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We present the efforts of our research group to derive an optimized parallel algorithm
so that we are able to efficiently perform large-scale numerical studies on the dynam-
ics of biological and synthetic polymers. To describe the polymer macromolecules we
employ Brownian dynamics simulations based on a semiflexible bead-rod chain model.
Our algorithm has been parallelized by employing Message Passing Interface (MPI) on
both shared- and distributed-memory multiprocessor computers with excellent parallel
efficiency. By utilizing this methodology, we routinely employ up to 320 of the fastest
processors to study polymer chains with more than 40, 000 beads. Our optimized parallel
algorithm facilitates the study of polymer dynamics over a broad range of time scales and
polymer lengths.

1. INTRODUCTION

The dynamics of polymer solutions is a problem of great technological and scientific
interest since these systems are encountered in a broad range of industrial, natural and
physiological processes. Common examples include biopolymers such as DNA, actin fil-
aments, microtubules and rod-like viruses, as well as synthetic polymers such as poly-
acrylamides, Kevlar and polyesters. These polymers show a wide range of stiffness which
results in some unique properties of their solutions and networks. For example, networks
of actin filaments can provide biological cells with mechanical stability while occupying a
significantly smaller volume fraction of the cytosol than would be required for a flexible
network. In the case of the stiff synthetic polymers, stiffness is responsible for the macro-
scopic alignment of the chains in the system which imparts unique mechanical properties
for these materials. Thus, the study of these systems is motivated by both the biological
relevance and engineering applications.
The numerical study of polymer dynamics is computationally expensive due to the

large molecule lengths and the requirement of monitoring the polymer properties over
extended time periods. To overcome this obstacle, we have developed an optimized paral-
lel algorithm and thus we are able to efficiently perform large-scale numerical studies on
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polymer dynamics. Our interest lies on understanding the physical properties of impor-
tant biopolymers such as DNA, actin filaments and microtubules as well as of synthetic
polymers. Our studies are further motivated by the recent development of experimental
techniques which study individual biological molecules as well as by the recent develop-
ment of micro-devices involving stretched tethered biopolymers (e.g. [1–3]).

2. MATHEMATICAL FORMULATION

To describe a semiflexible polymer chain, we employ the Kratky-Porod wormlike chain
model [4,5] based on a Brownian dynamics method developed in Ref.[6]. This method
considers a (flexible) bead-rod model with fixed bond lengths and ignores hydrodynamic
interactions among beads as well as excluded-volume effects. The polymer chain is mod-
eled as NB = (N + 1) identical beads connected by N massless links of fixed length b
(which is used as the length unit). The position of bead i is denoted as X i, while the link
vectors are given by di = X i+1 −X i.
To account for polymer stiffness, we add a bending energy proportional to the square

of the local curvature. For a continuous chain the bending energy is given by
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where L is the (constant) contour length of the chain and d̂ the local unit tangent. The
bending energy E is related to the persistence length Lp via E/kBT ≡ Lp/b, where kB is
the Boltzmann constant. The bending energy of the discrete model is given by
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and thus it depends on the angle θi between two successive links since di·di+1 = b2 cos θi.
For a fixed b, the properties of the polymer chain are specified by the number of links N
and the dimensionless bending energy E = E/kBT .
Assuming that the bead inertia is negligible, the sum of all forces acting on each bead

i must vanish, which leads to the following Langevin equation
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where ζ is the friction coefficient and F
rand

i the Brownian force due to the constant
bombardments of the solvent molecules. The force F

ten

i = Tidi − Ti−1di−1, where Ti is a
constraining tension along the direction of each link di, ensures the link inextensibility.
F

cor

i is a corrective potential force added so that the equilibrium probability distribution
of the chain configurations is Boltzmann [6]. The bending force F bend

i is derived from the
discrete form of the bending energy, Eq.(2),
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(In the equation above as well as in all the equations in this paper, a term exists only
if its index can be defined within its permitted bounds.) The resulting system based on
Eq.(3) may be solved in O(N) operations facilitating the study of long and/or stiff chains.
The polymer properties are determined as the ensemble averages of the corresponding
instantaneous values by employing 104 to 105 independent initial configurations.
Note that although we model the polymer molecule as a bead-rod semiflexible chain,

the mathematical formulation presented above is more general since it can also represent
other polymer models including bead-spring models with Hooke, Fraenkel or FENE-type
springs [7]. Our preference for the bead-rod semiflexible model results from the fact that
this model allows a continuous crossover from a freely-jointed flexible chain to a rigid rod
as the bending energy increases while it preserves the link lengths and thus the contour
length of the entire chain. We emphasize that the tensions required to keep the link
lengths constant play a significant role in the polymer dynamics both near and far from
equilibrium as recent studies have revealed [6,8–10].

3. RELEVANT TIME SCALES

The Brownian forces give rise to a series of time scales associated with the diffusive
motion of the chain’s increasing length scales, from that of one bead τrand = ζb2/kBT ,
up to the time scale for the entire chain length which is τf = N2 τrand for flexible chains
and τs = N3 τrand for stiff ones. Similarly, the bending forces give rise to a series of
time scales associated with the bending vibrations of portions of the polymer chain with
increasing length. The smallest bending time scale is associated with the relaxation
of the angle between two successive links given by τbend = ζb2/E = τrand/E � τrand,
while the largest time scale is associated with the entire polymer chain and given by
τ⊥ = ζL4/Eb2 = (N4/E) τrand. If we consider that the length N is large for polymer
molecules, it is clear that all polymers, and especially the stiff chains, are associated with
very small time scales while their behaviors cover extended time periods.
Therefore the numerical study of polymer chains is computationally expensive; even

with the present powerful single-processor computers it may take months or even years to
simulate a long polymer chain over an extended time period. To overcome this obstacle,
we have developed an efficient parallel algorithm which utilizes the great computational
power of current multiprocessor supercomputers, especially the relatively inexpensive PC
clusters, as discussed in the next section.

4. PARALLEL ALGORITHM FOR POLYMER DYNAMICS

Due to the computationally expensive nature of Brownian dynamics simulations of
polymer molecules, it is imperative that the corresponding algorithm is fully optimized.
To optimize our code, we employ highly-tuned LAPACK routines for the solution of the
tridiagonal systems resulting from the equation of motion, Eq.(3). For the calculation
of the chain’s normal modes we use highly-tuned FFT algorithms provided by system
libraries. In addition, our FORTRAN code has been optimized using cache optimization
techniques.
We note that further optimization efforts have been made. Many physical problems

involve polymers at equilibrium. For example, a DNA molecule, before undergoing a
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shearing flow, may be at equilibrium. To determine the equilibrium configuration, one
has to allow the chain to equilibrate first over many time-consuming Brownian dynamics
steps. In this case it is more efficient to start directly from an equilibrium chain configura-
tion. To produce these equilibrium configurations we apply the following procedure based
on the chain bending energy. In particular, for completely flexible chains (i.e. E = 0), an
equilibrium configuration is derived as a “random-walk” polymer configuration generated
by choosing successive bead positions from random vectors distributed over the surface of
a sphere. For chains with non-zero bending energy, we employ a Monte Carlo-Metropolis
algorithm to calculate an equilibrium chain configuration based on the chain bending
energy. The Monte-Carlo algorithm for calculating equilibrium configurations is much
faster than the Brownian dynamics algorithm; thus, significant savings are achieved. We
emphasize that for any chain’s bending energy, our ability to efficiently produce equilib-
rium configurations is a consequence of the corrective potential force F

cor we described
in section 2. (Thus, bead-rod models which do not include this correction need to be
equilibrated first by employing Brownian dynamics time steps.)
To study the dynamic evolution of polymer macromolecules, we numerically determine

the ensemble average value of properties of interest including the chain configuration, the
polymer stress and the solution birefringence. This is achieved by starting from (different)
initial polymer configurations and following a different sequence of Brownian forces to sim-
ulate different chain realizations. Our optimized algorithm can successfully be employed
on single-processor computers for relatively short chains and time periods; for larger poly-
mer molecules we employ multiprocessor supercomputers and suitable parallelization.
To describe this, observe that the ensemble average calculation is by nature parallel

while we can use as many processors as the number of initial configurations which is of
order 104–105. In practice, a moderate number of processors (of order 10–300) is adequate
for most cases. For the parallelization we use Message Passing Interface (MPI) [11,12].
The great advantage of MPI is its portability to different platforms. With this paralleliza-
tion, we have the ability to employ both shared-memory multiprocessor computers (e.g.
IBM pSeries 690) and distributed-memory supercomputers (e.g. Linux clusters). On all
machines, the efficiency is almost 100% even for a high number of processors as shown
in Table 1. This is due to the limited time of communication among the processors com-
pared with the CPU time consumed for calculations on each processor. Therefore, our
numerical code is ideal for all types of the state-of-the-art supercomputers.
By utilizing this optimized parallel algorithm, we routinely employ up to 320 of the

fastest processors to study polymer chains with more than 40, 000 beads and thus we
are able to identify the polymer behavior of very long chains at very small times and
for extended time periods. For example as we discussed in Refs.[13,10] for the problem
of the relaxation of initially straight flexible and stiff chains, we were able to determine
the polymer evolution over 17 time decades for flexible chains and over 28 time decades
for stiff ones. In addition, the length scales we study (up to at least N = 40, 000 beads)
correspond to DNA molecules up to 2.6mm long and to synthetic molecules of polystyrene
with molecular weight of O(107)!
Therefore, by employing this optimized parallel algorithm we are able to identify all

physical behaviors even if they appear at very small times and span extended time periods.
For example, we have studied the dynamics of chain stiffening due to temperature change
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Table 1
Efficiency versus the number of processors Np for a typical problem by employing our
parallel Brownian Dynamics algorithm on the shared-memory IBM pSeries 690 and the
distributed-memory Linux Xeon Supercluster provided by the National Center for Super-
computing Applications (NCSA) in Illinois. Note that efficiency denotes the ratio of the
wall time for the serial execution Ts to that for the parallel execution Tp multiplied by
the number of processors, i.e. efficiency ≡ Ts/(TpNp).

NCSA IBM pSeries 690

Np Efficiency (%)

1 100.00

2 99.81

5 99.75

10 99.64

16 99.24

NCSA Xeon Supercluster

Np Efficiency (%)

1 100.00

10 99.39

20 99.09

25 98.65

50 97.16

160 97.02

or salt addition in the polymer solution [14–17]. An industrial application of this process
involves the manufacturing of better trapping gel networks, micro-electronic devices from
plastics and novel drug delivery systems [18]. In Figure 1 we present the shape evolution of
an initially coil-like chain during stiffening towards its final rod-like shape. The associated
transition from coil to helix and from helix to rod is obvious from this figure. These
transitions are also shown in Figure 2 where we plot the time evolution of the polymer
length and its widths. Observe that the time of the maximum chain’s width corresponds
to the helix creation while the time of the maximum chain’s length corresponds to the
rod-like final configuration.

5. CONCLUSIONS

The dynamics of polymer solutions is a problem of great technological and scientific
interest but the numerical study of these systems is computationally expensive due to
the large molecule lengths and the requirement of monitoring the polymer properties over
extended time periods. To overcome this obstacle, we have developed an optimized parallel
Brownian dynamics algorithm for the dynamics of biological and synthetic polymers via
Message Passing Interface (MPI) based on ensemble average calculations. By employing
both shared- and distributed-memory multiprocessor computers, we have the ability to
determine and understand the polymer properties over a wide range of time scales and
polymer lengths which has never been achieved before.
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Figure 1. Evolution of a polymer molecule during backbone stiffening. The polymer length
is N = 100 while the chain’s final stiffness is E/N = 10. Three distinct configurations
are presented: (a) the initial coil-like shape, (b) the intermediate helical shape, and (c)
the final rod-like configuration.
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Figure 2. Time evolution of the lengths of a polymer molecule during backbone stiffening.
The polymer’s contour length is N = 100 while the chain’s final stiffness is E/N = 10.
Note that R1 is the polymer length while R2 and R3 are the chain’s widths.
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