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The quasi-steady migration and deformation of bubbles rising in a wall-bounded linear
shear flow are investigated experimentally in the low-but-finite-Reynolds-number
regime. A travelling optical device that follows the bubble is used for this purpose.
This apparatus allows us to determine accurately the bubble radius, contour and
rising speed, together with the distance between the bubble and the wall. Thereby the
transverse component of the hydrodynamic force is obtained for Reynolds numbers Re
(based on the bubble diameter and slip velocity of the bubble in the undisturbed shear
flow) less than 5. The results indicate that in the range 0.5 < Re < 1.5, the transverse
force acting on a spherical bubble agrees well with an extension of the theoretical
solution obtained by McLaughlin (J. Fluid Mech., vol. 246, 1993, pp. 249-265) for
rigid spheres, whereas it becomes larger than the theoretical prediction for Re > 1.5.
In the regime in which bubble deformation is significant, the shape of the bubble
and the deformation-induced transverse force are determined both experimentally
and computationally, using a spectral boundary element method. Both estimates are
found to be in good agreement with each other, while the theory of Magnaudet,
Takagi & Legendre (J. Fluid Mech., vol. 476, 2003, pp. 115-157) is found to predict
accurately the deformation but fails to predict quantitatively the deformation-induced
transverse force.

1. Introduction

Predicting how buoyant particles and bubbles migrate horizontally in a vertical
pipe flow is of central importance in estimating the averaged characteristics of the
corresponding widespread two-phase flow, including the local volume fraction of the
dispersed phase, wall friction and heat exchange through the wall (see e.g. Serizawa,
Kataoka & Michiyoshi 1975 for the case of gas bubbles). Nevertheless, this prediction
is made difficult by the fact that any particle moving in a wall-bounded shear flow
experiences two different types of inertial transverse (or lift) forces which generally
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combine nonlinearly, one of which is due to the local shear, while the other results
directly from the presence of the wall. Things are even more complex with bubbles
and drops which may deform in such a flow and undergo an additional deformation-
induced transverse force. Inertial migration of rigid particles in wall-bounded shear
flows has attracted attention since the pioneering experiments of Segré & Silberberg
(19624, b) involving neutrally buoyant spheres. We refer the reader to the papers by
Leal (1980), McLaughlin (1991) and Hogg (1994) for the case of such particles and
to that by Magnaudet, Takagi & Legendre (2003; hereinafter referred to as MTL)
for the case of buoyant drops and bubbles experiencing a near-wall migration due
to the combined effect of inertia and deformation. Here we only briefly discuss the
available literature concerned with the lateral migration of particles moving near
a wall in a linear shear flow in the low-but-finite-Reynolds-number regime, with a
special emphasis on the case of bubbles.

When a buoyant sphere migrates in an unbounded linear shear flow, both the slip
velocity U, and the shear-induced velocity GR (where G denotes the shear rate and
R is the sphere radius) contribute to the nonlinearity of the governing equations and
hence to the generation of the transverse force. This is why this force depends in
general on the ratio between the Stokes length v/ U, and the Saffman length (v/|G|)!/?,
with v denoting the kinematic viscosity. When the flow is bounded by a rigid flat
wall, the disturbance depends in addition on the separation distance L between the
particle and the wall, and so does the lift force.

If the separation is much less than the Stokes and Saffman lengths, the wall
lies within the inner region of the disturbance, and the leading contribution to the
wall-induced lift force may be obtained through a regular expansion technique with
respect to the particle Reynolds number (Cox & Brenner 1968). Cox & Hsu (1977)
took advantage of this to obtain the lateral force on a rigid sphere moving parallel
to the wall in a linear shear flow bounded by a single wall, assuming L/R> 1.
Cherukat & McLaughlin (1994) evaluated numerically the volume integral required
to obtain the lift force by means of the reciprocal theorem and expanded the result
with respect to L/R to obtain higher-order contributions with respect to R/L which
are useful when the particle is close to the wall. The case of a drop of arbitrary
viscosity moving either along a wall or perpendicular to it was considered by MTL
using similar techniques. In contrast, the case in which the wall lies in the outer
region of the disturbance, i.e. LU;/v>>1 and L(|G|/v)"?>> 1, requires the use of
matched asymptotic expansions. After several attempts, this situation was worked out
by McLaughlin (1993) who succeeded in obtaining the lift force on a rigid sphere
moving parallel to a wall in a linear shear flow in an integral form.

In addition to the above inertial effects, bubbles and drops migrating in a wall-
bounded shear flow experience deformation because of the shear present in the
undisturbed flow as well as because of the extra shear resulting from the structure
of the near-wall disturbance. If the capillary numbers uU;/o and uGR/o are both
small (u being the dynamic viscosity of the suspending fluid and o the interfacial
tension), the total deformation may be obtained by summing the effects of the above
two shears. Takemura et al. (2002; hereinafter referred to as TTMM) determined
experimentally the deformation experienced by a bubble rising near a vertical wall
in a quiescent liquid and found their results to agree well with the theoretical
prediction of MTL. This deformation in turn results in a transverse force which, for
a buoyant drop or bubble, was evaluated by the same authors. Both the theory and
the experiments indicate that the magnitude of the deformation-induced lift force is
comparable to that of the inertial lift force when the Reynolds number is comparable
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to the capillary number, the total lift force then being the sum of the two elementary
contributions.

As pointed out in TTMM, very few experiments to date provide reliable data for
the variations of the lateral force on a particle moving in the vicinity of a wall as a
function of the various parameters of the problem, and even fewer have considered
drops or bubbles. In particular we are not aware of any available experiment in
which the transverse force acting on a drop or a bubble moving close to a wall in
a simple shear has been determined. The goal of the present study is to obtain such
data in order to check existing theories for the lateral force, clarify their limitations
and propose reasonable extensions if necessary. To this end, we produce a quasi-
linear shear flow by moving two parallel belts in opposite directions and measure
optically the migration velocity of bubbles rising near one of the belts (§2). Then we
estimate the quasi-steady lift force on spherical bubbles in the regime 0.5 < Re <5
(where Re=2RU,/v) and compare them with a generalized form of the analytical
prediction of McLaughlin (1993) (§3). In §4, we address situations in which the
effect of bubble deformation is significant. We estimate separately the effect of the
undisturbed shear and that of the shear induced by the near-wall disturbance on
the deformation for 0.1 < Re < 0.5 and compare the corresponding results with two
independent predictions. The first of these is provided by the theory of MTL, which is
based on the domain perturbation method and treats the influence of the nearby wall
through a reflection technique. The other one, which is part of the present work, results
from a numerical determination of the evolution of a deformable bubble in a wall-
bounded linear shear flow. The corresponding results are obtained by using the fully
implicit interfacial spectral boundary element method developed by Dimitrakopoulos
(2007). Owing to the intrinsic limitations of the boundary element formulation, these
computations are performed under creeping flow conditions. However, for reasons
explained below, they are suitable for obtaining the leading-order bubble deformation
and deformation-induced transverse force in the weakly inertial regime considered
in §4.

To our knowledge, the present study provides the first detailed measurements of
the inertial transverse force acting on a clean spherical bubble rising parallel to a
wall in a linear shear flow. In cases in which the bubble deforms significantly and
takes a spheroidal shape, it also provides original experimental and computational
results regarding the interface deformation and the corresponding associated lateral
force. In both cases, both positive and negative shears are considered, corresponding
to situations in which wall effects and shear effects act either in a cooperative way or
in an antagonistic manner.

2. Experimental apparatus and procedure

Figure 1 shows a diagram of the experimental facility used to measure the evolution
of the bubble radius R, rising speed U,, horizontal bubble velocity W (positive towards
the fluid interior) and distance between the bubble centre and the wall L. The facility
consists of a test section and an optical measurement system. The test section is a
600 mm long acrylic channel with a cross-section of 280 x 130 mm. We use two
stainless steel belts to produce a quasi-linear shear flow by moving two parallel belts
in opposite directions. The width and thickness of the belts are 40 mm and 0.1
mm, respectively. The distance H between the two belts is 50 mm, and the length
of the parallel section between the belts is 400 mm. The stainless steel belts were
manufactured by joining both edges of a plate with an initial thickness of 0.3 mm.



466 F. Takemura, J. Magnaudet and P. Dimitrakopoulos

Syringe

Gont -—p Motor

X , Gear

Needle x-asix stage

/ Stage

controller
Silicone oil Gear
o) (@
Y —
= T ¢ Stainless,
D
XA g . belt CCD camera
Bubble =)
Stainless belts\~ ° >z § %
N =
Rotor N
Optical
S rt
pllgt)s " . 50 my Support— I microscope
plate
Video
X recorder
Needle l
Syringe
PC
|
(a) Front view of the test section (b) Side view of the test section and the optical measurement system

FIGURE 1. Sketch of the experimental device.

Since the roughness at the joint may produce disturbances in the flow, the belts were
thinned down to 0.1 mm by a rolling mill process. The two belts are tightened by
four rotors fixed on the support plate. Two gears connected to the upper two rotors
are rotated by a single motor, which allows the two belts to rotate with exactly the
same speed. Although the rotation speed of the motor can be arbitrarily set from 0
to 100 rpm, we limit it to 25 rpm to reduce the vibration of the belts below 10 pm.
In this range, the wall speed U, can be varied from —52 to 52 mm s~!, so that
the maximum shear rate is 2.08 s~!. Single bubbles are produced through a needle
connected to the tip of a syringe, either from the bottom of the tank or from its
top when the shear is positive, since the bubble is going down in the latter case. The
two needles are inserted in the bottom (respectively top) part of the test section, and
their tips are fixed approximately 30 mm above (respectively below) the centre of the
bottom (respectively top) rotor. The syringe is slowly pressurized by a syringe pump
(MD-1001, Bioanalytical System Inc.) to introduce bubbles into the test section. The
support plate can be moved horizontally on a rail fixed on the test section and the
distance between the needle and the belts can be adjusted arbitrarily. In the following,
we define the vertical and horizontal directions as the x- and z-axis, respectively.
The velocity distribution Uy in the flow produced by the moving belts was
determined by means of a laser-Doppler anemometry system (Smart LDV Model 8739,
Kanomax). We measured the horizontal distribution of the vertical and horizontal
velocities every 50 mm between x =0 mm and x = 300 mm above the tip of the needle
at z=1, 2, 3, 4, 5, 7 and 10 mm from the wall; 5000 velocity data were obtained
at each measurement point. Figure 2 shows the vertical velocity profiles at x =0, 50,
100, 250 and 300 mm when the flow Reynolds number defined as Re; = HU, /v is
123 (corresponding to U, =51.5 mm s~! and v=20.9 mm~2 s7!). Figure 2 reveals
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FIGURE 2. Vertical velocity distribution in the quasi-linear shear flow at various vertical
positions: ®, 0 mm; M, 50 mm; A, 100 mm; @, 250 mm; V¥, 300 mm.

that the velocity profile does not significantly evolve in the streamwise direction for
x =100 mm, so that the flow may be considered fully developed downstream of
the entrance region. Moreover this figure reveals that in the same range of x, the
curvature of the velocity profile in the z-direction is very small, so that the flow
may be considered linear for x > 100 mm. Expressing the velocity distribution in
the form Uy(z)=U, + Gz, we estimated G by correlating the measured velocity
data. The results indicate that in the near-wall region z < 10 mm concerned with our
measurements, the local velocity gradient differs from the averaged shear rate G by
less than 10% for 50 mm <x <100 mm and by less than 3% for x > 100 mm.
Therefore the experimental data to be discussed below were all taken in this fully
developed region x = 100 mm. We finally calculated the local slip velocity of a bubble
standing at the current lateral position z as U(z) = U, — Us(z).

The optical part of the measuring system was developed by Takemura & Yabe
(1998, 1999) and has already been described by TTMM. In brief, this device combines
a charged-couple device (CCD) camera with a microscope in order to measure
accurately the radius of the bubble (see figure 1b). The CCD camera has 640 x 480
pixels which, according to the calibration used in the present study, yield a resolution
of about 6.4 pm pixel~!. The depth of field of the microscope is about 150 um. The
reader may refer to the papers by TTMM and Takemura & Magnaudet (2003) for
details on how the verticality of the wall is adjusted and how the separation distance
between the bubble and the wall is precisely determined. In the present experiments,
we adjust the horizontal distance between the two belts within 430 pm. To track the
rising bubble, we adjust the speed of the camera as follows. A picture of the bubble
is recorded on the computer via the video capture board at a rate of 30 frames s~!. A
binary image is made, and the position of the bubble is determined. Then we calculate
the relative velocity between the bubble and the camera from consecutive frames and
use this relative velocity to adjust the speed of the vertical displacement system.

Using the device and the adjustments described above, the bubble radius, rising
speed and separation distance between the bubble and the wall are measured from
the recorded pictures and the time history of the camera speed. The radius R and
separation distance L are evaluated on each frame, while the local speed of the bubble
is obtained by locating the centre of the bubble, calculating the relative speed from
the movement of the centre in two consecutive frames and adding the speed of the
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K20 K50 K100 K200
o (kg m™) 948 955 965 968

1 (x10%; kgm~1s~) 19.6 44.6 100.4 176.2
v (x106; m? s 20.6 46.7 104.0 182.1
o (x10°; kgs™) 20.8 20.8 20.9 21.1

TaBLE 1. Physical properties of the silicone oils at temperature 7 =20°C.

camera corresponding to these two frames. The migration velocity W of the bubble
in the z-direction is calculated from the distance L obtained every 1/30 s. Assuming
that W can be expressed as a power law of L, ie. W =dL/dt = AL®, the trajectory of
the bubble is determined as a function of time by integrating this power law. After
the discrete values of L have been fitted, the coefficients A and B are determined
through a least square procedure. The uncertainties affecting the various quantities
can be quantified as follows. The uncertainty on R is 1 pixel, ie. about 6.4 pm,
whereas that on L is twice as large because the wall is somewhat out of focus. The
uncertainty on the relative speed between the bubble and the camera is about 0.4
mm s~'; ie. the relative error on U, is about 2 % when the bubble rises with a speed
of 20 mm s~!. Using these estimates, we evaluated the uncertainties on quantities
such as U; and L/R by using standard techniques (Benedict, Abernethy & Osolsobe
1985).

Determining precisely L in cases in which the bubble is not perfectly spherical
requires the position of the bubble centroid to be properly defined. For this purpose,
we choose an initial approximation of the centroid location (defined as r =0), express
the bubble contour as r = g(0) and perform a Fourier decomposition of this contour
(see figure 8). In such a decomposition, terms in cos 6 and sin 6 are associated with a
translational mode and become zero if the origin » =0 coincides with the geometrical
centroid. We apply this condition iteratively to reduce the strength of the translational
mode and obtain the position of the centroid at convergence.

All the experiments are carried out at room temperature and atmospheric pressure
using silicone oil (dimethyl siloxane polymer; KF-96, Shinetsu Chemical Co.) as the
carrying liquid. To cover the range Re <5 (Re=2RU,/v), we employ four different
qualities of silicone oil with kinematic viscosities ranging from about 2.0 x 107> m?
s7! to 2.0 x 107* m? s~!. The physical properties of these oils are detailed in table 1;
hereinafter these various oils are referred to as K20 to K200, according to the
denomination specified in table 1. Variations of oil viscosity with temperature are
determined using a rotating Couette viscometer, and the corresponding corrections
are taken into account in the data analysis. Moreover the temperature of the
device is determined before and after each set of experiments in order to ensure
that no significant temperature variation has occurred in between. An important
property of silicone oil is its non-polar nature. Because of this, no indication of
surface contamination was detected during the analysis of the experimental results.
In particular the values of the drag force acting on bubbles rising far from the
wall were always found to agree well with values corresponding to clean bubbles
subject to a shear-free boundary condition (see Takemura & Magnaudet 2003 for
details).

Figure 3 shows typical CCD camera photographs of a single spherical bubble with
R =0.59 mm rising near the wall in presence of three different wall velocities. The
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FIGURE 3. Photographs showing three typical bubble trajectories in a wall-bounded linear
shear flow (K20, R=0.59 mm, Uy, =47.4 mm s~!, Re, =2.7). The only change between
the three series lies in the wall velocity: (a) U, = —20.9 mm s~'; (b) U, =20.9 mm s~!
(¢) Uy=51.5mm s~ L.
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carrying liquid is the K20 silicone oil, and the bubble slip velocity Uy, far from the wall
is 47.4 mm s~!, corresponding to a slip Reynolds number Re., = 2.7. In all three cases,
the bubble centre lies initially at 1.38 mm from the wall. Comparing the horizontal
position of the bubble at a given time for all three series clearly indicates that the
migration velocity W increases from left to right. Since the shear rate decreases from
case (a) to case (c) (going from positive to negative values), figure 3 leads us to the
conclusion that the migration velocity increases as the shear rate G decreases. This
is qualitative agreement with the theoretical prediction of the migration velocity W
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FIGURE 4. Two examples of a slightly deformed bubble rising in a wall-bounded linear shear
flow (K100, R=0.85 mm, L ~1.3 mm U,,, =21.8 mm s~ !, Re, =0.36): (a) Uy, =51.5 mm
s7h;(b) Uy = —51.5 mm s~ L.

obtained by MTL who showed that provided LU,;/v <1, LGR/v <1 and L/R>1,
one has at leading order in terms of R/L

1 <RUS 11 RGL)

WZE v 6 v

(1)

We note for future purpose that (1) indicates that within its regime of validity, W can
be expressed as the sum of the near-wall migration velocity in a quiescent fluid and
the shear-induced migration velocity.

When the ratio between viscous and capillary forces (i.e. the capillary number)
increases, the effect of bubble deformation becomes significant. TTMM showed that in
a quiescent liquid, the shear created around the bubble by the no-slip condition at the
wall is responsible for this deformation and that the bubble is lengthened (respectively
shortened) along an axis inclined at 45° (respectively —45°) from horizontal. When
the bubble rises in a wall-bounded shear flow, the above deformation combines with
that induced by the undisturbed shear. Figure 4 shows two typical photographs taken
in this situation for the same value of L but with two different values of U, the wall
velocity in case (a) (respectively b) corresponding to a negative (respectively positive)
shear rate. The photographs indicate that although the distance L is the same, the
deformation in case (b) is larger than that in case (a). Assuming that the bubble
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deforms in the (x, z) plane as an ellipsoid without any volume change, we quantify its
deformation B through the ratio ¢ between the length of its major axis and that of
its minor axis, i.e. { =(1 4+ 8)/(1 — B). Using this definition, we find 8 ~0.01 in case
(a) and B =0.04 in case (b), which indicates that the deformation increases with the
shear rate G.

3. The shear-induced transverse force on a spherical bubble
3.1. Experimental determination of the transverse force

Figure 5 shows a sketch of the force balance on the bubble when it rises near the
wall along a slightly inclined path. Assuming a quasi-steady flow evolution, the drag,
lift and buoyancy forces must balance. Provided the inclination angle of the path is
small, the lift force is almost horizontal, so that the lift and buoyancy forces almost
balance the horizontal (z) and vertical (x) components of the drag force, respectively.
Neglecting air density, we may then write

4
4mpuRU,Cpe = SR’ pg. (2a)
4T[MRWCDZ = 2TCMRU5R€IL. (2[))

In (2a) and (2b) the longitudinal and transverse drag coefficients Cp, and Cp, are
defined by normalizing the drag force by its value in the Stokes regime in an
unbounded flow, whereas the lift coefficient I; is defined using an inertial scaling, i.e.
writing the lift force as Fp =4n,0R21LUS2. In the case in which the wall lies in the
inner region of the flow disturbance, MTL established that the two components of
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the drag force on a bubble moving close to the wall at zero Reynolds number obey

3 9 27 y 3
=1 = 72 =3 72 1 = 4
Cpx + 8K+ 7 + S + g < + 8K> + O(x"), (3a)
— 3 9 2 27 3 4
CDZ—1+4K+16K +64K + O(x"), (3b)

where k! = L /R is the dimensionless separation and y = RG/U; is the local relative
shear rate. Following TTMM, we assume that for small but non-zero Reynolds
numbers and small values of x, wall-induced and inertial corrections superimpose
linearly. Hence we write

Re

CDx = f(RE, y) + TIDX(Ka Re» J/) (4(1)
Re

CDZ = f(Re’y)"F?IDZ(Kv Re,y), (4b)

where f(Re,y) is the finite-Re drag coefficient for a clean spherical bubble rising
in an unbounded shear flow and Ip, and Ip, are the wall-induced corrections in
the vertical and horizontal directions, respectively. Equation (3a,b) indicates that
for Re=0, the shear influences the drag only through a wall-induced correction.
Moreover, numerical computations performed by Legendre & Magnaudet (1998)
in an unbounded shear flow revealed that the shear-induced drag increase is less
than 0.5 % for y =0.1 in the whole range Re<5. As y is always moderate in our
experiments (typically in the range 0.1-0.2), we make use of the above findings to
neglect the influence of the shear on f(Re, ). Then we approximate f through the
semi-empirical correlation proposed by Mei, Klausner & Lawrence (1994), namely
f(Re)=1+ {8Re™! +0.5(1 + 3.315Re~1/2)}7!| an expression that smoothly matches
the low-Reynolds-number and high-Reynolds-number asymptotic predictions for the
drag force. In (4a), the vertical wall-induced correction Relp, can be determined on
purpose from (2a), since the corresponding right-hand side is known. Nevertheless,
given the smallness of y in the present experiment, the shear-induced correction of
O(y«?) predicted by (3a) cannot exceed a small fraction of the total wall-induced
correction to the drag force. Therefore, the corresponding results for Ip, cannot differ
significantly from those obtained by TTMM in the case in which the bubble rises
near a wall in a liquid at rest. This is why we do not discuss these results here.

In (2b) and (4b), a theoretical input is required to estimate Ip, and finally
obtain the lift force. We note that (3b) indicates no influence of the shear on
the lateral drag force when the wall lies in the inner region of the disturbance.
Assuming that this result still holds when the wall lies in the outer region, we
may use the theoretical expression for Ip, obtained by TTMM in the case of
a fluid at rest. The corresponding wall correction to the transverse force was
obtained in the form of an integral in Fourier space. We found that an accurate
fit of this correction, valid for Re/x <20 and agreeing with (3b) in the limit
Re/k — 0, is Ip,(k, Re)=(2«k/Re)((3/4) + 1.52 x 1075(Re/k)*#) exp(—0.312(Re/«)).
With the above approximate expressions for f and Ip, at hand, the experimental
determination of R, L, U; and W and the specification of the shear rate G allow us
to evaluate the dimensionless quantities Re, ¥ and y from which the lift coefficient I
may be obtained thanks to (2b). Note that in (2b) the largest experimental uncertainty
comes from the transverse velocity W; the corresponding relative error is estimated
to range from 2 % to 5 %.
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3.2. Theoretical predictions

MTL established that when the wall lies in the Stokes region of the flow disturbance,
the low-Re lift coefficient on a spherical bubble moving parallel to the wall in a linear
shear flow is

1 K 11 1 9 45 11, 3 )

The case in which the wall stands in the outer region of the disturbance was worked
out by McLaughlin (1993) who derived the expression of the lift force in the case of
a rigid sphere. Since Legendre & Magnaudet (1997) showed that the leading-order
inertial lift force on a clean bubble is 4/9 that of a rigid sphere, it is straightforward to
extend McLaughlin’s result to the case of a bubble. In our notations, the corresponding

result reads
R 1 G I G . ..

L(I,L")= Tc2|G|L*J<|G|l/L’l)’ (6)
where L* = LU, /v, = L(|G| /v)"/? and J is a numerical function given by an integral
in Fourier space. The dimensionless lengths L* and I* equal Re/2« and ((y Re/2)'/?/k),
respectively. They represent the convenient outer length scales to be used when the
wall lies in the outer region of the disturbance, i.e. in the case L*>1, [">1, and
are associated with slip and shear effects, respectively. Result (6) provides the total
liftt force on the bubble; i.e. it includes the shear-induced lift force and the wall-
induced lateral force the bubble would experience even if rising in a quiescent liquid.
Nevertheless both effects do not combine linearly, as the whole process is governed
by the Oseen equation that prevents the linear superposition of the flow disturbances
associated with two different base flows. McLaughlin (1993) evaluated the function
J involved in (6) for various values of the ratio [*/L* = (v|G|)"/?/U,. Based on his
results, we sought an explicit fit of J. The way this fit was obtained is detailed in the
Appendix, and (A 2)—(A 5) provide the required expressions to compute I, whatever
the values of [* and L™ may be, and compare the corresponding prediction to our
measurements.

3.3. Experimental results

Figure 6 shows the reduced lift force I; as a function of L* for seven bubbles
with Reynolds numbers less than 4.0 and two almost opposite shear rates, namely
G ~=42.3 s7!. The experimental results agree well with the theoretical prediction for
all data sets corresponding to Re., <2, suggesting that this prediction applies at
least up to Reynolds number of order unity. Note that figure 6 indicates that the
theoretical prediction is still accurate when L* < 1, whereas it was derived under the
assumption L* > 1. The prediction of Vasseur & Cox (1977) fitted by (A 5) is also
showed for comparison. Owing to the mechanical limitations of our device, the shear
is fairly weak in these runs and so is [*/L". This is why most of the lateral force
is provided by the wall-induced contribution already present in the absence of shear
(i.e. (A4)) rather than by that of the shear (i.e. (A 3)) in the above cases. The data
corresponding to Re,, =2.7 and 3.5 (which were both obtained with a negative shear)
reveal a different trend. Here the lateral force is significantly larger than predicted by
the low-Re theory. This had to be expected based on the following arguments. First,
the DNS results of Legendre & Magnaudet (1998) indicated that beyond Re~1 the
shear-induced lift force in an unbounded flow does not obey the visco-inertial scaling
(6) any more. More precisely, they found that the dependence of I; with respect to
the fluid viscosity quickly becomes much weaker than predicted by (6), in line with
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FIGURE 6. The reduced wall-induced lift force I; versus L* for 0.5< Re,, <4.0 and
L"<10: @, Re,=0.551"/L"=05 (y<0); O, Re,=06, ["/L"=0.44 (y>0); O,
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Prediction from (6) using (A2)-(AS5): —@—, Re,=0.55,1"/L*=0.5; —O—, Re,,=0.6,
I’/JL"=044; —[—, Re,=10,1"/L"=0.3; —A—, Re,=151/L"=025; —A—,
Re, =19, I"/L"=0.20; —e—, Re,=2.7,1"/L"=0.16; —¥Y—, Re,=3.5 ["/L"=0.13.
Prediction from (A 5): -------- .

the fact that the lift force becomes independent of viscosity for high enough Reynolds
number, since the inviscid result of Auton (1987) yields I; = — y /3= —«l*?/3L" in
the present notation. Second, Takemura & Magnaudet (2003) examined the repulsive
wall-induced force acting on a bubble rising near a vertical wall in a quiescent liquid
for Re > 1 and found this force to be also larger than that predicted by the low-Re
theory. This may be explained by the fact that this force evolves essentially as the
square of the maximum vorticity at the bubble surface, a quantity which obviously
increases with Re. Combining both arguments, it is expected that in the case in
which y <0, which corresponds to both contributions acting in the same direction,
the transverse force should be larger than that predicted by the low-Re theory when
the Reynolds number increases. This is clearly seen in figure 7 in which the three
series of figure 6 corresponding to Re > 1.5 and y <0 are reported. In particular, this
figure indicates that the transverse force can be twice as large as that predicted by
the low-Re theory when the Reynolds number exceeds 2.0.

4. The lift force on a slightly deformed bubble in the low-(L", [*) regime

When a bubble rises near a wall in a quiescent liquid, it deforms into a spheroid
with its major axis inclined at nearly 45° from horizontal, owing to the strain created
in the gap between the bubble and the wall. When an undisturbed shear is added to
the above flow, the deformation of the bubble becomes smaller or larger, depending
on the orientation of the shear (see figure 4). Defining the length of the major/minor
axis of the spheroid as (1 + 8)R, MTL established that under the conditions in which
(3) and (5) hold (i.e. L* <1 and /" < 1), the magnitude of the leading-mode quasi-
steady deformation (i.e. mode 2 in Legendre’s expansion) experienced by a bubble
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FIGURE 7. The reduced wall-induced lift force I; versus L* for 1.0 < Re,, <4.0 and L™ <10:
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0.13 (y <0). Prediction from (6) using (A2)~(A5): —@—, Re,=1.5,1"/L*=0.25; ——,
Re,=2.7,1"/L*=0.16; —A—, Re,, =3.5,1"/L" =0.13. Prediction from (A 5): -------- .

migrating at zero Reynolds number in a wall-bounded linear shear flow is

3 3 3 73 3

% = gxz {1 + i <1 + 3¥ + 64K2> } +y (1 + 8K3> + O(x®, yr*), (7)
where Ca=puU,/o is the capillary number. The first term on the right-hand side is
due to the interaction of the wall with the disturbance flow created by the relative
motion between the bubble and the fluid, while the second contribution is the
deformation resulting from the imposed shear. Note that we kept terms up to
O(x%) in the first contribution and truncated the second one at O(k?®) because y
is small in our experiments, so that x> is at least as large as y throughout the
near-wall region in which high-order corrections are significant. At large distances
from the wall (x — 0), 8 tends towards Cay, which is the well-known result of
Taylor (1932) for a neutrally buoyant drop in an unbounded shear flow. It is worth
noting that for small enough negative shears (y <0), (7) predicts that 8 changes
from positive to negative as the separation distance between the bubble and the wall
increases. More precisely, since « is such that 0 <« < 1, (7) suggests the existence of
a particular separation kpo(y) for which B is zero, provided the shear is such that
—2985/5632~—0.53 <y <.

Experimentally, we determined the bubble shape by using pictures recorded in
the range 0.02 < Re,, <0.57 in K100 and K200 silicone oils. The deformation was
obtained by expanding the projection of the bubble contour as a function of the polar
angle 0, as shown in figure 8 (see TTMM for details). This figure indicates that, in
line with the theoretical prediction, the direction of the major axis may change when
y is negative and the separation distance increases. We define the deformation as
positive (respectively negative) when the direction of the major axis inclines at 45°
(respectively —45°) from horizontal. Therefore, in agreement with (7), the solid line,
which corresponds to a positive shear, reveals a positive deformation. In contrast
the dotted and dashed—dotted lines, both of which correspond to a negative shear,
indicate deformations of opposite signs. This is also in agreement with (7): since « is
less than kpo(y) in the former case, the corresponding deformation is mostly due to
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No. Oil R (mm) U, (mm s™!) K Re Ca y Bexp/Ca  Bu/Ca  kpo
1 K100 0.494 6.6 038 0.063 0.032 -—-0.169 —-0.076 —0.108 0.60
2 K100 0.494 6.9 028 0.066 0.033 —0.163 —0.184 —0.130 0.59
3 K100 0.699 13.2 042 0.177 0.063 —0.121 —0.062 —0.044 0.51
4 K100 0.846 15.8 0.80 0.253 0.076 —0.120 0.252 0246 0.51
5 K100 0.846 16.9 0.68 0.271 0.081 —0.114 0.094 0.122 0.50
6 K100 0.846 17.7 0.57 0.284 0.085 —0.107 0.035 0.046 049
7 K100 0.859 14.5 0.83 0.216 0.077 0.128 0.660 0.586
8 K100 0.859 15.7 0.67 0.234 0.084 0.119 0.424 0.372
9 K100 0.859 17.0 0.50 0.253 0.090 0.110 0.277 0.236

10 K100 0.859 17.6 042 0.262 0.094 0.106 0.218 0.188

11 K200 0.647 5.0 092 0.036 0.042 —0.273 0.274 0221 0.70

12 K200 0.520 34 0.82 0.019 0.028 0.322 0.980 0.802

13 K200 0.647 5.4 0.75 0.039 0.046 0.25 0.700 0.609

14 K200 0.647 5.8 0.61 0.041 0.049 0.23 0.563 0.440

TaBLE 2. Bubble deformation in K100 and K200 silicone oils. The values of the dimensionless
parameters take into account the variations of viscosity with room temperature.
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FIGURE 8. The local radius R(6) of the two bubbles in figure 4 versus the meridian angle
0 (0 =0 and 6 == are located in the horizontal plane containing the bubble centroid), with
0 =0 (respectively 8 =) away from (respectively close to) the wall: — - —, no. 5 in table 2;
—— no. 8 in table 2; -------- , no. 2 in table 2.

the shear and is negative, whereas the latter case corresponds to k > kpo(y), so that
deformation is mostly due to the presence of the wall and is positive. Also note the
difference in the magnitude of the deformation between the solid line (8/Ca ~0.42)
and the dashed—dotted line (8/Ca =~0.09), two cases which correspond to almost
identical values of Ca, Re, y and |y|. Finally, a closer look at the solid line reveals
that points of the surface corresponding to & =3n/4 and 5n/4 (i.e. close to the wall)
experience a larger deformation than the opposite points 6 =n/4 and 7n/4 located
away from the wall. The same is not found in the dashed—dotted line which is close
to a pure sinusoid. This difference suggests that close enough to the wall, deformation
is affected by nonlinear effects when it exceeds a certain threshold. The experimental
parameters of the various runs, together with the experimental (f,.,) and theoretical
(B.) values of B and the critical separation kxpo are reported in table 2. This table
shows that the magnitude of the experimental deformation agrees fairly well with
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FIGURE 9. The normalized deformation 8/Ca as a function of « for two bubbles corresponding
to conditions Re,, =0.44, y ~ + 0.120 and Re,, =0.04, y ~0.240, respectively. Experimental
values are for: [0, y~0.120 (nos. 7-10 in table 2), O, y~ — 0.120 (nos. 3-6 in table
2); A, y~0.240 (nos. 13 and 14 in table 2). Theoretical values are for: —MB—, y =0.120;
—@—, y=—0.120; —A—, y =0.240. Numerical values are for: ---B---, y ~0.120; --- @---,
y~ —0.120; ---A---, y =~ 0.240.

the theoretical prediction, even though the difference may reach 40 % in some cases,
owing to experimental uncertainties discussed in §2. Cases 1-6 and case 11 in which
the outer shear is negative extend the conclusions of figure 8 concerning the possibility
for the deformation to change sign as the separation distance increases. Indeed, in
cases 1-3 for which « is smaller than xpo(y) the deformation is found to be dominated
by the effect of the undisturbed shear, whereas in cases 4, 5, 6 and 11, where « is
larger than kpo(y), B has opposite signs, owing to the dominant effect of the wall
Not unexpectedly, the deformation is very small in cases 3 and 6 in which « is close
to kpo(y). Figure 9 shows how the deformation evolves with « in cases 3—10 (selected
because they correspond to quite similar values of || =£0.12 ) and in cases 13 and 14
corresponding to a higher shear rate |y| ~0.24. As predicted by (7), the deformation
is found to be larger and positive, whatever the value of ¥ may be, when the shear rate
is positive, while it changes sign for a certain separation when y < 0. Note that (7) is
found to predict well the deformation up to x =~ 0.8, i.e. for separations corresponding
to a gap as small as about 0.25R.

The deformation of bubbles migrating in a wall-bounded linear shear can also
be evaluated numerically. Wang & Dimitrakopoulos (2006) developed a three-
dimensional interfacial spectral boundary element algorithm and studied the motion
and deformation of drops of arbitrary viscosity in such flows under Stokes flow
conditions. Dimitrakopoulos (2007) then improved this technique by making its time
integration fully implicit, which allows the use of much larger time steps. We employed
the latter method to compute the deformation of bubbles in our experimental
configuration. The spectral boundary element configuration was similar to that
presented in Wang & Dimitrakopoulos (2006). The accuracy of the computational
results was verified by employing various time and space discretizations. These tests
showed that the results are accurate to at least three significant digits, and thus if
we include them on the same plot, they show no difference. Note that the limitation
of these computations to creeping flow conditions is not a severe restriction in our
case because MTL showed that provided Re and Ca are both small and the wall lies
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in the inner region of the disturbance, the leading-order deformation experienced by
the bubble results from the creeping flow solution of the problem. This makes the
boundary element approach appropriate to obtain an independent determination of
the deformation under present flow conditions.

The deformation 8 can be estimated from the numerical results by calculating the
ratio (¢ — 1)/(¢ 4+ 1), where ¢ denotes the ratio between the bubble’s longest and
shortest semi-axes, i.e. the maximum and minimum distance from the bubble centroid
to the interface. Note that, in general, these longest and shortest semi-axes lie near,
but not exactly at, § = + m/4. Strictly speaking, this estimate of the deformation
slightly differs from that obtained using the coefficients of the mode 2 in the Fourier
expansion of the bubble contour because it includes higher-order effects. As shown
in figure 9, the calculated deformations are in good agreement with the experimental
determination for positive shears, except very close to the wall, whereas they slightly
overestimate the deformation for negative shears. These differences are most likely
due to the higher-order effects mentioned above.

As is well known, deformation may also induce a lift force, even at zero Reynolds
number, because it breaks the fore—aft symmetry of the flow. MTL established that
when the wall lies in the Stokes region of the flow disturbance (i.e. L* <1 and I* < 1),
the total lift force acting on a slightly deformed bubble moving parallel to a wall is

1 Ca 3 3 9 169
IL = pr+%ﬁ {3/(2 <1 + 2K> + 8)/ <1 + §K + 64.K2) + 7'}/2K2} +0(K'4, )/K3),
(8)

where [ f"’ is the lift force acting on a spherical bubble standing at the same position
in the same flow, as given by (5). (Actually there is a misprint in the original equation
concerning the prefactors of the k and «? terms within the second parenthesis; the
correct prefactors are those of (8)). The term proportional to Ca in (8) is entirely
due to mode 2 deformation, as MTL showed that higher-order modes only start to
contribute to the lift force only at O(k*). The first term within parentheses in (8)
results from the slip between the bubble and the surrounding flow, while the other
two are due to the shear. Note that the first and last terms are entirely caused by the
interaction with the wall, while the effect that remains at large separation is a lift force
with the same sign as the shear. This aspect contrasts with the inertial contribution
of the shear to the total lift force. Indeed, as (5) indicates, a positive shear induces a
negative (i.e. attractive) inertial lift contribution when the slip velocity is positive (as
in our experiment), while it results in a positive (i.e. repulsive) deformation-induced
lift force. Therefore, for small enough Ca/Re, there is a critical separation «, at
which the two shear-induced contributions cancel each other. In such a situation, (8)
predicts that the total lift force is directed away from the wall for ¥ > k. and towards
it for larger separations, since the inertial shear-induced contribution then becomes
dominant owing to the ! term in (5).

Figure 10 shows how the total lift force evolves with separation for three different
bubbles experiencing either a positive or a negative shear rate. Note that by letting
the belts rest, we checked that the distribution of the transverse force in the absence
of shear, say I, agrees well with that obtained in a quiescent fluid by TTMM.
The results reported in figure 10 clearly show that for a given magnitude |y| of the
shear, the lateral force is larger when the shear is positive. This force also strongly
increases as the wall is approached. For positive shear rates, the total transverse
force is dominated by the deformation-induced contribution over the whole range
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FIGURE 10. (a) The wall-induced lift force I; versus « in the regime [* <1, L* < 1. (a) R=
0.67 mm, y = 4+ 0.14, K100 oil. Experimental values are for: O, y =0.140; O, y = — 0.140.
Theoretical predictions (8) are for: —M—, y =0.140; —@— y = — 0.140. Computational
predictions are for: —M— y =0.140; —@— y = —0.140. Prediction from correlation (11) are
for: ---M--- y=0.140; ---@®--- y = —0.140. (b) Same as for R=0.85 mm, y = £ 0.11 in
K100 oil. (¢) Same as for R=0.65 mm, y = + 0.24 in K200 oil.
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of separations, since it is positive everywhere in spite of the negative contribution
provided by the inertial contribution.

The theoretical prediction (8) is also plotted in figure 10 for comparison. The
discrepancy with experimental data is obvious, except for negative shear rates, where
(8) is found to predict the order of magnitude of the transverse force reasonably
well for « <0.65, approximately. The increase of I; when the bubble comes closer
to the wall is clearly underpredicted. This may be interpreted as a simple limitation
of the truncation of (8) at O(«x*, y«?), while higher-order contributions may become
important or even dominant when x — 1. However the severest discrepancy between
(8) and the experimental data is found to concern the sign of the variations of I; with
y, since (8) suggests a decrease of I; when y increases, at odds with the experimental
trend. For the range of shear rates covered by present experiments, the evolution of
I, with y as predicted by (8) reveals a dominant role of inertia because it corresponds
to a negative value of the derivative d/;/dy, just as indicated by (5). In contrast,
experimental data unambiguously reveal that dI; /dy is positive, i.e. that deformation
effects are dominating the transverse force. Equation (8) was obtained independently
through two different analytical techniques. It was carefully checked and was found
to reduce to known results in the case of a neutrally buoyant bubble.

To clarify the situation we used the spectral boundary element code mentioned
above, which provides a third, independent, determination of the lateral force. Since
the corresponding computations were performed at zero Reynolds number, they only
provide the deformation-induced migration velocity, say W,,,. Therefore, to obtain
the total lift force at the current experimental Reynolds number, we use (2b) and
estimate I; as

I, = ILSP + 2Woum Re_ICDz/US- (9)

As shown by MTL, this linear superposition is rigorously justified when both the
capillary and Reynolds numbers are small and have a similar order of magnitude. The
corresponding predictions for I, are plotted in figure 10. The numerical predictions
provide the correct order of magnitude and variation of the lateral force with both y
and «. In particular, these predictions are found to agree well with the experimental
data over the whole range of « for positive shear rates. The difference increases for
negative y, where the numerical values of I; are larger than the experimental data
by 20-40 %, especially when the separation becomes small. This is most likely due
to the smaller magnitude of the force in this case, which makes the consequences of
experimental errors and approximations, such as that involved in the linearization
(9), more sensitive.

The general agreement between experimental and computational results leads us to
the conclusion that the theoretical prediction (8) is in error, even though the origin
of this error is still unknown (see §5 for a discussion on this point). This view is
reinforced by the fact that what is left from (8) in the shearless case does not agree
with the experimental lateral force measured by TTMM in a quiescent liquid or with
the corresponding numerical predictions of Wang & Dimitrakopoulos (2006). Given
the failure of (8) we found it useful, at least provisionally, to correlate empirically the
numerical predictions for the transverse force. To this end, we successively correlated
the values I; po of the deformation-induced lift force in a quiescent liquid and those of
the contribution I, ps due to the shear. Assuming that all effects are additive, as in (8),
the total lift force in the regime of low Reynolds and capillary numbers may then be
written in the form I; = If” 4+ Irpo+ I ps. Assuming in addition that the leading-order
scaling predicted by (8) is correct, I; pgRe/(2k*Ca) is expected to depend only on «.
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FiGUure 11. Numerical predictions for I po and I pg versus separation « for various shear rates
and bubble radii (in K100 oil when unspecified). (a) Rel;po/(2«>Ca) for: @, R=0.83 mm;
B, R=0.65 mm; A, R=0.65 mm in K200; predictions from (10a) are symbolized by ——.
(b) Rel.ps/(2yCa) for: ®, R=0.86 mm and G=2.3 s™!; M, R=0.64 mm and G=1.9 s ';
A, R=085 mm and G= —2.15s!; ¢, R=0.71 mm and G= — 2.1 s~'; O, R=0.65
mm and G =2.1s"!in K200; O, R=0.65 mm and G= — 2.1 s~! in K200. Prediction from
G(k)+yH (k) are for: ——, y =0.140; ----- ,y=—0.140; ----- ,y =0.240; — - — y = —0.240.

Hence we plot the numerical values of I; poRe/(2k>Ca) for three typical experimental
conditions obtained by varying the bubble radius and liquid viscosity. As shown in
figure 11(a), the three series of values almost collapse, so that I; poRe/(2k*Ca) may
be correlated in the form F(x) as

F (k) =0.25+0.39« + 2.43k> — 5.43k> + 5.52«*. (10a)

Similarly, assuming that the leading-order scaling of I;ps in (8) is correct, we plot
the values of I;psRe/2yCa for six different experimental conditions corresponding
to different values of the bubble radius, shear rate and liquid viscosity. As shown
in figure 11(b), the various series of data almost collapse, except for k > 0.6 where
an influence of the sign of the shear is detected. This had to be expected, given
the presence of a term proportional to y2«2 in (8). Making use of the sum and the
difference of these series of data, we correlate them in the form G(x) 4 y H(x) with

G (k) =0.534+3.79% — 8.25¢> +9.63k>, H (k) = 1.8« (10b)
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Using these results and considering that the inertial contribution to the transverse
force is correctly predicted by (5), we finally obtain the total lift force I; as

I, =17 + 2%(/(217(16) +yG(k)+ y*H(k)). (11)

Values of the reduced transverse force predicted by (11) for the experimental
conditions considered in figure 10 are also reported in figure 11. The whole set
of experimental data is found to be reasonably well approximated by (11). As already
noticed during the direct comparison with the computational results, the agreement
is especially good for positive shears, while experimental values of the force are
somewhat smaller than predicted by (11) for negative shears, probably because
they result in significantly smaller values of the force and hence in larger relative
experimental errors.

5. Summary and conclusions

We investigated experimentally the migration and deformation of bubbles rising in
a wall-bounded linear shear flow at low-but-finite Reynolds number. We produced
a quasi-linear shear flow by moving two parallel belts in opposite directions and
accurately measured the bubble radius, contour, rising speed and separation distance
from the wall using a high-precision optical device travelling with the bubble.
Thereby the quasi-steady transverse or lift component of the hydrodynamic force was
determined in the range 0.1 < Re <4. In the parameter range in which the bubbles
keep a spherical shape, we compared our experimental results with an approximate
fit directly based on an extension of the theory of McLaughlin (1993), originally
derived for a solid sphere moving in a wall-bounded shear flow. The comparison
indicates that the measured lift force agrees well with the theoretical prediction up
to Re=1.5. Beyond this Reynolds number, the lift force becomes larger than that
predicted by the low-Re theory when the shear is negative. This is in line with the
known behaviour of both the shear-induced lift force in an unbounded flow and the
wall-induced transverse force in a fluid at rest at infinity.

We finally studied the quasi-steady deformation and deformation-induced migration
of bubbles moving in high-viscosity liquids in the regime in which the wall stands
in the Stokes region of the flow disturbance. In parallel, we computed the quasi-
steady evolution of deformable bubbles moving in a wall-bounded linear shear flow
at zero Reynolds number, using the spectral boundary element method developed by
Dimitrakopoulos (2007). The experimental deformation, which, depending on the sign
of the shear, may be larger or smaller than that of a bubble moving in a quiescent
liquid, was found to agree quantitatively well both with the theoretical prediction of
MTL and with the computational predictions. In contrast, the deformation-induced
lift force which is increased (respectively decreased) by a positive (respectively
negative) shear, turned out to be significantly larger than that predicted by the
available theory and agrees quantitatively well with the computational prediction.
What we learnt regarding the failure of the theoretical prediction (8) may be
summarized as follows: (a) The discrepancy does not result from a finite-Re correction
affecting the deformation-induced transverse force, since the computations were
performed under creeping flow conditions, and their results agree well with those
of the low-but-finite-Re experiments. Also we directly compared the prediction of
(8) for Re = 0 (which is equation (38) of MTL) with the computational results
and found that the discrepancy persists. (b) The discrepancy does not seem to be
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due to a limitation of the theory with respect to the value of the capillary number.
Computations not reported in the paper were performed for values of Ca 10 times
too small than those involved in the experiments. The comparison with theoretical
predictions displayed the same consistent discrepancy as that found in figure 10.
Nevertheless we are still exploring this possibility by running computations with
even smaller values of Ca. (c¢) Finally, keeping in mind that the various series of
data reported in figure 11 were normalized using the scaling predicted by (8), the
successful collapse observed in the figure indicates that the leading-order scaling of
all contributions to the deformation-induced transverse force is correctly predicted by
the theory. Therefore the problem in the theory clearly lies in the numerical prefactors
(which are typically 2.5-3 times too small and have to be provisionally replaced by
those given in (10) and (11)), not in the scaling.

Combined with available theories and/or computations, present results allow us to
understand how slip and shear contribute to the quasi-steady inertial and deformation-
induced migration of bubbles rising parallel to a wall in a linear shear flow at low-to-
moderate Reynolds number. These results, together with the theoretical expressions
and semi-empirical correlations they helped to build and/or validate, may now be
used to obtain closure laws for predicting the motion of small bubbles rising in more
complex wall-bounded flows which may locally be regarded as linear.

P. Dimitrakopoulos was supported in part by the US National Science Foundation.
The donors of the American Chemical Society’s Petroleum Research Fund are
acknowledged for partial support of this research. Some computations were
performed on multiprocessor supercomputers provided by the National Center for
Supercomputing Applications in Illinois.

Appendix. Explicit fit of the function J in (6)

Since the function J in (6) is given by an integral in Fourier space, it is convenient
for practical purpose to fit it explicitly. We sought the fit of J based on the following
remarks. First, it is physically relevant to split J in the form Jy 4+ Js, where the
contribution Jy changes sign when either G or U, reverses, whereas the contribution
Jo keeps a constant sign. Basically J; results from the wall-induced force of Vasseur &
Cox (1977) altered by the shear, whereas Js results from the Saffman lift force altered
by the wall. A physical interpretation of these two contributions in terms of the fluid
displaced laterally in the bubble wake and the resulting transverse pressure gradient
may be found on pp. 140 and 143 of MTL, respectively. For large I", Jg must converge
towards the function Jy involved in the expression of the shear-induced lift force on
a sphere translating in an unbounded linear shear flow (McLaughlin 1991), whereas
Jo has to tend to zero. Comparing (6) with (5) evaluated in the outer limit k — 0
indicates that for [* — 0 one must have

mn,, G

Is=g6m = 151G
where ¢ =1"/L* = (v|G|)">/U,. McLaughlin (1991) computed J;(g) based on the
Oseen approximation and provided asymptotic approximations valid at both large
and small e. Legendre & Magnaudet (1998) evaluated numerically the lift force on
a spherical bubble in an unbounded linear shear flow from the full Navier—Stokes
equations. Figure 12 shows the variations of Jy(g) as a function of & obtained by
both groups. The theoretical and numerical evolutions are in good agreement for

(A1)
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FIGURE 12. The plot of Jy(e) versus e =["/L": @, the theoretical solution of McLaughlin
(1991); W, numerical data from Legendre & Magnaudet (1998); —, prediction from (A 2).

¢ >0.5. In contrast they significantly differ for low &, where the theoretical solution
suggests that the shear-induced lift force changes sign, a trend which is not displayed
by the DNS results. The reason for this disagreement is probably that the Oseen
approximation is not sufficiently accurate to evaluate properly the tiny lift force that
subsists at such low shear rates. In particular, this approximation cannot capture the
so-called second-order Saffman lift force of O(R3*GU,v?) which results from the flow
disturbance in the inner region in which the distance r to the bubble centre is such
that r < Min{(v/|G|)"/?, v/ U,} (Saffman 1965, 1968). Based on their numerical results
at various ¢ for Re < 1 and on the results of McLaughlin (1991) for ¢ > 0.8, Legendre
& Magnaudet (1998) fitted Jy(e) in the form

Jy(8) = Jy (00) (1 +0.2672)7 = 2.255(1 4 0.2 %)~ 15, (A2)

This fit is also displayed in figure 12.

In the wall-bounded case, the shear-induced lift force is gradually altered by the
wall as [* decreases, until it falls linearly to zero for small enough [* as indicated
by the first part of (A 1). Based on the results tabulated by McLaughlin (1993), we
empirically express this variation in the form

2 *
Js(z*,g)={1—exp <—191;EJUZ(8)>}JU(5). (A3)

The second contribution to J, Jy, keeps a constant sign, whatever the respective
signs of the shear and slip velocity may be. This contribution is entirely due to the
wall and must tend towards the lift force in an unsheared flow, whatever the value of
[* /e may be, when the shear is negligibly small, i.e. in the limit ¢ — 0 . It must also
satisfy the second part of (A 1), whatever the value of ¢ may be, in the limit [* — 0.
Therefore, based again on the numerical results provided by McLaughlin (1993), we
found that Jy may be fitted in the form

Jo(I*, &) = —? exp(—0.22e%81" 23 ,0(1" /¢), (A4)

IGle
where Iy denotes the transverse force coefficient in the unsheared case. The rapid
decrease of ¢Jj as ¢ increases indicates that the shear tends to damp the corresponding
wall-induced contribution to the lateral force. TTMM expressed I;( in the form of
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FIGURE 13. The plot of Jr/J, as a function of [* for various e=I1"/L": A, ¢=0.2; A,
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an integral in Fourier space. This integral may also be fitted to obtain an explicit
expression. For L* =1["/e < 10, an accurate fit for I,y was found to be

Io (L") = (116 +3.21 x 10—7L*4~58> exp(—0.292L"). (A5)
This completes the fitting of the inertial lift force over the range of [* and L* (or &)
of interest in our experiments. Using (A 2)—(A 5), an approximate value of J, say Ju,
may be obtained, whatever the separation distance, slip velocity and shear rate may
be, in the form J4 = Jy + Js5. Figure 13 shows how J, compares with the theoretical
values of J computed by McLaughlin (1993), say Jr. The difference is within 15 %
for all € when [* is smaller than 1 and becomes larger than 20 % only for the smallest
two values of ¢ when [ > 3, a range of parameters which is not reached in the low-Re
data discussed above. Therefore we consider that the above fits provide reasonable
approximations of J and use them to evaluate I; through (6).
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