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We present the efforts of our research group to derive an optimized parallel algorithm
for the efficient study of interfacial dynamics in Stokes flow and /or gravity. Our approach
is based on our high-order/high-accuracy spectral boundary element methodology which
exploits all the advantages of the spectral methods and the versatility of the finite element
method. Our numerical code has been parallelized on shared-memory multiprocessor com-
puters and thus we are able to utilize the computational power of supercomputers. Our
parallel interfacial algorithm facilitates the study of a wide range of problems involving
three-dimensional interfaces in Stokes flow and/or gravity.

1. INTRODUCTION

The dynamics of droplets and bubbles in infinite media or in restricted geometries under
low-Reynolds-number flows and gravity is a problem of great technological and fundamen-
tal interest. These systems are encountered in a broad range of industrial, natural and
physiological processes. Chemical engineering applications include enhanced oil recovery,
coating operations, waste treatment and advanced materials processing. Pharmaceutical
applications include emulsions which serve as a vehicle for the transport of the medical
agent through the skin. An additional application is the blood flow in microvessels.

The industrial and biological applications of multiphase flows motivate the develop-
ment of a parallel algorithm which can be employed to efficiently study the dynamics
of three-dimensional interfacial problems. In this study we present the efforts of our re-
search group to derive an optimized parallel algorithm for this problem based on a high-
order/high-accuracy spectral boundary element methodology [1,2]. The main attraction
of this approach is that it exploits all the benefits of the spectral methods (i.e. exponential
convergence and numerical stability) and the versatility of the finite element method (i.e.
the ability to handle the most complicated geometries) [3,4]. In addition, it is not affected
by the disadvantage of the spectral methods used in volume discretizations; namely, the
requirement to deal with dense systems, because in boundary integral formulations the
resulting systems are always dense, independent of the form of discretization. The code
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has been parallelized on shared-memory supercomputers, such as the SGI Origin 2000,
using OpenMP directives for the calculation of the system matrix, and highly optimized
routines from the LAPACK system library for the solution of the dense system matrix.
These properties result in a great computational efficiency which facilitates the study of
a wide range of problems involving interfaces in Stokes flow.

2. MATHEMATICAL FORMULATION

We consider a three-dimensional fluid droplet in an infinite surrounding medium or a
confined geometry; the droplet may be free-suspended or attached to the solid boundaries.
The droplet size is specified by its volume Vj or equivalently by the radius a of a spherical
droplet of volume (4/3)wa® = V;. The droplet (fluid 1) has density p; and viscosity Au,
while the surrounding medium (fluid 2) has density ps and viscosity u. The gravitational
acceleration is g, while the surface tension ~y is assumed constant. Far from the droplet,
the flow approaches the undisturbed flow u> (e.g. shear or Poiseuille flow) characterized
by a shear rate G.

Excluding inertial forces, the governing equations in fluid 2 are the Stokes equations
and continuity,

V.eo=-Vp+uVu=0 (1)
V-u=0 (2)

while in the droplet, the same equations apply with the viscosity replaced by Apu.
The boundary conditions on the solid walls and at infinity give

u=0 on solid walls (3)
u—u* as r— oo (4)
At the interface, the boundary conditions on the velocity u and surface stress f are

U — U2 (5)

Af=f,—fi=7(V-n)n+(p2—pi1)(g-z)n (6)

Here the subscripts designate quantities evaluated in fluids 1 and 2, respectively. The
surface stress is defined as f = o - n, and n is the unit normal which we choose to point
into fluid 2. The pressure as defined in o is the dynamic pressure, hence the gravity
force is absent from the Stokes equations and appears in the interfacial stress boundary
condition.

For transient problems, the velocity field must satisfy an additional constraint - the
kinematic condition at the interface

dx
dt
For equilibrium shapes under flow conditions and/or gravity, the kinematic condition at
the interface becomes

(u-n)n =0 (8)

— (fu, . fn,)n (7>
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The magnitude of interfacial deformation due to viscous stress or gravity is given by
the capillary number Ca and Bond number By, respectively, which are defined by
Ga — a?
0g = MG B, — \P1L=p2)9a” (9)

Y Y

Note that the capillary number Ca represents the ratio of viscous forces to surface tension
forces while the Bond number B, represents the ratio of gravitational forces to surface
tension forces. The problem also depends on the viscosity ratio A and geometric dimen-
sionless parameters in the case of solid boundaries. For fluid volumes in contact with
solid substrates, additional conditions are required to prescribe the interface shape in the
vicinity of the contact lines as discussed in our earlier publication [2]; these conditions
introduce additional dimensionless parameters.

We emphasize that, although the governing equations and boundary conditions are
linear in w and f, the problem of determining interfacial shapes constitutes a nonlinear
problem for the unknown interfacial shape; i.e. the velocity u, stress f and curvature V-n
are nonlinear functions of the geometrical variables describing the interface shape. For
fluid volumes in contact with solid boundaries, the boundary conditions at the contact
line involve the contact angle and thus constitute nonlinear functions of the unknown
interfacial shape as well [2].

3. PARALLEL INTERFACIAL ALGORITHM

To solve the interfacial problem described in section 2, we transform the partial differ-
ential equations, Egs.(1) and (2), which are valid in the system volume, into boundary
integral equations valid on the surface of the volume [5,2]. This transformation results in
a great reduction in CPU time, since a fully three-dimensional problem can be described
and solved using only two (curvilinear) coordinates. For the case of a free-suspended
droplet in an infinite medium, the velocity at a point &y on the drop surface Sp is given

by
Arp(1 4+ X)) w(xg) — dmp u™(xg) =
~ [ 1S (AF = ) =i (1= Nu - w) ] (@) dS (10)
B
where S is the fundamental solution for the three-dimensional Stokes equations and T
the associated stress defined by
Oij Xk TiT;Tp

Sz“=7+ = Tijr = —6

(11)

where & = ¢ — @y and r = |&|. Similar equations hold in the presence of solid boundaries
and for drop suspensions [2,6].

In contrast to most researchers in this area who employ low-order methods (e.g. see [7—
10]), we solve the resulting boundary integral equations employing a (high-order) spectral
boundary element method [1,2]. In particular, each boundary is divided into a moderate
number of spectral elements as shown in Figure 1. On each element the geometric and
physical variables are discretized using Lagrangian interpolation based on the zeros of
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Figure 1. Discretization of a drop surface into Ng = 14 spectral elements. The figure
illustrates Gauss-Lobatto Legendre distribution of nodal lines with Np = 10 spectral
points in each direction.

orthogonal polynomials of Gauss or Gauss-Lobatto type [3]. This is equivalent to an
orthogonal polynomial expansion and yields the spectral convergence associated with such
expansions. The discretizations are substituted into the appropriate boundary integrals
and quadratures evaluated using adaptive Gaussian quadrature.

In order to determine equilibrium fluid interfaces in Stokes flow and/or gravity, we have
developed an efficient, Jacobian-free, Newton method based on our spectral boundary
element method. This method has proved to be a robust algorithm, of high accuracy and
extreme efficiency, valid to study the most complicated three-dimensional problems [2].
To determine transient interfacial shapes, we combine our optimized parallel spectral
boundary element algorithm with a time integration of the kinematic condition at the
interface, Eq.(7).

The main attraction of our interfacial algorithm is the fact that it exploits all the
benefits of the spectral methods, i.e. exponential convergence and numerical stability with
the versatility of the finite element method, i.e. the ability to handle the most complicated
geometries. In addition, it is not affected by the disadvantage of the spectral methods used
in volume discretization; namely, the requirement of dealing with dense systems, because
in boundary integral formulations the resulting systems are always dense, independent of
the form of the discretization.

We emphasize that our interfacial algorithm shows the exponential convergence of the
spectral methodology in any interfacial problem. For example, the exponential conver-
gence in the numerical accuracy as the number of the employed spectral points N =
Ng N3 increases is clearly evident at the geometric properties of a given shape such as the
computed curvature shown in Figure 2. The difference in the accuracy between our spec-
tral algorithm and low-order interpolation methods is dramatic. For example, Zinchenko,
Rother and Davis [8] in their Figure 5 reported an error ~ 4 x 1072 for N = 5120; our
algorithm shows an error ~ 1 x 107! for N = 3456.

To be able to access the computational power of supercomputers, our numerical code has
been parallelized on shared-memory multiprocessor computers (such as the SGI Origin
2000) by employing OpenMP directives for the calculation of the system matrix, and
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Figure 2. Exponential convergence in the maximum absolute error of the computed
curvature as the number of spectral points N increases for different spheroids: ——,
a=b=c=1;----,a=b=1,¢c=04; —— a=1,b=c=04.

highly optimized routines from the LAPACK system library for the solution of the dense
system matrix. Multiprocessor runs exploit the parallel nature of calculating the system
matrices described by the boundary integral equation, Eq.(10). This results in an overall
very good parallel efficiency as shown in Table 1. We emphasize that the size of the
problems tested is rather small involving 10-40 spectral elements. Higher efficiency is
expected for more complicated problems such as the ones involving the interaction of
many droplets.

We emphasize that, to be able to achieve the parallel properties shown in Table 1, it is
imperative that the computational load is distributed evenly among the processors. For
this, we distribute the load using an “interleave” schedule with a small chunk size, e.g.
we set the environmental variable OMP_SCHEDULE to STATIC,1 (see OpenMP API [11]).
On the other hand, an uneven load can result in poor parallel performance. For example,
a “simple” schedule which divides the load into large chunks based on the number of
iterations in the associated OMP PARALLEL DO loop produces an efficiency of nearly 75%
for the “Integration” on two processors which is much smaller than the optimal efficiency
of 99.26% shown in Table 1. Non-optimal load distribution also worsens the efficiency of
the systems’ solution, i.e. the performance of the parallel LAPACK library.

The parallelization of our algorithm can be performed in two ways: the first way involves
all the spectral points on each element while the second one involves all the spectral points
on all elements. Considering that each element has Ng x Ng spectral points (with a typical
value of Np = 10) while N is the number of the spectral elements (with a typical value
of Ng =10-40 for problems with one droplet and much higher values for many-drop
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Table 1

Efficiency versus the number of processors N, for the calculation (“Integration”) and the
solution (“Solution”) of the system matrices resulting from our parallel spectral bound-
ary element algorithm on the shared-memory SGI Origin 2000 provided by the National
Center for Supercomputing Applications (NCSA) in Illinois. Note that efficiency denotes
the ratio of the wall time for the serial execution 7§ to that for the parallel execution 7,
multiplied by the number of processors, i.e. efficiency = Ts/(T, N,).

N, Integration (%) Solution (%)

1 100.00 100.00
2 99.26 89.62
4 96.72 75.43
8 89.91 72.34

problems), it is easy to realize that by employing the first way of parallelization we may
use a moderate number of processors while by employing the second way of parallelization
we have the ability to exploit a very high number of processors, if available. For many-
drop problems (i.e. study of emulsions and foams), the parallelization can also involve the
different drops/bubbles (or teams of them).

To optimize further our algorithm we employ highly-optimized BLAS routines as well
as cache optimization. FExploiting the levels n of symmetry of a problem reduces the
memory requirements by a factor of 2", the computational time for the system matrices
by a factor of 2n and the time for the direct solution of the linear systems by factor of 2.

With this optimized parallel algorithm, we have the ability to study in detail a wide
range of problems involving fully three-dimensional interfaces in Stokes flow and/or grav-
ity. For example, in Figure 3 we provide the interfacial dynamics for viscosity ratio
A = 0.2 in a planar extensional flow near the critical conditions, i.e. near the flow rate
at which equilibrium interfacial shapes cease to exist. The critical capillary number (i.e.
Ca = 0.155) is in excellent agreement with experimental findings [12]. Observe that be-
low the critical flow rate, the droplet deformation reaches equilibrium while above it the
droplet continues to deform with time.

4. CONCLUSIONS

In this paper, we have presented the efforts of our research group to derive an opti-
mized parallel algorithm so that we are able to efficiently determine interfacial dynamics
in Stokes flow and/or gravity. By employing the boundary integral formulation, the
problem dimensionality is reduced by one. In addition, our high-order/high-accuracy
spectral boundary element approach results in great benefits including exponential con-
vergence, numerical stability and ability to handle the most complicated geometries. The
exponential convergence of our spectral methodology results in additional savings in com-
putational time since for a desired accuracy we can use a coarser grid compared to that
employed by low-order boundary methods. Our numerical code has been parallelized on
shared-memory supercomputers, such as the SGI Origin 2000, using OpenMP directives
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Figure 3. Dynamics near the critical point for a droplet with viscosity ratio A = 0.2
in a planar extensional flow u>* = G (x,—y,0). (a) Droplet deformation D ver-
sus time ¢. (b) Maximum normal velocity versus time ¢. The capillary number is
Ca = 0.15,0.155,0.158,0.159,0.16,0.165. Note that D = (L — S)/(L + S) where L
and S are the droplet’s length and width, respectively.
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for the calculation of the system matrix, and highly optimized routines from the LAPACK
system library for the solution of the system matrices. This enables us to utilize the com-
putational power available at supercomputer centers including the National Center for
Supercomputing Applications (NCSA) in Illinois. All these properties result in a great
computational efficiency which facilitates the study of a wide range of problems involving
fully three-dimensional interfaces in Stokes flow and/or gravity.

REFERENCES

1. G. P. Muldowney and J. J. L. Higdon, J. Fluid Mech. 298 (1995) 167.

2. P. Dimitrakopoulos and J. J. L. Higdon, J. Fluid Mech. 377 (1998) 189.

3. C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in Fluid
Dynamics, Springer, 1988.

4. Y. Maday and A. T. Patera, in State of the Art Surveys in Computational Mechanics,
A. K. Noor and J. T. Oden (eds.), ASME, 1989.

5. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous
Flow, Cambridge University Press, 1992.

6. A.Z. Zinchenko and R. H. Davis, J. Fluid Mech. 455 (2002) 21.

7. M. Loewenberg and E. J. Hinch, J. Fluid Mech. 321 (1996) 395.

8. A. Z. Zinchenko, M. A. Rother and R. H. Davis, Phys. Fluids 9 (1997) 1493.

9. C. Pozrikidis, J. Comp. Phys. 169 (2001) 250.

10. I. B. Bazhlekov, P. D. Anderson and H. E. H. Meijer, Phys. Fluids 16 (2004) 1064.

11. OpenMP Architecture Review Board (eds.), OpenMP Application Program Interface,
2005 (available at http://www.openmp.org).

12. B. J. Bentley and L. G. Leal, J. Fluid Mech. 167 (1986) 241.



