recognized as a fundamental problem in physiology and
biomechanics owing to the main function of these cells to
exchange oxygen and carbon dioxide with the tissues in
blood capillaries [1,2]. Since the seminal work of Fischer,
Stöhr-Liesen, and Schmid-Schönbein [3], it is known that
the erythrocytes elongate and orient to an ellipsoidal-like
shape while their membrane tank treads around the cell when
the cells are subjected to a moderate or strong shear flow
in a more viscous suspending liquid. Recently, Abkarian,
Faivre, and Viallat [4], by employing a cell imaging method
parallel to the shear plane, found that at low shear stress
(μG ≈ 0.1 Pa) erythrocytes present an oscillation of their
inclination (which they called swinging motion) superimposed
to the long-observed steady tank-treading motion. Based
on these experimental observations, Abkarian et al. [4] as
well as Skotheim and Secomb [5] developed low degree-
of-freedom theoretical models to describe the tank-treading,
swinging, and tumbling motion of nonspherical capsules, such
as erythrocytes, in shear flows. The results of these two
papers have motivated computational studies on the shear flow
dynamics of nonspherical elastic capsules and erythrocytes,
e.g., [6–9].

In this paper, we further study the oscillatory dynamics of
the tank-treading motion of erythrocytes in moderate shear
flows utilizing our nonstiff cytoskeleton-based continuum
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erythrocyte algorithm [10]. In particular, we considered
shear flows with capillary number Ca = O(1) and small to
moderate viscosity ratios 0.01 � λ � 1.5. These conditions
correspond to a wide range of surrounding medium viscosities
(4–600 m Pa s) and shear flow rates (2–560 s−1, and match
those used in ektacytometry systems [3,11,12]. We identify
the effects of the shear flow and the viscosity ratio on the
oscillatory tank-treading motion of erythrocytes including
lengths and orientation variations. In addition, we compare our
computational results with the predictions of the theoretical
models of Keller and Skalak [13], Abkarian et al. [4], and
Skotheim and Secomb [5], to provide further insight on their
accuracy but also on the physics included in these models.

Our work also provides insight helpful in the biomedical
area. In Sec. V, we study and provide further information
and insight on properties measured in ektacytometry
systems. We note that ektacytometry systems which measure
the deformability of erythrocytes [3,11,12] are useful
medical tools for studying the inherent differences between
erythrocytes as well as several disorders or diseases [14]. In
addition, our results on the influence of the viscosity ratio
provide insight on the effects of the paraproteinemia, i.e., a
family of disorders associated with elevated plasma protein
levels and thus higher plasma viscosity [1].

II. PROBLEM DESCRIPTION AND
COMPUTATIONAL ALGORITHM

A human erythrocyte is essentially a capsule (i.e., a
membrane-enclosed fluid volume) where the liquid inte-
rior (cytoplasm) is a concentrated hemoglobin solution that
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behaves as a Newtonian fluid with viscosity μc ≈ 6–10 m Pa s
[15,16]. The erythrocyte membrane is a complex multilayered
object consisting of a lipid bilayer (which is essentially a two-
dimensional incompressible fluid with no shear resistance [1])
and an underlying elastic network of spectrin (which exhibits
shear resistance like a two-dimensional elastic solid [17]).
Measurements through micropipette aspiration and optical
tweezers as well as applications of different models have
found the membrane shear modulus to vary in the range
Gs = 1–13 μN/m [18].

In healthy blood and in the absence of flow, the average
human erythrocyte assumes a biconcave discoid shape of
surface area Sc = 135 μm2, with a diameter of 7.8 μm and a
thickness varying in 0.8–2.6 μm at physiological osmolarity,
resulting in a volume of Vc = 94 μm3 [1,19]. Working
with experimental observations from interference microscopy,
Evans and Fung [19] gave the following empirical equation
to describe the half-thickness f (r) as a function of the radial
distance r from the central axis of symmetry

f (r) = 1
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At physiological osmolarity (300 mO), R0 = 3.91 μm, C0 =
0.81 μm, C2 = 7.83 μm, and C4 = −4.39 μm. In our
computations, this shape is employed as the elastic reference
shape (i.e., shape of the erythrocyte under quiescent condi-
tions), in agreement with experimental findings which have
demonstrated the erythrocyte shape memory, i.e., the fact that
after tank treading an erythrocyte will always reform its two
dimples in the same distinct loci on the membrane [20].

To describe the erythrocyte dynamics in a simple shear
flow u∞ = G (z,0,0) (where G is the shear rate) in the
Stokes regime, we utilize our recently developed nonstiff
cytoskeleton-based continuum erythrocyte modeling [10] and
our interfacial spectral boundary element algorithm for mem-
branes [21,22]. Here we present a concise description of our
method; more details may be found in the aforementioned
references.

Our membrane description is based on the well-established
continuum approach and the theory of thin shells, while to
describe the tensions on the erythrocyte membrane we employ
the Skalak et al. constitutive law [23] which accounts for
both shearing and area-dilatation resistance. The problem’s
dimensionless parameters include the (elastic) capillary num-
ber Ca = μGa/Gs (i.e., the ratio of viscous forces in the
surrounding fluid to shearing forces in the membrane), and
the viscosity ratio λ = μc/μ. Here Gs is the membrane shear
modulus, μ is the viscosity of the surrounding liquid, and a is
the radius of a sphere with the same volume as the erythrocyte
(i.e., a = 2.8 μm at physiological osmolarity).

We emphasize that the state-of-the-art continuum-based
computational algorithms focus on the lipid bilayer where
they enforce local area incompressibility via a large area-
dilatation modulus; this results in a stiff problem and thus
a high computational cost especially for three-dimensional
investigations [7,24,25]. To overcome this obstacle, we have
developed a cytoskeleton-based continuum erythrocyte algo-
rithm which accounts for the global area incompressibility of

FIG. 1. Shape transition from a biconcave disk to an ellipsoid for
an erythrocyte in a simple shear flow for capillary number Ca = 1.5
and viscosity ratio λ = 0.1. The erythrocyte shape is plotted rowwise
at times t = 0,0.2,0.4,0.6,1,2 as seen slightly askew from the shear
(i.e., xz) plane.

the spectrin skeleton (being enclosed beneath the lipid bilayer
in the erythrocyte membrane) via a nonstiff, and thus efficient,
adaptive prestress procedure [10].

The numerical solution of the interfacial problem is
achieved through our interfacial spectral boundary element
algorithm for membranes [21,22]. The initial biconcave
discoid interface is divided into a moderate number NE of
elements (e.g., see Fig. 1); on each element all geometric
and physical variables are discretized using (NB − 1)-order
Lagrangian interpolation based on the zeros of orthogonal
polynomials. The accuracy of our results was verified by
employed smaller time steps and different grid densities for
several representative cases. (In particular, we employed NE =
10 spectral elements with NB = 11–14 basis points; for the
time integration we employed the fourth-order Runge-Kutta
scheme with time step in the range �t = 0.5 × 10−4–0.5 ×
10−3). These convergence runs showed that the interfacial
shape was determined with a maximum relative error of
3 × 10−3 in all cases studied.

We note that our cytoskeleton-based continuum erythrocyte
modeling is general and thus able to describe any type of
erythrocyte flow dynamics. However, in the present study our
results are restricted owing to numerical instabilities associated
with membrane buckling. (The buckling instability for shear
flows is discussed in Sec. 4 in Ref. [26]). Thus in this study we
present results for Ca = 1.25–2.15 and viscosity ratios 0.01 �
λ � 1.5. We emphasize that these conditions correspond to a
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wide range of surrounding medium viscosities (4–600 m Pa s)
and shear flow rates (2–560 s−1), and match those used in
ektacytometry systems, e.g., as shown in Figs. 4 and 5 in our
earlier study [10] where we compare our computational results
with ektacytometry findings [3,12].

It is of interest to note that our computations do not account
for the membrane viscosity which is O(10−7)N s/m [27,28].
Incorporation of the membrane viscosity raises additional
questions on the surface viscosity model appropriate for the
erythrocyte membrane as well as on the way (linear or more
generally, nonlinear) a surface viscosity model should be added
to the membrane stresses. Because of this, we do not consider
explicitly in our computational model the viscosity of the
erythrocyte membrane, as earlier continuum models have also
done [5,7,24,25].

III. TANK-TREADING MOTION OF ERYTHROCYTES
IN STRONG SHEAR FLOWS

In this paper we investigate computationally the erythrocyte
dynamics in a simple shear flow u∞ = G(z,0,0) for high
capillary numbers Ca = O(1) and small to moderate viscosity
ratios 0.01 � λ � 1.5. These conditions correspond to a wide
range of medium viscosities (4–600 m Pa s) and shear flow
rates (2–560 s−1), and match those used in ektacytometry sys-
tems [3,11,12]. The Reynolds number for both the surrounding
and the cytoplasm flows is always negligible owing to the cell’s
small size.

At the flow initiation, the erythrocyte has its equilibrium
biconcave discoid shape at physiological osmolarity given by
Eq. (1). In addition, the initial position of the undeformed
geometry is at an orientation angle � = 20◦ with the flow
direction, i.e., the x axis. All reported times are scaled with
the flow time scale G−1.

It is of interest to note that our computations depend only
on two dimensionless parameters, the capillary numbers Ca
and the viscosity ratio λ. In order to associate our results
with actual variables (e.g., surrounding medium viscosity and
shear flow rate), we use μc = 6 m Pa s, a = 2.8 μm as well
as the average value of the membrane shear modulus found
by optical tweezers at low strains, Gs = 2.5 μN/m [29],
since our computations involve rather small and moderate
deformations. (In our work the cell dimensions vary in
the range −20% to 40%.) Employing smaller or higher
values of Gs does not change our results but associates
our computations with smaller or higher, respectively, shear
rates.

After an initial transient period, the erythrocyte assumes an
inclined ellipsoidal conformation owing to the shear flow while
its membrane tank treads around the cell owing to the rotational
component of the shear flow, as found in experimental systems,
e.g., [3,12,30]. The erythrocyte semiaxes (i.e., length L, width
S, and depth W ) are calculated as the semiaxes of the ellipsoid
which has the same inertia tensor as that of the erythrocyte
[22]. In addition, we monitor the cell deformation in the
plane of shear defined as D = (L − S)/(L + S) as well as its
orientation angle � defined as the angle between the longest
semiaxis L and the flow direction, i.e., the x axis. (Note that
in this work the orientation angle � is reported in degrees.)

A. Oscillatory tank-treading motion

The transition from a biconcave disk to an ellipsoidal shape
for capillary number Ca = 1.5 and viscosity ratio λ = 0.1
happens from t = 0 to t = 2 as illustrated in Figs. 1 and 2.
In addition, owing to the rotational component of the shear
flow, the erythrocyte membrane tank treads. However, unlike
the case of capsules with a spherical reference shape, the
biconcave reference shape introduces periodic oscillations into
the tensions produced as the deformed erythrocyte tank treads,
i.e., the dimple regions of the original biconcave geometry
deform differently than the edge regions as they pass around
the surface contour [4,5]. Thus, at steady state, the lengths
L and W of the deformed erythrocyte oscillate as shown in
Fig. 2(a). However, after an initial transient period, its width
S exhibits minimal oscillation, remaining essentially fixed in
time.
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FIG. 2. An erythrocyte in a simple shear flow for capillary number
Ca = 1.5 and viscosity ratio λ = 0.1. (a) The erythrocyte’s length L

and depth W oscillate over time while its width S attains a steady-state
value and exhibits almost no oscillation. Also shown is the oscillatory
behavior of the erythrocyte deformation D. (b) The orientation angle
� oscillates over time.
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In Fig. 2(a) we also plot the erythrocyte deformation D in
the plane of shear which shows a similar oscillatory behavior
with the erythrocyte length L. It is of interest to note that
the amplitude of oscillations for D is much smaller than
that for L owing to its definition, i.e., D = (L − S)/(L + S),
and the cell’s small width S. Thus, the oscillatory behavior
of the erythrocyte shape is better revealed via monitoring
the cell lengths L and W , rather than the deformation
parameter D.

As seen in Fig. 2(b), the cell inclination � oscillates
around a mean value. The period Posc for the lengths and
angle oscillations is the same, but there is a phase lag. As
shown in Fig. 2 for Ca = 1.5 and λ = 0.1, the oscillatory
period for both oscillations is GPosc = 8.4, while the time lag
between two successive peaks for length and angle oscillations
is G�Posc = 2.1, giving a phase lag of π/2 (or 90◦) between
the angle and length oscillations. This phase lag was also
identified experimentally by Walter et al. for capsules with
small deviations from sphericity [31]. Thus, the 90◦ phase lag
reflects, in general, the deformation dynamics of capsules with
nonspherical reference shapes.

By employing a cell imaging method parallel to the shear
plane, Abkarian et al. [4] observed the oscillatory inclination
of the erythrocyte at low flow rates, which they called swinging
motion; as shown in their Fig. 1 the cell rocks back and forth
between the maximum and minimum orientation angle. It is of
interest to note that Abkarian et al. did not observe the length
oscillations (or local details of the interfacial shape) probably
due to insufficient resolution. Our computations reveal more
details of this oscillatory motion. In Figs. 3(a) and 3(b) we
present the cross section in the shear plane for the deformed
shape. Because of the phase lag between length and angle
oscillations, the edge of the interfacial geometry traces an
approximately circular path, as shown in Fig. 3(b).

Figure 3(c) shows three-dimensional images for the same
times as in Figs. 3(a) and 3(b). It is apparent from the
spectral grid that a membrane point moves halfway around the
cell surface during one complete length or angle oscillation;
i.e., the oscillation period for the lengths and the inclination
angle corresponds to one-half of the tank-treading period
(owing to the symmetry of the biconcave reference shape), as
experimentally found recently for erythrocytes in weak shear
flows [4].

B. Effects of the flow strength

In ektacytometry systems, the deformation parameter Dxy

has been found to increase logarithmically with the capillary
number in moderate and strong flow rates, e.g., [11]. (More
about the ektacytometry deformation Dxy is presented in
Sec. V A.) However, because the deformed erythrocyte is
observed only from above the shear plate device, i.e., the
erythrocyte is seen as its elliptical projection on the xy plane
[3,11,12], this gives only limited information about how the
actual three-dimensional shape changes with the flow rate.
The same is true for experimental devices observed with
the cells parallel to the shear plane [4]. Therefore, our
computations can address this shortcoming of the experimental
techniques by providing results for the three-dimensional
erythrocyte deformation.
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FIG. 3. An erythrocyte in a simple shear flow for capillary number
Ca = 1.5 and viscosity ratio λ = 0.1. (a) Cross sections in the shear
plane at times t = 13 (——), 15 (-- -- --), 17 (- - -), and 19 (-- · --)
representing one period of oscillation. (By t = 21.5, not shown, the
cross section matches t = 13 again.) (b) The delineated region from
(a) magnified. The arrow indicates the direction of motion for the edge
of the cross sections. (c) The erythrocyte shape shown clockwise at the
same times as in (a) illustrates that the swinging period corresponds
to one-half of the tank-treading period.

Figure 4(a) shows the semilengths of the erythrocyte
averaged over time at steady state as a function of the capillary
number. Like the behavior observed for the ektacytometry
deformation Dxy , the lengths change logarithmically over this
range of capillary numbers. The erythrocyte length L increases
with the capillary number as expected since the shear flow
extends the cell; its depth W decreases with the flow rate
while almost no change is observed in the cell width S. (Note
that L and S lie on the shear plane, while W is perpendicular
to this plane.)

In addition, we have determined the amplitude of the
semilength oscillations as a function of the flow rate Ca.
As shown in Fig. 4(b), the length variation �L increases
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FIG. 4. (a) The average value at steady state of the erythrocyte
semilengths L, W , and S versus the capillary number Ca in a linear-log
plot for viscosity ratio λ = 0.1. (b) The amplitude of the semilength
oscillations �L = Lmax − Lmin, �W = Wmax − Wmin, and �S =
Smax − Smin versus Ca in a linear-log plot for λ = 0.1. Also shown
is the variation with the capillary number of the average erythrocyte
deformation D in (a) and its amplitude �D = Dmax − Dmin in (b) at
steady state.

logarithmically with the flow rate; however, the variation of
the cell’s width and depth is practically constant in the range of
capillary numbers studied in the present work. It is of interest
to note that our computations reveal a relative variation for the
erythrocyte dimensions �L/L ≈ ±6% and �W/W ≈ ±8%,
which is in agreement with experimental observations. As
pointed out in the computational work of Sui et al. [7],
the experimental observations of Fischer, Stöhr-Liesen, and
Schmid-Schönbein [3] show that the erythrocyte length varies
with an amplitude of about 5%.

The maximum, time-average, and minimum orientation
angles of the erythrocyte at steady state decrease slightly with
the flow rate, as shown in Fig. 5. In addition, the angle variation
also decreases with the capillary number, as shown in the
same figure. Therefore, our results for the lengths and angle
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FIG. 5. The maximum �max, minimum �min, and time-average
� orientation angles (left y axis) as well as the amplitude of the angle
oscillations �� = �max − �min (right y axis) at steady state versus
the capillary number Ca for viscosity ratio λ = 0.1.

oscillations plotted in Figs. 4(b) and 5 reveal that increasing
the flow rate appears to dampen the oscillatory erythrocyte
inclination but not its length oscillations.

We note that our conclusions for the effects of the flow
strength are valid not only for λ = 0.1 presented in this
section but for all viscosity ratios studied in this work, e.g.,
0.01 � λ � 1.5.

As mentioned earlier, Sui et al. [7] studied computationally
the oscillatory tank-treading and tumbling motion of erythro-
cytes in shear flows with Ca = O(1) utilizing an immersed
boundary/lattice Boltzmann method which is restricted to
unity viscosity ratio. The earlier study is valid for Reynolds
number 0.1 (i.e., not exactly at the Stokes-flow limit) and
considers an erythrocyte between two parallel solid plates
with periodic boundary conditions in the flow and lateral
directions. We note that our results are in good agreement with
the computations of the earlier study. Sui et al. [7] reported
very similar oscillatory variations of the erythrocyte lengths
and inclination to those shown in our Fig. 2. However, they
did not investigate the phase lag effects on the erythrocyte
edges shown here in Fig. 3 or the logarithmic change with
the flow rate of the cell lengths and length variations shown
in our Fig. 4.

C. Effects of the viscosity ratio

Now we investigate the effects of the viscosity ratio λ on the
steady-state properties of the erythrocytes. The average lengths
of the erythrocyte, plotted in Fig. 6(a), show that, at a constant
flow rate, the cell becomes less deformed as the viscosity ratio
increases. That is, when λ increases, the erythrocyte length L

contracts and its depth W grows. As in the case of increasing
capillary numbers, the cell width S appears practically constant
with viscosity ratio. The increase of the viscosity ratio also
results in a considerable decrease of the length variation �L

and a smaller decrease of the depth variation �W , as seen in
Fig. 6(b); on the other hand, the variation of the cell width
�S is always very small and practically independent of the
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FIG. 6. (a) The average value at steady state of the erythrocyte
semilengths L, W , and S, as a function of the viscosity ratio
λ for capillary number Ca = 2 and λ in the range [0.01,1.5].
(b) The amplitude of the semilength oscillations �L = Lmax − Lmin,
�W = Wmax − Wmin, and �S = Smax − Smin at steady state versus
λ for Ca = 2. Also shown is the variation with the viscosity ratio
of the average erythrocyte deformation D in (a) and its amplitude
�D = Dmax − Dmin in (b) at steady state.

viscosity ratio. It is of interest to note that for the highest
viscosity ratio studied (i.e., λ = 1.5), the relative variations
of the erythrocyte dimensions have decreased (compared to
those for λ = 0.1 presented earlier) to �L/L ≈ ±5% and
�W/W ≈ ±6%.

The average orientation angle � decreases with the vis-
cosity ratio, as shown in Fig. 7(a), and the extent of the
decrease is much greater than that observed with increasing
capillary numbers over the range of flow rates shown in
Fig. 5. Increasing the viscosity ratio also dampens the angle
oscillation, or swinging motion, as seen in Fig. 7(b). The
overall effect of increasing the viscosity ratio λ is thus to
bring the ellipsoid in the shear plane closer and closer to the
horizontal orientation, i.e., the flow direction.
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FIG. 7. (a) The time-average orientation angle � at steady state as
a function of the viscosity ratio λ for capillary number Ca = 1.5,2,2.5
and λ in the range [0.01,1.5]. (b) As in (a) but for the amplitude of
the angle oscillations �� = �max − �min.

Therefore, our results provide further insight on the well-
known transition of the erythrocytes from tank treading to
tumbling at high enough viscosity ratios, e.g., [5,13,32]. As
shown in Fig. 8(a), by increasing the viscosity ratio from
λ = 0.1 to λ = 1, the average inclination angle decreases,
dampens the angle oscillation, and increases the oscillation
period. Examining the initial behavior of the orientation angle
for the higher viscosity ratios shown in Fig. 8(b), these trends
continue, eventually resulting in a transition from a (weakly
oscillatory) tank-treading motion to a tumbling motion which
appears to be well established at λ = 5. (We note that further
computational investigation of the erythrocyte’s tumbling
motion is currently restricted owing to buckling instability,
discussed in Sec. II.)

It is of interest to note that (simplified) two-dimensional
computational models have been developed which capture the
tank-treading and tumbling motion of erythrocytes, including
the reduction of the cell’s orientation angle � with the viscosity
ratio λ [32–34], and the reduction of the amplitude of the angle
oscillations �� with the flow rate Ca [34]. However, we note
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FIG. 8. Time evolution of the orientation angle � for an erythro-
cyte in a simple shear flow for capillary number Ca = 2. (a) Our
results shown for λ = 0.1 and λ = 1 illustrate that increasing the
viscosity ratio decreases the average angle, dampens the oscillation,
and increases the oscillation period. (b) By increasing the viscosity
ratio further, the trends found in (a) continue, eventually resulting in
a transition from oscillatory tank treading to tumbling.

that the increase of the time-average orientation angle � with
the flow rate during tank treading, shown in Fig. 4, in the
two-dimensional study of Tsubota and Wada [34] contradicts
the three-dimensional computations of the present study and
that of Sui et al. [7] which found the opposite behavior.

IV. COMPARISON WITH ERYTHROCYTE MODELS

Theoretical models have been developed to describe and
explain the tank-treading, swinging, and tumbling motion of
erythrocytes (and other ellipsoidal particles) in shear flows

[4,5,13]. These models restrict the number of degrees of
freedom to a few necessary to describe the basic particle
motion and thus do not solve the entire (nonlinear) dynamics
problem in shear flows.

The model of Keller and Skalak [13] treats the erythrocyte
as an ellipsoidal capsule of fixed shape and is able to describe
the (steady) tank-treading and tumbling motion as well as
the tank-treading-to-tumbling transition as the viscosity ratio
increases. The subsequent models of Skotheim and Secomb [5]
and Abkarian et al. [4] take into account the shape-memory
effects of capsules with nonspherically symmetric quiescent
shapes (such as that of the erythrocyte). These models are able
to also describe the shear rate effects on the tank-treading-to-
tumbling transition.

The model of Keller and Skalak has received a lot of atten-
tion in the last three decades; comparisons with experimental
observations have showed that this model predicts qualitatively
only the viscosity effects on the erythrocyte motion [13].
By contrast, currently no comparisons with experimental or
computational results on erythrocytes exist for the other two
(recent) models [4,5] to find their accuracy in predicting the
erythrocyte basic motion. The only exception we are aware of
is the work of Abkarian et al. [4] itself, where the authors
compared their model predictions with their experimental
results for erythrocytes in weak shear flows (where the cell
appears like an oblate biconcave disk/spheroid). Abkarian et al.
were able to quantitatively predict experimental findings (such
as the cell’s orientation angle and tank-treading frequency)
but they had to use unrealistic values of erythrocyte’s physical
properties, i.e., values of the membrane’s shear modulus Gs

two to three orders of magnitude smaller than the real one
(i.e., the average value of the shear modulus corresponding to
a population of cells).

It is of interest to note that Bagchi and Kalluri [9] compared
their computational results on the oscillatory inclination of
initially oblate elastic capsules in weak and moderate shear
flows with the predictions of the Keller and Skalak, and
Skotheim and Secomb models. However, Bagchi and Kalluri
utilized the initial capsule shape (and not its deformed shape
at the oscillatory steady state) as input parameters in these
two models. This probably increased the disagreement of the
models predictions with the computational results since the
shape deformation plays a significant role in the inclination
dynamics [9]. Therefore, in this section we compare our
computational results with the predictions of the theoretical
models [4,5,13] to provide further insight on their accuracy but
also on the physics included in these models for the oscillatory
tank-treading motion of erythrocytes.

To solve these models for a given capillary number Ca
and viscosity ratio λ, we employed the ratios of the average
erythrocyte dimensions at steady state S/L and W/L from
our computational results. (Note that these length ratios are
input parameters in the models [4,5,13]; for real erythrocytes
this information can be approximately determined from
ektacytometry data [11,28].) In addition, for the model of
Skotheim and Secomb [5], to determine the ratio of the change
in the elastic energy to the work done by the external fluid
during one rotation, Ue, we employed an elastic energy change
E0 = 10−17 J as estimated in Ref. [5], and the erythrocyte’s
average physical properties (i.e., cell volume Vc = 94 μm3,
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FIG. 9. Comparison of our computational results with the pre-
dictions of the models by Keller and Skalak (KS), and Skotheim and
Secomb (SS). (a) The time-average orientation angle � at steady state
as a function of the viscosity ratio λ for capillary number Ca = 1.5
and λ in the range [0.01,1.5]. (b) As in (a) but for the tank-treading
period Ptt (multiplied with the shear rate G). (c) As in (a) but for the
amplitude of the angle oscillations �� = �max − �min.

characteristic radius a = 2.8 μm, and membrane shear mod-
ulus Gs = 2.5 μN/m).

Figure 9 shows the comparison of our computational results
with those from the models of Keller and Skalak (KS), and
Skotheim and Secomb (SS) for capillary number Ca = 1.5 and
viscosity ratio λ in the range [0.01,1.5]. As seen in Fig. 9(a),
both models predict qualitatively the correct dependence of the
average orientation angle � with the viscosity ratio, while the
models disagreement with our computations increases with the
viscosity ratio. It is of interest to note that the incorporation of
the shape-memory effects in the SS model does not improve its
predictions on the erythrocyte orientation; thus the cell average
orientation is still determined by the original physics included
in the KS model.

Comparing our computational results with the models
prediction for the erythrocyte tank-treading period Ptt in
Fig. 9(b), we found that the KS model significantly under-
estimates the tank-treading period, while the predictions of
the SS model are quite accurate. Thus, the shape-memory
effects included in the SS model are important for an accurate
determination of the tank-treading speed. In particular, the
shape memory coupled with the shearing resistance of the
erythrocyte membrane significantly reduces (i.e., by a factor of
5–6) the tank-treading speed compared to a similar ellipsoidal
capsule with a spherical equilibrium shape.

Figure 9(c) shows that in the parameter range studied in
this work [i.e., Ca = O(1) and small to moderate λ], the SS
model significantly underpredicts the amplitude of the angle
oscillations ��. (Note that the KS model always predicts
zero oscillations.) This underprediction cannot be improved
by explicitly considering the steady-state oscillatory variation
of the erythrocyte lengths in the SS model since the model
predicts an angle variation �� almost independent of the
viscosity ratio [which affects the erythrocyte lengths, as shown
in Fig. 6(a)]. Therefore, a more detailed physical model
is needed for an accurate determination of the oscillatory
erythrocyte inclination.

Comparing our computational results with those from the
model of Abkarian et al. (AFV) [4] we found that, the AFV
model erroneously predicted a tumbling motion when we
employed realistic values of the erythrocyte properties. (In
particular, we used a characteristic radius a = 2.8 μm, mem-
brane shear modulus Gs = 2.5 μN/m, cytoplasm viscosity
μc = 6 m Pa s, as well as a membrane viscosity μm = 1 Pa s
and membrane thickness hm = 50 nm as proposed in the AFV
model [4].) We believe that this erroneous prediction results
from the model’s overprediction of the effects of the membrane
viscosity and especially of the shape memory.

To explain our conclusion, we note that the KS and SS mod-
els, as well as our computational algorithm, do not consider
explicitly the viscosity of the erythrocyte membrane. However,
one can account indirectly for the effects of the membrane
viscosity by considering λ to be an “effective” viscosity
ratio that includes the membrane viscosity. As discussed in
Ref. [5], the dissipation due to the membrane viscosity has
been estimated to be between two and four times the dissipation
in the cytoplasm [27,28]; thus one may choose λ = 4 μc/μ

which corresponds to a membrane dissipation equal to three
times the dissipation in the cytoplasm. On the other hand, the
AFV model considers explicitly the membrane viscosity μm

and has modified the viscosity term f2 − λf1 (where f2 and f1

are geometric constants) appearing in the KS and SS models to
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be, in our notation, f2 − μc/μf1(1 + μmSchm/(μcVc). Using
Sc = 135 μm2, Vc = 94 μm3, μc = 6 m Pa s, and hm = 50 nm,
results in an effective viscosity ratio for the AFV model of
λ ≈ 13μc/μ significantly higher than the earlier estimations
[27,28].

However, even when we neglect the effects of the membrane
viscosity in the AFV model (by setting μm = 0), the model
still erroneously predicts a tumbling motion (in the parameter
range considered in this work) owing to its overprediction
of the shape-memory effects. To explain this we observe that,
matching the shape-memory term appearing in the SS and AFV
models results in an elastic energy charge for the AFV model
E0 = 0.5f1ScGs . Using Sc = 135 μm2, Gs = 2.5 μN/m,
and considering that f1 = (S/L − L/S)2 takes on values
f1 ≈ 14–16 in the parameter range studied in this work (but
also for a biconcave erythrocyte), we obtain that for the
AFV model E0 ≈ (235–270) × 10−17 J, i.e., a much higher
estimation than E0 = 10−17 J proposed by Skotheim and
Secomb [5]. Based on the success of the SS model in predicting
the tank-treading period shown in Fig. 9(b), we are more prone
to accept the shape-memory treatment/estimation of the SS
model.

V. APPLICATIONS

A. Ektacytometry deformation

Ektacytometry systems have been developed to measure the
deformability of the erythrocyte by observing the deformation
behavior of individual cells or average deformabilities for
populations of cells [3,11,12]. In these devices the flow
pattern is a simple shear flow (or a good approximation
of), while the deformed erythrocyte is not observed in the
plane of shear, but from above the shear plate device. In our
computations, u∞ = G(z,0,0) and thus the plane of shear is
the xz plane. In our terminology, we can say that ektacytometry
observes the deformed erythrocyte projected as an ellipse
on the xy plane. The deformation parameter computed from
the largest and smallest semiaxes of this ellipse, Lx and Ly ,
respectively, and reported by researchers using ektacytometry,
we will denote Dxy . Note that Dxy = (Lx − Ly)/(Lx + Ly),
while Lx = L cos � and Ly = W when the erythrocyte shape
is a perfect ellipsoid. Since ektacytometry does not follow
individual cells over time but uses a large number of them,
and since the erythrocytes’ shape oscillates with time in
a shear flow, the experimentally reported deformation Dxy

corresponds to the average value of the cells deformation in
the xy plane over time and over the erythrocyte population.

Figure 10 shows our computational results for the time-
averaged deformation Dxy at steady state for a range of high
capillary numbers and for viscosity ratio λ = 0.01,0.1,0.2,1.
This figure also includes the experimental findings reported in
Fig. 3 of Hardemann et al. [11]. Note that the viscosity ratio
for ektacytometry systems usually ranges between 0.1 and 0.2,
while the reported experimental measurements via the LORCA
ektacytometer have negligible standard deviation [11]. The
experimental findings were converted to the capillary number
domain using Gs = 3.3, 2.4, and 1.7 μN/m, i.e., we used the
range of membrane shear modulus Gs = 1.7–3.3 μN/m valid
for most red blood cells at low strains [29], since ektacytometry
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FIG. 10. (a) The average value at steady state of the ektacytometry
deformation Dxy versus the capillary number Ca from our computa-
tional results (solid lines) in a linear-log plot for viscosity ratio λ =
0.01,0.1,0.2,1. (b) As in (a) but for the projection semilengths Lx and
Ly . Also included in (a) are the experimental findings (dashed lines)
reported in Fig. 3 of Hardemann et al. [11] which have been converted
to the capillary number domain using Gs = 3.3,2.4,1.7 μN/m.

systems as well as our computations involve rather small
and moderate deformations. (In our work the cell dimensions
vary in the range −20% to 40%.) When we convert the
experimental data using Gs = 2.4 μN/m, they coincide with
the computational curves for low viscosity ratios which may
suggest that the sample used in the experimental measurement
had a shear modulus very close to the average value found by
optical tweezers at low strains, Gs = 2.5 μN/m [29].

Figure 10(a) shows that for a given viscosity ratio λ,
the ektacytometry deformation Dxy increases logarithmically
with the capillary number Ca in excellent agreement with
experimental findings [11,30]. This figure also reveals that
low viscosity ratios have little effect on the dependence of
Dxy on the flow rate Ca. For low viscosity ratios used in the
ektacytometry systems, using a logarithmic scale for capillary
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numbers, our computations produce a slope consistent with the
experimental results [11]. On the other hand, as the viscosity
ratio increases to moderate values, e.g., λ = 1, for a given
flow rate the cell deformation decreases. It is of interest to
note that for moderate viscosity ratios, Dxy still increases
logarithmically with the capillary number, but the slope of
the dependence is lower.

The large decrease of the ektacytometry deformation
Dxy as the viscosity ratio increases from low to moderate
values, reported in our Fig. 10(a), is in agreement with the
experimental findings of Mohandas et al. [30] shown in
their Fig. 2 where a similar deformation decrease was found
when the viscosity of the surrounding liquid decreased from
μ = 33.5 m Pa s to μ = 11.7 m Pa s. We emphasize that the
effects of the viscosity ratio on the ektacytometry deformation
is consistent with that observed for elastic capsules in shear
flows [35].

The effects of flow rate Ca and viscosity ratio λ on the
ektacytometry deformation Dxy result from the similar effects
of these two parameters on the projection semilengths Lx

and Ly , as shown in Fig. 10(b). For a given flow rate, the
large decrease of Dxy , when the viscosity ratio increases from
low to moderate values, results from the associated decrease
of Lx and increase of Ly . In addition, our computations
reveal a relative variation for the erythrocyte projection
semilengths �Lx/Lx � ±8% and �Ly/Ly � ±6% owing to
the oscillatory motion, for all viscosity ratios and flow rates
studied in this work (not shown).

B. The deformability distribution

The deformability distribution within a population of
erythrocytes is useful for studying the inherent differences
between erythrocytes as well as several disorders or diseases
since even small fractions of less deformable or rigid cells
can cause circulatory problems [14]. To do this efficiently,
Dobbe et al. [14] designed an automated rheoscope that
uses image analysis techniques to determine the erythrocyte
deformability distribution by analyzing a large number of cells
in shear flow. Note that they retain the geometric orientation
of ektacytometry, i.e., they still view the erythrocyte as an
ellipse projected on the xy plane. The viscosity ratio they used
and the mean deformabilities they observed are consistent with
ektacytometry [11]. Dobbe et al. designed their experiments so
that they can capture data about individual erythrocytes within
a population, but they do not monitor individual cells over
time. They compiled their results to produce deformability
distributions for different shear stresses.

Dobbe et al. attributed the range of deformabilities they
found to inherent differences among the cells themselves.
While these differences may exist, we have already shown
that the deformation for a single cell in shear flow oscillates
over time. Dobbe et al.observed many cells, but they did
not follow individual cells over time. Thus, some of the
variation they observed should be due to the oscillatory
deformation behavior. To examine this contribution, in Table I
we display the amplitude of the deformation Dxy from
our computations (determined as maximum minus minimum
Dxy) for viscosity ratio λ = 0.1 and several flow rates. The

TABLE I. The amplitude of the ektacytometry deformation Dxy

(determined as maximum minus minimum Dxy from our computa-
tions at steady state) for viscosity ratio λ = 0.1 and several capillary
numbers Ca. Also shown is Dxy amplitude computed from Table 3
in Dobbe et al. [14], using 2.576 standard deviations around the
mean value (which includes 99% of the entire set of the experimental
values).

Capillary number Ca Dxy amplitude

1.25 0.127
1.50 0.128
1.75 0.128
2.00 0.127
Dobbe et al. [14] 0.219

amplitude is essentially constant over this set of capillary
numbers.

Dobbe et al. [14] display in their Fig. 4 and Table 3
the results for a shear stress of μG = 3 Pa, corresponding
to Ca ≈ 3.5, i.e., above our flow rates for this viscosity
ratio but close enough so that the relative magnitudes of the
deformability range can still be compared. Using the reported
mean and standard deviation, we estimate a deformation
amplitude of 0.219 by taking 2.576 standard deviations around
the mean in the experimental results which accounts for 99%
of the entire set of the experimental values. The amplitude
produced by oscillations alone, with no inherent differences
between erythrocytes within a population, is therefore 58% of
the experimentally observed amplitude.

This indicates that the deformation oscillations at steady
state have a larger contribution to the range of deformabil-
ities observed than was previously appreciated. Therefore,
researchers who wish to study inherent differences between
erythrocytes within a population must devise a way of
monitoring individual cells over time so that they can remove
the oscillation effects.

VI. CONCLUSIONS

In this paper, we have utilized our nonstiff cytoskeleton-
based continuum erythrocyte algorithm [10] combined with
our interfacial spectral boundary element algorithm for mem-
branes [21,22] to study the oscillatory dynamics of the
tank-treading motion of erythrocytes in moderate shear flows.
In particular, we have considered shear flows with capillary
number Ca = O(1) and small to moderate viscosity ratios
0.01 � λ � 1.5. These conditions correspond to a wide range
of surrounding medium viscosities (4–600 m Pa s) and shear
flow rates (2–560 s−1), and match those used in ektacytometry
systems [3,11,12]. Furthermore, the logarithmic dependence
of the erythrocyte dimensions with the flow rate, presented
in Secs. III B and V A, is expected to be valid for much
higher flow rates owing to the similar dependence of the
ektacytometry deformation found in moderate and strong flow
rates, e.g., [11].

It is of interest to note that our computational algorithm al-
lows visualization of the three-dimensional oscillatory behav-
ior of the erythrocyte and thus analysis of the flow dynamics
beyond the geometric constraints inherent in ektacytometry
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systems [11,12] and other experimental techniques (such as
imaging methods parallel to the shear plane [4]) which see
the cells from one view angle only and thus provide limited
information on the erythrocyte dynamics.

As discussed in Sec. III, for a given viscosity ratio, as
the flow rate Ca increases, the steady-state erythrocyte length
L increases logarithmically as expected since the shear flow
extends the cell; its depth W decreases logarithmically with the
flow rate, while almost no change is observed in the cell width
S. Owing to the oscillatory nature of the tank-treading motion,
the erythrocyte length and depth show significant variation
(e.g., for λ = 0.1 the relative variations are �L/L ≈ ±6%
and �W/W ≈ ±8%), with negligible variation in the cell
width S. In the parameter space studied in this work, the
orientation angle � of the erythrocyte at steady state decreases
slightly with the flow rate, with a more significant decrease
in the angle variation. Thus increasing the flow rate appears
to dampen the oscillatory erythrocyte inclination but not its
lengths oscillations.

For a given flow rate, as the viscosity ratio λ increases,
the erythrocyte length L contracts and its depth W increases
(i.e., the cell becomes less deformed) while the cell width
S is practically constant. The increase of the viscosity ratio
also results in a small decrease of the length and depth
variations, �L and �W . The average orientation angle �

of the erythrocyte shows a significant decrease with the
viscosity as does the angle oscillation, while the oscillation
period increases. These trends continue in higher viscosity
ratios resulting eventually in the transition from a (weakly
oscillatory) tank-treading motion to a tumbling motion.

For all the flow rates and viscosity ratios studied in this
paper, the amplitude of oscillations for the erythrocyte defor-
mation D is much smaller than that for the erythrocyte length L

and depth W , owing to its definition D = (L − S)/(L + S) and
the cell’s small, and practically invariant, width S. Thus, the
oscillatory behavior of the erythrocyte shape is better revealed
via monitoring the cell dimensions L and W , rather than the
deformation parameter D.

It is of interest to note that, using a cell imaging method
parallel to the shear plane, Abkarian et al. [4] observed the
oscillatory inclination of the erythrocyte at low flow rates
but not that of length oscillations (or local details of the
interfacial shape) probably due to insufficient resolution. Our
computations reveal more details of this oscillatory motion;
owing to the phase lag of 90◦ between length and angle
oscillations, the edge of the interfacial geometry traces an
approximately circular path, as shown in Fig. 3(b).

Our computations have shown that the erythrocyte width
S, which exists in the shear plane, is practically invariant
in time, capillary number, and viscosity ratio. Therefore,
the shape changes observed as time oscillations or due to
changes in the flow rate and the viscosity ratio are associated
only with the erythrocyte length L (in the shear plane) and
its depth W (normal to the shear plane). The (practically
constant) erythrocyte width S has a normalized magnitude
of approximately 0.32, corresponding to a real cell thickness
of about 2.5 μm. It is of interest to note that this value
is only slightly less than the smallest possible diameter of
about 2.8 μm for a capillary through which erythrocytes can
pass in the microcirculation [15]. We emphasize that the cell

thickness of 2.5 μm in these shear flows is associated with the
three-dimensional dynamics of tank treading, i.e., with higher
values in the other two cell dimensions, while the capillary
dynamics is more axisymmetric, and thus the smallest capillary
diameter should be higher than the smallest thickness in tank
treading.

In Sec. IV we have compared our computational results
with the predictions of the low degree-of-freedom theoretical
models of Keller and Skalak (KS) [13], Abkarian et al. (AFV)
[4], and Skotheim and Secomb (SS) [5], to provide further
insight on their accuracy but also on the physics included
in these models. Several conclusions can be drawn from the
comparison of these models with our computational results.

First, the KS and SS models predict qualitatively the
decrease of the average orientation angle with the viscosity
ratio but the models disagreement with our computations
increases with the viscosity ratio. It is of interest to note
that the incorporation of the shape-memory effects in the SS
model does not improve its predictions on the erythrocyte
orientation; thus the cell average orientation is still determined
by the original physics included in the KS model. Second,
the KS model is shown to significantly underestimate the
tank-treading period, while the predictions of the SS model
are quite accurate. Thus, the shape-memory effects included
in the SS model are important for an accurate determination
of the tank-treading motion; in particular, the shape-memory
effects significantly reduce the tank-treading speed (by a
factor of 5–6) compared to a similar ellipsoidal capsule
with a spherical equilibrium shape. Third, the SS model
significantly underpredicts the amplitude of the angle oscil-
lations ��, while the KS model always predicts zero angle
oscillations. In addition, none of the three models consider
length oscillations. Therefore, a more detailed physical model
is needed for an accurate determination of the length and
angle variations of the tank-treading erythrocyte. Fourth,
we found that in the parameter space studied in this work
(which corresponds to oscillatory tank-treading motion), the
AFV model erroneously predicts a tumbling motion when
we employ realistic values of the erythrocyte properties. We
believe that this erroneous prediction results mainly from the
model’s overprediction of the shape-memory effects. This
erroneous prediction of the AFV model should be expected
since Abkarian et al. were able to quantitatively predict
experimental findings, such as the cell’s orientation angle
and tank-treading frequency, but they had to use two to three
orders of magnitude smaller shear modulus Gs than the real
one [4].

As discussed in our earlier work [10], our comparison of
our computational results with experimental findings [3,12]
suggests that the membrane viscosity slows down the tank-
treading motion by a factor close to 2. This is associated
with the energy dissipation due to the membrane viscosity
and suggests that this energy dissipation is of the same
order as that of the oscillatory tank-treading erythrocyte
(with zero membrane viscosity). (We emphasize that this
conclusion is consistent with the estimation of Fischer [27]
that in the tank-treading erythrocytes the energy dissipation
in the membrane is of the same order of magnitude as in
the cytoplasm.) As mentioned earlier, the comparison of our
computational results with the predictions of the KS and SS
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models for the erythrocyte tank-treading speed included in
Fig. 9(b), shows that the shape-memory effects slow down
the tank-treading speed by a factor of 5–6. Thus, the energy
dissipation due to the shape-memory effects is more significant
than the energy dissipation due to the membrane viscosity.
This conclusion may affect earlier studies on nonspherical
capsules (e.g., erythrocytes) which were based on models not
accounting for the shape-memory effects such as the Keller
and Skalak model [13].

Finally, our work also provides insight helpful in the
biomedical area. Our results on the influence of the viscosity
ratio provide insight on the effects of the paraproteinemia, i.e.,
a family of disorders associated with elevated plasma protein
levels and thus higher plasma viscosity [1]. In addition, in Sec.
V we study and provide further information and insight on
properties measured in ektacytometry systems. We note that
ektacytometry systems which measure the deformability of
erythrocytes [3,11,12] are useful medical tools for studying
the inherent differences between erythrocytes as well as
several disorders or diseases [14]. Our main conclusion is

that variations observed in these systems are not merely due
to differences between individual cells, as initially thought,
e.g., [14], but are also due to the time-variant oscillatory
tank-treading motion of the erythrocytes which occurs under
the ektacytometry conditions. (As discussed in Sec. V B, the
oscillatory tank-treading motion can account for more than
50% of the variations found in ektacytometry systems [14]).
Thus, researchers who wish to study inherent differences
between erythrocytes within a population must devise a way of
monitoring individual cells over time so that they can remove
the oscillation effects.
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