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The yield conditions for the displacement of three-dimensional fluid bridges from solid boundaries
are studied in pressure-driven Stokes flows. The study seeks the optimal shape of the contact line
that yields the maximum flow rate for which a fluid bridge can adhere to the surfaces. The contact
line contours show fore-and-aft asymmetry with a distorted shape not well represented by simple
circular/elliptical planforms. The critical shear rate is shown to be sensitive to viscosity ratio; as the
viscosity of the bridge increases, the critical shear rate decreases facilitating the displacement. The
effects of the contact angles are found to be similar for both viscous and inviscid bridges, in direct
contrast with our earlier results for drop displacement from a single substrate. The critical flow rate
is strongly affected by the plate spacing; bridges with moderate height are shown to withstand the
highest flow rate. This behavior is readily explained employing scaling analysis. © 2003 American
Institute of Physics. @DOI: 10.1063/1.1609443#

In this article we consider the yield criteria for displace-
ment of three-dimensional fluid bridges spanning the gap
between two parallel plates in pressure-driven flows. Our
interest focuses on bridge displacement in viscous flows at
low-Reynolds number. This regime has relevance in the op-
eration of coating machines and other devices ~e.g., micro-
fluidics! involving flow between closely spaced parallel
plates. The fundamental issues associated with viscous drop
displacement from rigid boundaries have been addressed by
Dussan based on asymptotic theory valid for small contact
angles,1 and in our previous work2–4 where we addressed the
drop displacement problem making no restrictions on the
problem parameters. Further references on droplet displace-
ment and contact angles may be found in our earlier
papers.2–4

In the present study, we turn our attention to the dis-
placement of fluid bridges. To this date there has been no
study which considers the displacement of a general three-
dimensional fluid bridge between two parallel plates in
pressure-driven flows. Due to the existence of the ~continu-
ous! contact line for the three-dimensional problem, for a
given material system ~i.e., bridge and surrounding fluids,
and solid surfaces! there exist many different bridge configu-
rations. In our study, we seek the optimal shape of the con-
tact line which provides the maximum flow rate ~or capillary
number Ca! for which a bridge can adhere to the solid sur-
faces. For a given material system, the maximum flow rate
Ca represents the yield condition for displacement in the
sense that a higher flow rate will always displace the bridge.
~On the other hand, a specific fluid bridge may be displaced
under a smaller flow rate if the bridge is unable to achieve its
optimal shape.!

Under this flow condition, both the shape of the contact

line and the bridge interface are equilibrium shapes, indepen-
dent of the hydrostatic shape of the bridge and the conditions
of the transient deformation. While we compute these equi-
librium shapes under different flow conditions, we do not
attempt a stability analysis for these complicated three-
dimensional shapes. Such an analysis represents a challeng-
ing problem beyond the scope of the present effort.

We consider a fluid bridge between two parallel plates;
the bridge size is specified by the radius a of a spherical
droplet of the same volume, while the surface tension g is
assumed to be constant. The undisturbed flow exterior to the
bridge is a plane Poiseuille flow at low-Reynolds-number
while gravitational effects are excluded by restricting our
analysis to bridges for which a characteristic Bond number is
negligible. We assume the bridges are symmetric about the
midplane, but allow fore-aft asymmetry associated with de-
formation in the flow direction x . Note that the ~midplane! z
symmetry is a requirement for stability of axisymmetric
bridges in quiescent conditions.5 For a stationary contact
line, the contact angle u should always be uA<u<uR ,
where uA and uR are the advancing and receding angles,
respectively. The relevant parameters of the current problem
include the capillary number Ca[mGa/g ~where G is the
velocity gradient at the lower wall!, the ratio l of the bridge
viscosity to that of the surrounding fluid ~m!, the angles uA

and uR ~or equivalently uA and the hysteresis uA2uR) as
well as the dimensionless distance between the two plates
H/a . The computational procedure consists of an efficient
three-dimensional Newton method to determine the equilib-
rium shape of fluid interfaces, combined with an optimiza-
tion algorithm to solve for the optimal shape of the contact
line, as presented in our recent paper on drop displacement in
shear flows.2
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We begin our investigation by considering the displace-
ment of a liquid bridge with l51. Figure 1 shows the con-
tact line contours and the distribution of contact angles
around the contact line for a bridge with uA590°, for H/a
51.747 and several values of the capillary number Ca. ~This
value of H/a corresponds to a cylindrical bridge with height
twice its radius.! This figure shows the two common features
of the optimal contact lines;2,4 as the flow rate is increased
both the length and the width of the contact line increase. As
explained in our previous studies, the increased hysteresis
and contact line width both act to increase the interfacial
force necessary to balance the higher hydrodynamic forces
on the bridge. In addition, the downstream portion of the
contact line admits a single maximum angle uA while its
upstream portion admits a single minimum angle uR , while
between the two portions there is an acute jump in the dis-
tribution of the contact angles. This distribution is a further
consequence of the bridge’s attempts to maximize the inter-
facial force: the bridge holds the minimum angle over the
entire front of the contact line, then makes the fastest pos-
sible transition to the maximum angle on the rear-facing con-

tour. The resulting highly asymmetric bridge shape is shown
in Fig. 2 for a specific flow rate Ca.

Figure 3 shows the critical Ca as a function of hysteresis
uA2uR , for H/a51.747 and several values of uA . For a
given hysteresis, increasing the contact angle uA from small
values, increases the critical flow rate, for values of the ad-
vancing angle up to uA'90°. Above this value, increasing
the contact angle uA decreases the critical flow rate. Thus the
influence of the advancing angle uA on the displacement of a
viscous bridge is qualitatively similar to that for a viscous

FIG. 1. Equilibrium shapes for bridges with l51 and uA590°, for H/a
51.747 and Ca50, 0.05, 0.10, 0.155. ~a! The optimal shape of the contact
line. ~b! The variation of the contact angle u as a function of the azimuthal
angle f measured with respect to the positive x direction.

FIG. 2. Bridge surface for l51, uA590°, and Ca50.155.

FIG. 3. Critical capillary number Ca vs hysteresis uA2uR for a viscous
bridge.
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droplet in shear and pressure-driven flows2,4 as well as to that
on the gravitational displacement of fluid droplets.3 This be-
havior is associated with changes in the net interfacial force.
For small hysteresis, this force is proportional to the width of
the droplet ~or radius of the contact line! and the quantity
(cos uR2cos uA) which measures the component of the force
parallel to the wall. The radius of the contact line decreases
monotonically with uA , while the quantity (cos uR2cos uA)
scales as (uA2uR)sin uA for small hysteresis. It increases for
small uA but reaches a maximum at uA590°. Increasing uA

from small values, the radius of the contact line decreases,
while sin uA increases toward its maximum value. The net
interfacial force increases, and hence a stronger flow rate Ca
is required to displace the bridge. At angles slightly below
uA590°, the effect of the reducing radius becomes domi-
nant, and the interfacial force begins to decrease. For angles
above uA590°, both the radius and the sin uA term decrease
as uA increases; thus the critical Ca decreases facilitating the
displacement.

This behavior is valid for small and moderate values of
hysteresis, as clearly shown in Fig. 3 above. A careful ex-
amination of this figure shows that the curves for bridges
with uA<90° ~usually called wetting bridges in hydrostatic
problems! exhibit a different slope compared to the ones for
bridges with uA.90° ~or non-wetting bridges in hydrostatic
problems!. By extrapolating our numerical results to high
hysteresis, e.g., uA2uR→uA , one may speculate that
bridges with uA.90° might become more stable than
bridges with uA590° at high enough values of hysteresis.
This conclusion is in agreement with the behavior at high
hysteresis of the curves for uA590° and uA5110° shown in
Fig. 3.

Investigating the effects of the viscosity ratio l, we
found that the influence of uA on inviscid or low-viscosity
bridges (l!1) as well as on high-viscosity bridges (l@1)
is qualitatively similar to that for l51 at any plate spacing,
i.e., for both short and tall bridges. For inviscid bridges at
large plate spacings, the dominant displacing force is the
pressure force associated with the disturbance of the base
flow. On the other hand, for small plate spacings the domi-
nant pressure force is associated with the pressure gradient.
Thus for fluid bridges the two pressure components and the
shear stress show similar dependence on the advancing angle
uA . This behavior differs from our earlier results for a drop
attached to a single wall in parabolic flow between two
plates. For small plate spacing, viscous and inviscid droplets
show similar behavior consistent with the present results.
However, for large plate spacing the influence of uA on an
inviscid droplet is diametrically opposite to that for a viscous
droplet.4 The explanation for this behavior lies on the force
balance on the bridge. For both viscous and inviscid bridges,
the pressure force is proportional to the frontal area of the
bridge. For viscous bridges there is an additional force, the
shear stress, which is proportional to the surface area of the
bridge. For a bridge spanning the gap between two parallel
walls, the frontal and surface areas are comparable; thus both
viscous and inviscid bridges are affected similarly by the
advancing contact angle uA . Owing to the shear stress, the
viscous bridges require more hysteresis and exhibit more de-

formation as shown in Fig. 4 below ~where we collect results
for several viscosity ratios!. However, this effect is not as
strong for bridges as it is for droplets. The droplets may
become quite spread out over the surface reducing the pres-
sure force and thus resulting in large deviations for the criti-
cal flow rate Ca as the viscosity ratio increases from small
values.2,4

The influence of the plate spacing is shown in Fig. 5,
where we present the highly asymmetric shapes of a short
and tall bridge, and in Fig. 6 which reveals the effects of the
plate spacing on the critical flow rate. For a given hysteresis
uA2uR , increasing the plate separation from very small val-
ues, increases the critical flow rate Ca, for values of the plate
separation up to H/a51.101 or H/R51, where R is the
radius of a cylinder of the same volume. Above this value,
increasing the plate separation decreases the critical flow
rate.

This behavior is readily explained by the balance be-
tween the hydrodynamic and interfacial forces for different
plate spacings. For very short bridges with advancing angles
uA590° and for very small deformations ~i.e., for uA2uR

→0), using the theory of the Hele-Shaw cell we may show
that the hydrodynamic force is inversely proportional to the
bridge height and scales as mGa3H21. By contrast, for very
tall bridges, using slender-body theory we may show that the
hydrodynamic force increases with the height of the bridge
and scales as mGH2. For both cases the interfacial force is
proportional to the width of the contact line and hence de-
creases with the height of the bridge ~for a given volume!,
yielding an overall scaling g(uA2uR)a3/2H21/2. Therefore,
the capillary number Ca for short bridges scales as

~Ca!short;~uA2uR!~H/a !1/2, ~1!

while for tall bridges it scales as

~Ca! tall;~uA2uR!~H/a !25/2. ~2!

FIG. 4. Critical Ca vs hysteresis uA2uR for several viscosity ratios. Also
shown are the contact line shapes and bridge profiles for Ca50.13.
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This means that for a given hysteresis uA2uR the critical
capillary number Ca increases either when the plate separa-
tion increases from very small values or when the plate sepa-
ration decreases from very high values. Thus there must be a
value of the plate separation where the capillary number Ca
takes a maximum value, as our computational results show.
This behavior shows that very short or very tall bridges can
be displaced more easily than bridges with moderate height.
We note that this result is valid for any viscosity ratio, and
thus it contrasts with the drop displacement results where a
weak dependence on the plate spacing was found for viscous
droplets, while a fast monotonic increase on the critical flow
rate Ca was found for low-viscosity droplets ~see Figs. 7, 9,
and 13 in Ref. 4!.

As a final point one may address the following question:
for a specific parallel plate apparatus and a specific drop
volume, what is more stable, a droplet attached to one plate
or a fluid bridge between the two plates? The answer de-
pends on the dimensionless plate spacing and the contact

angles. For very large plate spacings, even the quiescent
bridge is unstable; thus in this case only the first configura-
tion is stable. For other plate spacings, a qualitative answer
can be given easily for bridges with moderate to large con-
tact angles. For very small plate spacing, no solution exists
for a single droplet; in this case only the bridge is a possible
configuration. For moderate values of the plate separation,
the viscous bridge is more stable since it forms two contact
lines ~i.e., they provide higher net interfacial forces!, as can
be easily verified by comparing our current results with our
results for drop displacement in pressure-driven flows.4
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FIG. 5. Bridge surface with l51 and uA590° for different plate separa-
tions: ~a! H/a51.101 ~or H/R51) and Ca50.145, ~b! H/a53.218 ~or
H/R55) and Ca50.03 ~where R is the radius of a cylinder of the same
volume!.

FIG. 6. Critical Ca vs hysteresis uA2uR for a bridge with l51, uA590°
and for different plate separations. ~The curve for H/R50.25 falls between
the curves H/R52 and 3; R is the radius of a cylinder of the same volume.!
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