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In this paper we investigate the gravitational effects on the deformation of a three-dimensional
droplet adhering to a horizontal rough solid surface in steady shear Stokes flows. Our study
considers both positive and negative Bond numbers for viscous and inviscid droplets. When the
interfacial system is initially at hydrostatic equilibrium, our study shows that the Bond number
affects the deformation of viscous droplets with moderate and large initial contact angles in a
different way than those for small angles owing to the interplay between the viscous and surface
tension forces. Inviscid droplets with different initial contact angles show similar behavior as the
Bond number increases, i.e., their deformation is monotonically decreased owing to the monotonic
decrease of the droplets’ height and thus the exerted pressure force. Our study identifies the
gravitational effects of the onset of interfacial sliding, i.e., on the portions of the contact line which
slide first due to violation of the hysteresis condition. When the interfacial system is not at
hydrostatic equilibrium at the flow initiation, its dynamic evolution is more complicated owing to
the combined action of the shear flow with the gravitational forcing due to the difference between
the initial shape with the hydrostatic one. Our computational results are accompanied with an
analysis of the forces on the droplet which provides physical insight and identifies the
three-dimensional nature of the interfacial deformation. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2821127�

I. INTRODUCTION

The deformation, sliding, and dislodging of fluid drop-
lets adherent to solid substrates show applications in numer-
ous areas including distillation, spray coating, packed tow-
ers, and a variety of multiphase flow operations in the
chemical process industry. Our interest in the problem fo-
cuses on viscous flows at low Reynolds number. This regime
has relevance in coating operations, enhanced oil recovery,
microfluidics, and biological systems.1–4

The main characteristic of the interfacial attachment on
rough and chemically inhomogeneous solid surfaces is the
hysteresis effect where the contact line remains stationary as
long as the contact angle � satisfies the requirement

�R � � � �A �1�

anywhere along the contact line. �The advancing and reced-
ing angles, �A and �R, are properties of the specific interfacial
system.5,6� As a result, the entire process under external forc-
ing �i.e., a shearing flow� may exhibit several stages includ-
ing interfacial deformation with a stationary contact line, ini-
tial sliding with partial rearrangement of the contact line, and
the final drop dislodging, depending on the strength of the
external forcing.7

Several studies have considered the drop deformation
under fixed constant line conditions for two- and three-
dimensional interfaces at both low- and finite-Reynolds num-
bers, e.g., Refs. 8–12. Recently, Dimitrakopoulos7 also con-
sidered the deformation of three-dimensional attached
droplets with fixed circular contact lines but focused his in-
terest on the onset of interfacial sliding under contact angle

hysteresis. The fundamental issues associated with the yield
criteria for drop displacement from rigid boundaries �i.e., the
equilibrium conditions just before the final drop dislodging�
have been addressed in a series of papers by Dussan and
co-workers,13–15 and by Dimitrakopoulos and Higdon.5,6,16–18

The flow-induced droplet sliding has been considered by
several computational studies mainly for systems with neg-
ligible contact angle hysteresis where even the slightest ex-
ternal forcing is able to cause interfacial sliding, e.g., Refs.
10, 12, 19, and 20.

We emphasize that the aforementioned studies com-
monly ignored the gravitational effects on the drop deforma-
tion and sliding by considering fluids with the same density
or very small droplets where the Bond number can be ne-
glected due to its stronger length dependence �compared to
that for the capillary number� as seen in Eq. �2� below.

However, for many systems the gravitational effects can-
not be neglected even for relatively small droplets. For ex-
ample, a 10 �l drop having the surface tension of water and
a density difference equal to the density of water, shows a
Bond number Bd� ±0.31. The corresponding Bond numbers
for 50 and 100 �l drops are Bd� ±0.91, 1.44. �We note that
the aforementioned drop volumes exhibit a radius of
O�1 mm� when they acquire a spherical shape.� The hydro-
static shapes of these droplets attached to horizontal solid
surfaces are thus much deformed compared to the spherical-
cap shape of zero-Bond-number droplets. Therefore, the
flow-induced deformation of such droplets may differ con-
siderably from that for negligible Bond number.

In the present study we consider the gravitational effects
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on the dynamics of a three-dimensional droplet attached to a
horizontal rough plane wall with a stationary contact line in
the presence of a steady shear flow at low Reynolds number.
The initial shape of the drop is axisymmetric and thus, at the
flow initiation, the drop forms a constant contact angle �0

�with �R��0��A� around a circular contact line. To study
this problem, we employ our interfacial spectral boundary
element algorithms described briefly in Sec. II. In particular,
for the efficient determination of the droplet shape as a func-
tion of time, we employ our fully implicit time integration
algorithm, while for the determination of the equilibrium de-
formation in a wide range of subcritical flow rates, we utilize
our Newton method for equilibrium interfaces in Stokes
flow. For the majority of our computations presented in Sec.
III, the drops are at hydrostatic equilibrium for the desired
Bond number at the instance of the flow initiation. This
physical system may represent a droplet which has been at-
tached to a solid surface under quiescent conditions, formed
a �stationary� circular contact line, and acquired its hydro-
static shape for a given Bond number without violating the
hysteresis condition, Eq. �1�. Moreover, in Sec. III F we con-
sider the case where a droplet may be attached to a solid
surface without being at hydrostatic equilibrium at the flow
initiation.

Our work includes both positive and negative Bond
numbers for viscous and inviscid droplets, and identifies the
gravitational effects on the drop deformation and dynamics
for different initial configurations �i.e., different angles �0�.
Our computational results are accompanied with an analysis
of the forces on the droplet interface which provide useful
physical insight on the deformation behavior. We also iden-
tify the gravitational effects of the onset of interfacial sliding,
i.e., on the portions of the contact line which slide first due to
violation of the hysteresis condition, Eq. �1�, in strong
enough shear flows. As discussed in Sec. IV, our study iden-
tifies the three-dimensional nature of the deformation and
sliding of adherent droplets owing to the ability of the drops
to expand or contract in the cross-flow direction changing the
interfacial dynamics.

Our interest lies on the interfacial deformation under a
stationary contact line and the onset of interfacial sliding that
occur at low and moderate flow rates. �Note that we do not
consider interfacial breakup which may occur at high enough
flow rates.� By considering representative values for small,
moderate, and large initial angles and via the associated scal-
ing analysis, the physical understanding presented in this
work covers a wide range of contact angles for low and
moderate flow rates.

As mentioned earlier, the physical system considered in
this paper corresponds to the initial stage of the deformation/
displacement process where the droplet deforms but its con-
tact line remains stationary. This system provides physical
insight for the droplet deformation and dynamics which is
useful in processes where we want to keep the droplets at-
tached to a solid surface. In addition, our work provides in-
formation on the onset of interfacial sliding. We emphasize
that, for the problem studied in this paper, the onset of inter-
facial sliding cannot be inferred from the knowledge of the
equilibrium contact angle distribution at gradually increasing

flow rates. In particular, the interfacial sliding may occur
during the transient evolution, depending on the flow rate,
the physical parameters of the material system �i.e., �R, �A,
the viscosity ratio and the Bond number� as well as the initial
angle �0. As we discuss in Sec. III, the onset of interfacial
sliding is strongly affected by the drop’s initial configuration
and the Bond number; this can be exploited to initiate inter-
facial sliding at a desired portion of the contact line.

II. MATHEMATICAL FORMULATION
AND COMPUTATIONAL ALGORITHM

We consider a three-dimensional droplet attached to a
horizontal plane solid wall surrounded by a viscous fluid �as
shown later in Fig. 3�c��. The droplet �fluid 1� has density �1

and viscosity ��, while the surrounding fluid �fluid 2� has
density �2 and viscosity �. The droplet size is specified by its
volume V or equivalently by the radius a of a spherical drop-
let of volume 4�a3 /3=V. The gravitational acceleration is g
while the surface tension � is assumed constant. At time t
=0, a steady shear flow u�= �Gz ,0 ,0�, where G is the shear
rate, is introduced into the system causing interfacial defor-
mation. In our study the time is scaled with the flow time
scale 	 f =G−1.

The dimensionless parameters which represent the
strength of the viscous flow forces and the gravitational
forces, with respect to the interfacial forces, are the capillary
number Ca and Bond number Bd, respectively, defined by

Ca =
�Ga

�
, Bd =

��1 − �2�ga2

�
. �2�

Note that the length scale a used in the definition of these
parameters is based on the droplet volume V since we care to
identify the deformation of a specific fluid volume V which
may be attached to a solid surface in many possible initial
configurations and undergo simple shear flow at different
flow rates �or Ca�.

For the majority of our computations, before the initia-
tion of the steady shear flow, the fluids are at hydrostatic
equilibrium under a specific gravitational influence �or Bond
number Bd� while the drop forms a constant contact angle
�=�0 �measured from within the drop phase� around a circu-
lar contact line. In Sec. III F we also consider the case where
initially the fluids may not be at hydrostatic equilibrium for a
desired Bond number.

Assuming low-Reynolds-number conditions for both
fluid phases, the flow over the drop interface Sd may be
described by the boundary integral formula,


u�x0� − 
�u��x0�

= − �
S2

�S · �f2 − f�� − �T · �u2 − u�� · n�dS

+ �
S1

�S · f1 − ��T · u1 · n�dS

− �
Sd

�S · ��f − f�� − �T · ��1 − ��u − u�� · n�dS ,

�3�
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where S1 is the portion of the solid surface wetted by the
drop and S2 is the remaining solid surface.6 Note that S is the
fundamental solution for the three-dimensional Stokes equa-
tions and T is the associated stress, while n is the unit normal
which we choose to point into fluid 2. The coefficient 

takes values 4���1+��, 4���, and 4�� for points x0 on the
surfaces Sd, S1, and S2, respectively, while 
� takes the value
4�� for points x0 on the surfaces Sd and S2, and zero for
points on the surface S1.

It is of interest to note that the requirement for low-
Reynolds number in the interior flow is not formally valid
for very small viscosity ratios. For low-viscosity/inviscid
droplets ���1�, our computations require that the inner
shear stress and pressure change are very small compared to
the exterior stresses. As discussed by Dimitrakopoulos and
Higdon,17 for ��1 this condition remains valid for arbitrary
interior Reynolds number, as long as the exterior Reynolds
number is very small. �See the Appendix in Ref. 17.�

At the interface, the boundary conditions on the velocity
u and surface stress f are

u1 = u2 = u , �4�

�f = f2 − f1 = ��� · n�n + ��2 − �1��g · x�n , �5�

where the subscripts designate quantities evaluated in fluids
1 and 2, respectively.

The interfacial shape x evolves over time based on the
kinematic condition at the interface,

dx

dt
= �u · n�n . �6�

In order to determine the droplet shape as a function of
time, we employ our fully implicit spectral boundary element
algorithm for interfacial dynamics in Stokes flow.21 Our
method is based on a mathematically rigorous combination
of implicit schemes with our Jacobian-free three-dimensional
Newton method,6 and thus it has strong stability properties
which permit the utilization of large time steps, independent
of the space discretization. In essence, our implicit interfacial
algorithm removes the penalty of a large number of time
steps required to monitor the deformation of the fluid inter-
face associated with the commonly employed explicit time-
integration interfacial methodologies. For the efficient deter-
mination of the equilibrium deformation in a wide range of
subcritical flow rates, we utilize our Newton method for
equilibrium interfaces under flow conditions.6

The numerical solution of our algorithms is achieved
through an extension of the spectral boundary element
method,6,22 and thus our methodologies achieve exponential
convergence in the numerical accuracy of determining the
interfacial shape, without being affected by the disadvantage
of the spectral methods for partial differential equations to
create denser systems. The interested reader is referred to our
relevant papers for more details on the fully implicit and the
Newton interfacial methods.6,21

The adherent droplets are described by employing a dis-
cretization of NE=24 �quadrilateral� spectral elements. The
surface of the drop is projected onto a cube whose faces are

subdivided into a total of 11 elements as shown in Figs. 3�c�
and 4�c� below. The wetted area S1 on the solid surface is
discretized into five elements while the outer solid surface S2

is discretized into two rows of four elements each. In our
computations, the outer solid surface �which formally should
extend to infinity� covers an area of at least 10 times the
radius of the contact line which is sufficient to produce neg-
ligible error in all cases.

Our computational results presented in Secs. III A–III E
were derived by employing NB=7−9 basis points along each
curvilinear direction of the spectral elements. In our fully
implicit algorithm we utilize the third-order diagonally im-
plicit Runge-Kutta scheme. For low and moderate viscosity
ratio, ��1, we mainly employed a time step �t=0.1; for
droplets with high viscosity ratio, �=10, a time step �t=1
was used. For our results presented in Sec. III F, which show
large variations in short time periods and the contact line
tends rapidly to be tangential to the solid surface, we em-
ployed smaller time steps �i.e., �t=0.02,0.01� and NB=8
−10 basis points so that we have sufficient space discretiza-
tion for accurate solution. In Sec. III F we also employed a
multiple time-step approach as described in the caption of
Figs. 17 and 19, shown below. The accuracy of our results
was verified by employing smaller time steps and different
basis points for several representative cases; these compari-
sons show that our results are accurate to at least three sig-
nificant digits, and thus if we include them on the same plot,
they show no difference. The three-dimensional droplet
shapes presented here were derived from the actual spectral
grid by spectrally interpolating to NB=20.

The present problem depends on the Bond number Bd,
the capillary number Ca, the viscosity ratio �, and the initial
angle �0. Since our results for different low and moderate
flow rates Ca show similar behavior, we restrict our presen-
tation to Ca=0.10 so that we are able to identify the influ-
ence of the rest parameters. An exception is Sec. III E where
we collect our results on the equilibrium deformation of vis-
cous and inviscid droplets for a wide range of low and mod-
erate �subcritical� flow rates.

III. RESULTS

A. Quiescent drop shape under gravity

The first step in our computations was to determine the
�axisymmetric� droplet shape for a given initial angle �0

�with �R��0��A� and Bond number Bd�0 under quiescent
conditions, i.e., Ca=0. This physical system may represent a
droplet which has been attached on a solid surface under
quiescent conditions, formed a �stationary� circular contact
line, and acquired its hydrostatic shape for a given Bond
number without violating the hysteresis condition, Eq. �1�.
To achieve this, we employed our Newton method for equi-
librium interfaces under Stokes flow conditions.6 The initial
shape was that of a spherical cap with the desired initial
angle �0, and by specifying Ca=0 we let our Newton method
determine the quiescent shape under different positive and
negative Bond numbers by seeking the optimal contact line
shape under these conditions �as described in Sec. 2.3 of our
earlier study�.
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Figure 1 shows the quiescent droplet profile �i.e., thei-
ntersection of droplet surface with the plane y=0� for �0

=50° , 90° , 120° and several Bond numbers. As expected, a
negative Bond number results in an upward-extended droplet
with larger height and smaller length/width compared to
those for Bd=0. The opposite happens for positive Bond
numbers where the flattened drops show a larger wetted area.

Beyond the obvious changes on the drop’s height and
width, the Bond number also affects the surface area Sd of
the quiescent shape in a more complicated way as shown in
Fig. 2. In particular, for �0=90° the spherical cap corre-
sponding to Bd=0 shows the minimum surface area Sd as
expected. For smaller initial angles, Sd increases monotoni-
cally with the Bond number while the opposite happens for
larger initial angles. We note that the variation in the drop-
let’s dimensions and surface area with the Bond number pro-
vides information on the forces acting on the interface as we
discuss later.

B. Droplets with �0=90° and �=1

We begin our investigation by considering the effects of
Bond number on the deformation of adherent droplets with
�=1 and �0=90°. Figures 3 and 4 show the transient evolu-

tion of an adherent droplet for a negative �Bd=−0.5� and a
positive �Bd=2� Bond number, respectively. In both cases, in
the upstream portion of the interface, the contact angle is
reduced monotonically with time until equilibrium is reached
while the opposite happens in the downstream portion.

These figures show that the time evolution of the inter-
facial shape and its properties is similar for both negative
and positive Bond numbers, i.e., for both upward-extended
and flatter droplets. Figures 3�b� and 4�b� show that the con-
tact angle increases monotonically with the azimuthal angle
� from the upstream towards the downstream area of the
contact line at all times. Thus, as commonly happens for
circular contact lines, the smallest contact angle �u at �
=180° and the largest one �d at �=0° can be used as a
measurement of the interfacial deformation and to provide
information on the onset of interfacial sliding �e.g., see
Ref. 7�.

Figure 5�a� shows the time evolution of the upstream
and downstream contact angles, �u and �d, for an adherent
droplet with �=1 and �0=90° in simple shear flow with
Ca=0.10, and for several Bond numbers �i.e., Bd

=−0.5,0 ,0.5,1 ,1.5,2�. This figure clearly reveals that Ca
=0.10 is a subcritical flow rate for all these Bond numbers;
after the initial transient evolution both angles reach equilib-
rium where the interfacial shape does not change with time.
The contact angles show initially the same evolution for all
Bond numbers; however later the droplet with the largest
Bond number shows the smaller variation for both upstream
and downstream contact angles, �u and �d, i.e., less deforma-
tion. This is also evident in Fig. 5�b� where we plot the time
evolution of the contact angle difference �d−�u. The droplet
profiles at equilibrium for the different Bond numbers are
shown in Fig. 5�c�.

Therefore, as the Bond number increases, the flatter vis-
cous droplet is more stable for a given flow rate. Equiva-
lently, for specific advancing and receding contact angles, �A

and �R, the flatter droplet requires a higher flow rate to start
sliding on the solid surface.

The explanation for the monotonic decrease in deforma-
tion as the Bond number increases becomes clear when one
considers the forces acting on the droplet. For viscous drop-

FIG. 1. Profiles of an adherent droplet under quiescent conditions for �a�
�0=50° and Bd=−0.5,0 ,0.5; �b� �0=90° and Bd=−0.5,0 ,0.5,1 ,1.5,2; �c�
�0=120° and Bd=−0.3,0 ,0.5,1 ,1.5.

FIG. 2. Variation of the drop surface Sd �scaled with its value for Bd=0�
with the Bond number, under quiescent conditions for �0=50° ,90° ,120°.
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lets the dominant deforming force is the shear component Fs

of the hydrodynamic force on the interface; Fs is propor-
tional to the shear stress on the drop 	d and the drop’s surface
area Sd, i.e., Fs		dSd. Trying to balance this deforming force
is the component of surface tension force in the plane of the
wall parallel to the flow direction; this restoring force is pro-
portional to the width �or radius� w of the contact region and,
for small angle difference �d−�u, it scales as

F� 	 �cos �u − cos �d��w . �7�

As the Bond number increases, the droplet becomes flatter;

the increased width w of the contact region results in an
increase for the surface tension force F� and thus a smaller
deformation.

Our study also provides information on the portions of
the contact line which will slide first. To show this, in Fig. 6
we plot the evolution of the contact angle upstream and
downstream change, �0−�u and �d−�0, for a negative and a
positive Bond number. From this figure it is evident that for
small enough hysteresis, during the transient evolution the
drops show an early period where both upstream and down-
stream sliding are equally favorable. During this regime, if
the droplet is placed on the solid forming an initial angle
�0
 ��R+�A� /2, then after some time the downstream por-

FIG. 3. Deformation of an adherent droplet with �=1 and �0=90° in simple
shear flow with Ca=0.10 and for Bd=−0.5. �a� Droplet profile at times t
=0,0.5,1 ,2 ,10; also included is the undisturbed droplet profile �- -� for
Bd=0. �b� The variation of the contact angle � as a function of the azimuthal
angle � for times t=0,0.2,0.5,1 ,2 ,4 ,10. �The azimuthal angle � is mea-
sured with respect to the positive x-direction as usual.� �c� Droplet shape at
t=10, i.e., at equilibrium.

FIG. 4. Deformation of an adherent droplet with �=1 and �0=90° in simple
shear flow with Ca=0.10 and for Bd=2. �a� Droplet profile at times t
=0,0.5,1 ,2 ,10; also included is the undisturbed droplet profile �- -� for
Bd=0. �b� The variation of the contact angle � as a function of the azimuthal
angle � for times t=0,0.2,0.5,1 ,2 ,4 ,10. �c� Droplet shape at t=10, i.e., at
equilibrium.
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tion of the drop will slide first. The opposite will happen if
the initial angle is �0� ��R+�A� /2 where the upstream drop
portion will begin moving on the solid substrate. For large
enough hysteresis, drops with moderate initial angles �0

show a late downstream-favored regime, where the down-
stream sliding occurs for initial angles �0
�0

* with �0
*

� ��R+�A� /2.
Thus, with respect to the onset of interfacial sliding,

droplets with negative or positive Bond numbers and for
moderate initial angles �e.g., �0=90°� show similar behavior
with those for Bd=0 presented in our earlier publication.7

C. Influence of the initial angle

We investigate now the gravitational effects on droplets
with smaller and larger initial angles. Our computational re-
sults for adherent droplets with �0=50° reveal that the defor-
mation of droplets with small contact angles is affected dif-
ferently by the Bond number compared to those with
moderate angles. As shown in Fig. 7, instead of a �clear�
monotonic decrease in deformation as the Bond number in-
creases, a droplet with �0=50° is not affected much by the
Bond number.

The force balance on these droplets may provide insight
on their deformation behavior. Similar to our earlier discus-
sion for �0=90°, as the Bond number increases the flatter
droplet is accompanied with an increased width w of the
contact region which results in an increase for the surface
tension force F�. However, for small contact angles, as the
Bond number increases, the flatter droplet is accompanied
with an increase in the surface area Sd and thus an increased
shear force Fs. Thus these two opposite actions �i.e., increase
in w and Sd� counterbalance the effects of Bond number
variation.

We now turn our attention to viscous droplets with large
initial angles. Figure 8 shows that for a droplet with �0

=120°, by increasing the Bond number, the flatter drop
shows less deformation, in qualitative agreement with our

FIG. 6. Time evolution of the contact angle upstream and downstream
change, �0−�u and �d−�0, for an adherent droplet with �=1 and �0=90° in
simple shear flow with Ca=0.10. �a� Bd=−0.5; �b� Bd=0.5.

FIG. 5. Deformation of an adherent droplet with �=1 and �0=90° in simple
shear flow with Ca=0.10 for Bd=−0.5,0 ,0.5,1 ,1.5,2. �a� Time evolution of
the upstream and downstream contact angles, �u and �d. �b� Time evolution
of the contact angle difference �d−�u. �c� Droplet profile at time t=10 �i.e.,
well past equilibrium�; also included is the undisturbed droplet profile �- -�
for Bd=0.
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results for �0=90° presented earlier in Fig. 5. This figure also
reveals that the negative Bond number Bd=−0.3 is accompa-
nied with a significant deformation especially at the up-
stream portion of the droplet. These conclusions are also
evident from the deformed droplet profiles presented in Fig.
8�c�, where it is shown that for droplets with large initial
angles, the downstream portion of the interface tends to be-
come tangential to the solid wall.

The monotonic decrease in deformation as the Bond
number increases can be explained based on the interfacial
force balance. Similar to our earlier discussion for small and
moderate contact angles, as the Bond number increases the
flatter droplet is accompanied with an increased surface ten-
sion force F� due to the increased width w of the contact
region. For droplets with large contact angles, as the Bond
number increases the flatter droplet is accompanied with a
decrease in the surface area Sd and thus a decreased shear
force Fs. Both actions �increase in w and decrease in Sd�
contribute to the monotonic decrease in deformation as the
Bond number increases for droplets with large contact
angles. They also justify the larger effects of the Bond num-
ber variation on the droplet deformation shown in Fig. 8 with
respect to those for droplets with moderate angles presented
in Fig. 5.

With respect to the onset of interfacial sliding, our earlier
study for Bd=0 �Ref. 7� revealed that droplets with large
initial angles �0�120°, after a rather small early equally
favorable period, show a large period where downstream
sliding is more favorable than the upstream sliding, i.e.,
downstream sliding occurs for initial angles �0
�0

* with
�0

*� ��R+�A� /2. Our present results depicted in Fig. 9 reveal
that the gravitational effects on the onset of interfacial slid-
ing for droplets with large initial angles is more complicated.

In particular, this figure demonstrates that a negative
Bond number reinforces the behavior found for Bd=0, i.e.,
an upward-extended droplet shows a much larger upstream
change in the contact angle �0−�u than a downstream change
�d−�0; thus for such drops downstream sliding is much more
favorable than upstream sliding. However, a positive Bond
number for droplets with large initial angles �0 reverts to the

behavior of Bd=0. As our results for Bd=1.5 presented in
Fig. 9 indicate, the flatter droplet is more prone to slide at its
upstream portion.

D. Influence of the viscosity ratio

In this section, we focus our attention on the effects of
the viscosity ratio on the deformation of adherent droplets
with positive or negative Bond numbers. As discussed ear-
lier, the Bond number affects viscous droplets with small
contact angles in a different way than those for moderate and
large angles owing to the different variation of the drop sur-
face Sd �and thus the shear force Fs on the drop� with the
Bond number.

FIG. 7. Time evolution of the contact angle difference �d−�u for an adher-
ent droplet with �=1 and �0=50° in simple shear flow with Ca=0.10 and
for Bd=−0.5,0 ,0.5.

FIG. 8. Deformation of an adherent droplet with �=1 and �0=120° in
simple shear flow with Ca=0.10, for Bd=−0.3,0 ,0.5,1 ,1.5. �a� Time evo-
lution of the upstream and downstream contact angles, �u and �d. �b� Time
evolution of the contact angle difference �d−�u. �c� Droplet profile at time
t=15 �i.e., well past equilibrium� for Bd=0,0.5,1 ,1.5, and at time t=6.5 for
Bd=−0.3; also included is the undisturbed droplet profile �- -� for Bd=0.
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On the other hand, inviscid droplets/bubbles �i.e., �=0�
exhibit similar behavior with the Bond number, independent
of the contact angle, as illustrated in Fig. 10 where we
present the time evolution of the contact angle difference
�d−�u for several Bd and for �0=50° ,90° ,120°. In all cases,
the droplet deformation is decreased as the Bond number
increases, i.e., the flatter drops are more stable for all contact
angles studied. In addition, droplets with large initial angles
�e.g., �0=120°� show significant deformation �especially for
small Bond numbers� and require more time to reach equi-
librium.

The explanation for the monotonic decrease in deforma-
tion as the Bond number increases for all initial contact
angles becomes clear when one considers the forces acting
on the droplet. For inviscid droplets, the deforming force is
the pressure force Fp on the interface which is proportional
to the drop’s frontal area Ad and the pressure change �p over
the drop

Fp 	 Ad�p 	 hw�p , �8�

where Ad scales with the height h and the width w of the
droplet. Comparing Eqs. �8� and �7�, one readily realizes that
as the Bond number increases, the increased width w of the
droplet results in an increase of both the deforming force Fp

and the restoring surface tension force F�. Therefore, for
inviscid droplets, the monotonic decrease in deformation
with the Bond number is mainly caused by the decrease of
the droplet’s height h which occurs for all contact angles.

High-viscosity droplets show similar deformation with
that for �=1 droplets presented earlier. However, as the vis-
cosity ratio increases from small values, the increased shear
force on the droplet results in higher interfacial deformation,
e.g., larger �d−�u difference. This is clearly evident in Fig.
11�a� where we present the evolution of the contact angle
difference �d−�u for a negative and a positive Bond number
and for viscosity ratio �=0,1 ,10. Observe that in this figure
the time is scaled with 1+� which reflects the fact that the
dynamics of droplets with different viscosity ratio evolve on

the surface tension time scale which may be described by
	�= �1+���a /�= �1+��Ca 	 f. The increased interfacial de-
formation for the high-viscosity droplets is also evident at
the equilibrium profiles for droplets with negative and posi-
tive Bond numbers as seen in Figs. 11�b� and 11�c�. It is of
interest to note that, for subcritical flow rates, the droplet
deformation reaches an asymptotic �upper� limit for very
large viscosity ratios �i.e., �→�� as discussed for the case
Bd=0 by Dimitrakopoulos7 �see Fig. 7 of the earlier study�.

FIG. 9. Deformation of an adherent droplet with �=1 and �0=120° in
simple shear flow with Ca=0.10. Time evolution of the contact angle down-
stream and upstream change: �——�, �d−�0; �- -�, �0−�u for Bd=−0.3,1.5.

FIG. 10. Deformation of an adherent droplet with �=0 in simple shear flow
with Ca=0.10. �a� Time evolution of the contact angle difference �d−�u for
�0=50° and Bd=−0.5,0 ,0.5. �b� As in �a�, but for �0=90° and Bd

=−0.5,0 ,0.5,1. �c� As in �a�, but for �0=120° and Bd=−0.3,0 ,1.5.
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E. Equilibrium deformation of adherent droplets

In the previous three subsections we presented the dy-
namics of the interfacial deformation by considering both the
transient evolution and the equilibrium conditions for a rep-
resentative flow rate �i.e., Ca=0.1�. In this section, we con-
sider the equilibrium deformation of attached droplets versus
Ca for a wide range of low and moderate �subcritical� flow
rates. To derive these equilibrium conditions, we employed
our Newton method for equilibrium interfaces under Stokes
flow conditions.6 Our results here verify our earlier conclu-
sions �presented in Secs. III B–III D� while they provide nu-
merical data over a range of low and moderate flow rates.

Figure 12�a� shows the equilibrium variation of the up-
stream and downstream contact angles, �u and �d, with the
capillary number Ca for an adherent droplet with �=1 and
�0=90° and for different Bond numbers. In agreement with
our conclusions in Sec. III B, the equilibrium deformation

decreases as the Bond number increases owing to the in-
creased surface tension force which accompanies the flatter
interfacial shape. In addition, at equilibrium the downstream
portion of the drop shows a higher deformation than its up-
stream portion for both negative and positive Bond numbers
as shown in Fig. 12�b�.

The influence of the Bond number on the equilibrium
variation of the upstream and downstream contact angles for
a viscous droplet with �0=120° is similar to that for �0

=90° as shown in Fig. 13�a�. As discussed in Sec. III C, for
large initial angles �0, the monotonic decrease of the interfa-
cial deformation with the Bond number results from both the
increased surface tension force and the decreased shear force
�which accompanies the decreased surface area�. In addition,
Fig. 13�b� shows that while negative Bond numbers cause a
higher upstream deformation compared to the downstream
deformation, this behavior is reverted for positive Bond
numbers.

The limited influence of the Bond number on the equi-
librium variation of the upstream and downstream contact
angles with the capillary number Ca for a viscous droplet
with �0=50° is shown in Fig. 14. As discussed in Sec. III C,

FIG. 11. Influence of the viscosity ratio � on the deformation of an adherent
droplet with �0=90° in simple shear flow with Ca=0.10. Viscosity ratios:
�=0,1 ,10. �a� Time evolution of the contact angle difference �d−�u for
Bond number Bd: −0.5 �——� and 0.5 �- -�. �b� Droplet profile at equilibrium
for Bd=−0.5. �c� As in �b�, but for Bd=0.5.

FIG. 12. Equilibrium deformation vs capillary number Ca for an adherent
droplet with �=1 and �0=90°. �a� Upstream and downstream contact angles,
�u and �d, for Bd=−0.5,0 ,0.5,1 ,1.5,2. �b� Contact angle downstream and
upstream change: �——�, �d−�0; �- -�, �0−�u, for Bd=−0.5,1.
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this is a consequence of the fact that, for small initial angles
�0, both the shear force and the surface tension force increase
with the Bond number.

As discussed in Sec. III D, inviscid droplets or bubbles
show a similar behavior with the Bond number indepen-
dently of the initial contact angle �0 as clearly shown in Fig.
15 over a wide range of flow rates. In this case, the mono-
tonic decrease of the drop’s height with the Bond number
results in a decrease of the deforming pressure force and thus
of the interfacial deformation.

Figure 16 shows the effects of the viscosity ratio � on
the droplet deformation for a negative and a positive Bond
number. As the viscosity ratio increases from small values,
the increased viscous force causes a higher equilibrium de-
formation, i.e., a higher variation of the upstream and down-
stream contact angles.

F. Influence of the initial shape

In the previous sections we have considered attached
droplets which, before the initiation of the steady shear flow,
are at hydrostatic equilibrium under a specific gravitational
influence. However, a droplet may be attached to a solid
surface without being at hydrostatic equilibrium �under a de-

sired Bond number� at the instance of the flow initiation. In
such a case, the drop may follow a different transient defor-
mation compared to those presented so far.

Figure 17�a� shows the time evolution of the upstream
and downstream contact angles, �u and �d, for an adherent
droplet with �=1 and Bd=2 in simple shear flow with Ca
=0.10. The initial drop shape is a spherical cap with �0

=90°. For the same �circular� contact line and for this Bond
number, the hydrostatic shape is flatter showing a contact
angle �0�116.7°. The evolution of the downstream contact
angles �d is similar to that presented earlier, i.e., this angle
shows a monotonic increase towards its equilibrium value.
On the other hand, the upstream contact angle �u shows an
evolution which has not been observed so far. Instead of a
monotonic decrease, this angle first increases towards a
maximum of �u�100.2° near t=0.16, and then decreases
towards its equilibrium value. The nontrivial contact angle
evolution in the upstream portion of the contact line is dem-
onstrated in Fig. 17�b�, where we present the variation of the
contact angle around the contact line for several times.

This contact angle evolution can be understood if we
consider that in this case the drop is under the influence of
both the shear flow and the gravitational forcing �due to the
fact that the initial shape differs from the hydrostatic one�.
The former tends to decrease the upstream contact angle and
increase the downstream angle while the latter tends to make
the drop shape flatter. Since for Bd=2 the hydrostatic shape
shows a contact angle �116.7° �i.e., greater than that of the
initial shape�, the gravitational forcing tends to increase the
contact angle all around the contact line. At the downstream
portion of the contact line both actions tend to increase the
contact angle. On the other hand, at the upstream portion of
the contact line the two actions have opposite effects. The
maximum in �u at the early times reveals that initially the
gravitational deformation �due to the fact that the initial
shape differs from the hydrostatic one� dominates the flow-
induced deformation, and the drop tends towards its hydro-
static shape; the latter is however never completely reached
due to the flow-induced deformation. As shown in Fig. 17�a�,
after the influence of this gravitational forcing has ceased

FIG. 14. Variation of the equilibrium upstream and downstream contact
angles, �u and �d, with the capillary number Ca for an adherent droplet with
�=1 and �0=50°. Bond number Bd: �——�, −0.5; �– –�, 0; �- - - -�, 0.5.

FIG. 13. Equilibrium deformation vs capillary number Ca for an adherent
droplet with �=1 and �0=120°. �a� Upstream and downstream contact
angles, �u and �d, for Bd=−0.3,0 ,0.5. �c� Contact angle downstream and
upstream change: �——�, �d−�0; �- -�, �0−�u, for Bd=−0.3,0.5.
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�i.e., around t=1�, the droplet follows the same evolution
with that when the initial shape is the hydrostatic one.

The effects of the gravitational forcing on the contact
angle evolution are more pronounced when the drop’s initial
shape differs considerably from its hydrostatic shape. This is
depicted in Fig. 18 where we present the deformation of a
droplet whose initial shape is a spherical cap under the large
Bond number Bd=4. It is of interest to note that in this case
the combined action of the shear flow and the increased
gravitational forcing causes the downstream portion of the
droplet to become rapidly tangential to the solid plane, i.e.,
the downstream contact angle shows a fast increase towards

the limit of 180°. We emphasize that, with respect to the
onset of interfacial sliding, this type of experiment makes the
downstream sliding much more favorable than the upstream
sliding.

To investigate the case where the initial drop shape is
flatter than its hydrostatic configuration for a specific Bond
number, in Fig. 19 we present the time evolution of the up-
stream and downstream contact angles, �u and �d, for an
adherent droplet with �=1 and Bd=−2 in simple shear flow
with Ca=0.10. The initial drop shape is a spherical cap with
�0=90° while for the same �circular� contact line and for this
Bond number the hydrostatic shape is more upward-extended
showing a contact angle �0�72.7°.

In this case, the combined action of the shear flow and
the gravitational forcing �due to the fact that the initial shape
differs from the hydrostatic one� tend to decrease faster than
the contact angle in the upstream portion of the contact line.
In the downstream area, the two forces have opposite effects
while at early times the gravitational deformation dominates
the flow-induced deformation, and �d shows a local mini-
mum before its final increase towards its equilibrium value.
We emphasize that this gravitational influence is restricted to
early times only; afterwards the droplet tends to follow the
same evolution with that when the initial shape is the hydro-

FIG. 15. Upstream and downstream contact angles, �u and �d vs capillary
number Ca for an adherent droplet with �=0. �a� �0=50° and Bd

=−0.5,0 ,0.5. �b� �0=90° and Bd=−0.5,0 ,0.5,1 ,1.5,2. �c� �0=120° and
Bd=−0.3,0 ,0.5,1 ,1.5.

FIG. 16. Upstream and downstream contact angles, �u and �d vs capillary
number Ca for an adherent droplet with �0=90° and for viscosity ratio: �
=0,1 ,10. �a� Bd=−0.5; �b� Bd=1.
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static one. In addition, this type of experiments makes up-
stream interfacial sliding much more favorable than down-
stream sliding.

For the same type of experiments, by reducing further
the Bond number, the observed behavior is more pronounced
as shown in Figs. 20 and 21 where we present the evolution
of a droplet whose initial shape is a spherical cap for Bd

=−2 and Bd=−4, respectively. As shown in Fig. 20 the Bond
number Bd=−2 causes a very fast decrease of the upstream
contact angle and thus the upstream portion of the droplet
becomes rapidly tangential to the solid surface. On the other
hand, at the downstream portion the flow dominates eventu-
ally the gravitational forcing and thus after the early mini-
mum, the downstream contact angle increases. By reducing
further the Bond number to Bd=−4 seen in Fig. 21, the in-
creased negative gravitational forcing causes a very fast up-
ward motion of the entire droplet and thus both the upstream
and downstream portion of the droplet tend now to become
tangential to the solid surface.

IV. DISCUSSION

In this paper we have considered the gravitational effects
�i.e., the influence of positive and negative Bond numbers�
on the deformation of viscous and inviscid droplets adhering
to horizontal rough solid surfaces in steady shear Stokes
flows. We have also identified the gravitational effects on the
onset of interfacial sliding, i.e., on the portions of the contact
line which slide first due to violation of the hysteresis con-
dition. We have considered different initial configurations in-

FIG. 17. Deformation of an adherent droplet with �=1 and Bd=2 in simple
shear flow with Ca=0.10; the initial drop shape is a spherical cap with �0

=90°. �a� Time evolution of the upstream and downstream contact angles, �u

and �d. Also included are the results �- -� when the initial drop shape is the
hydrostatic shape which shows �0=116.7°. �b� The variation of the contact
angle � as a function of the azimuthal angle � for times t
=0,0.08,0.16,0.5,1 ,2 ,10. A multiple time-step approach was used with
�t=0.02 for the time period �0,1� and �t=0.1 for �1,10�.

FIG. 18. Deformation of an adherent droplet with �=1 and Bd=4 in simple
shear flow with Ca=0.10; the initial drop shape is a spherical cap with �0

=90°. �a� Time evolution of the upstream and downstream contact angles, �u

and �d. �b� Droplet profile at times t=0,0.2,1 ,1.2.

FIG. 19. Time evolution of the upstream and downstream contact angles, �u

and �d, for an adherent droplet with �=1 and Bd=−1 in simple shear flow
with Ca=0.10; the initial drop shape is a spherical cap with �0=90°. A
multiple time-step approach was used with �t=0.02 for the time period
�0,2� and �t=0.1 for �2,10�.
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cluding drops which are at hydrostatic equilibrium for the
desired Bond number at the instance of the flow initiation as
well as fluids which are not at hydrostatic equilibrium.

When the interfacial system is at hydrostatic equilibrium
at the initiation of a steady shear flow, our study shows that
the Bond number affects the deformation of viscous droplets
with moderate and large initial contact angles in a different
way than those for small angles. In particular, the former
shows a monotonic decrease in deformation as the Bond
number increases as a result of the associated increase of the
drop’s width and thus the restoring surface tension force for
the flatter, high Bond number, droplets. This behavior is
more pronounced for droplets with large initial contact
angles which are also accompanied with a decrease in their
surface area and thus in the deforming shear force. On the
other hand for small contact angles, as the Bond number
increases, the flatter viscous droplet is accompanied with an
increased shear force �owing to the increase of the drop’s
surface area� as well as with an increase in the surface ten-
sion force. These opposite actions counterbalance the effects
of Bond number increase and thus the deformation of drop-
lets with small contact angles is not affected much by the
Bond number.

Inviscid droplets with different initial contact angles
show similar behavior as the Bond number increases, i.e.,
their deformation is monotonically decreased. In this case,
the increase of the drop width for the flatter, high Bond num-

ber droplets results in an increase in the restoring surface
tension force but also in the deforming force �which for in-
viscid droplets/bubbles is the pressure force�. Therefore, for
inviscid droplets, the monotonic decrease in deformation
with the Bond number is mainly caused by the decrease of
the droplet’s height which occurs for all contact angles.

We emphasize that our forces’ analysis, which helps to
explain our numerical results of the gravitational influence
on the drop deformation, relies mostly on the effects of the
Bond number on the drop geometric characteristics, i.e., its
width, height, and surface area. However, the deforming
shear and pressure forces are also affected by physical vari-
ables, i.e., the shear stress on the drop 	d and the pressure
change �p over the drop, respectively. These physical vari-
ables are �implicit� functions of the drop shape and are not
expected to change our aforementioned analysis. This is sup-
ported by the scaling analysis for small angles which predicts
that 	d	�G and �p	�0�G, i.e., they are not affected by
the Bond number.

With respect to the onset of interfacial sliding, our study
shows that droplets under positive or negative Bond numbers
show similar behavior to that for Bd=0 identified in our ear-
lier work.7 In particular, droplets with small and moderate
initial angles show an early period where both upstream and
downstream sliding are equally favorable as well as a late
downstream-favored period; by contrast, droplets with large

FIG. 20. Deformation of an adherent droplet with �=1 and Bd=−2 in
simple shear flow with Ca=0.10; the initial drop shape is a spherical cap
with �0=90°. �a� Time evolution of the upstream and downstream contact
angles, �u and �d. �b� Droplet profile at times t=0,0.4,0.8,1.2,1.6,2.

FIG. 21. Deformation of an adherent droplet with �=1 and Bd=−4 in
simple shear flow with Ca=0.10; the initial drop shape is a spherical cap
with �0=90°. �a� Time evolution of the upstream and downstream contact
angles, �u and �d. �b� Droplet profile at times t=0,0.2,0.4,0.5.
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initial angles, after a rather small early equally favorable
period, show a large period where downstream sliding is
more favorable than the upstream sliding. In addition, for
droplets with large initial angles our present study shows that
a negative Bond number reinforces the behavior found for
Bd=0, i.e., upward-extended droplets exhibit a more favor-
able downstream initial sliding. For the same case, positive
Bond numbers weaken this behavior while large enough
Bond numbers revert to the behavior of Bd=0, i.e., they
make upstream sliding more favorable.

When the interfacial system is not at hydrostatic equilib-
rium at the initiation of a steady shear flow, its dynamic
evolution is more complicated. In this case the droplet defor-
mation is affected by both the shear flow and the gravita-
tional forcing �due to the fact that the initial shape differs
from the hydrostatic one�. When the drop is initially more
upward-extended than its hydrostatic shape, both forces con-
tribute to a fast increase of the downstream contact angle;
however at the upstream portion of the contact line they have
opposite effects. As a result at early times the gravitational
deformation dominates the flow-induced deformation and
initially the upstream contact angle increases towards a local
maximum before its final flow-induced decrease. For large
deviations from the hydrostatic shape, the increased gravita-
tional forcing causes the downstream portion of the droplet
to rapidly become tangential to the solid surface. Thus, this
case makes the downstream sliding much more favorable
than the upstream sliding. The opposite happens for droplets
which are initially flatter than their hydrostatic configura-
tions. Therefore this type of experiments can be employed to
initiate interfacial sliding at a desired portion of the contact
line.

As discussed in Sec. I above, earlier studies have com-
monly ignored the gravitational effects on the drop deforma-
tion. One exception is the work by Dimitrakopoulos and
Higdon5 who considered the equilibrium conditions just be-
fore the �final� flow-induced drop displacement from rigid
boundaries for zero and positive Bond numbers. Via compu-
tational work and asymptotic analysis based on small-angle
lubrication theory, Dimitrakopoulos and Higdon5 demon-
strated that for a given flow rate, the deformation of viscous
two-dimensional droplets is increased with the Bond number
due to the corresponding increase of the drop’s length. They
also showed that the opposite happens for two-dimensional
inviscid droplets due to the decrease of the drop height.

Therefore, the present study has shown that the gravita-
tional influence on a three-dimensional droplet differs con-
siderably for that on a two-dimensional drop �i.e., a cylindri-
cal cap� owing to the ability of the three-dimensional
droplets to expand or contract in the lateral �i.e., cross-flow�
direction changing the interfacial dynamics. In essence, our
present work identifies the three-dimensional nature of the
deformation and sliding of adherent droplets which has also
been demonstrated in the earlier work of Dimitrakopoulos
and Higdon on the yield criteria for displacement of three-
dimensional droplets,6,16–18 and the recent experiments of
Podgorski et al.23
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