Introduction to Nonequilibrium Statistical Physics, C. Jarzynski, Spring 2020

A few elementary facts about real square matrices

Let M denote a real, $N \times N$ matrix. Left and right eigenvectors are defined by

$$M\mathbf{u} = \lambda \mathbf{u} \quad , \quad \mathbf{v}^{\dagger} M = \lambda \mathbf{v}^{\dagger}, \tag{1}$$

where **u** is a column vector, \mathbf{v}^{\dagger} is a row vector, and the dagger (†) denotes a transpose with complex conjugation (c.c.). The eigenvalues $\lambda_1, \dots, \lambda_N$ solve the characteristic equation

$$|M - \lambda I| = 0, (2)$$

and there may be degeneracies among these values. Note that there is no distinction between the sets of left and right eigen values.

Case 1. If $M = M^T$ then

- all eigenvalues are real,
- the left and right eigenvectors are identical, and can be made to be real, and
- \bullet there are N eigenvectors, and they form an orthogonal basis set.

Case 2. If $M \neq M^T$ and there are no degeneracies among the eigenvalues, then

- there are N left eigenvectors $\{\mathbf v_1^\dagger,\cdots \mathbf v_N^\dagger\}$, forming a complete basis set,
- there are N right eigenvectors, $\{\mathbf{u}_1, \cdots \mathbf{u}_N\}$, forming a complete basis set, and
- with proper choice of normalization, the two sets can be made bi-orthonormal:

$$\mathbf{v}_i^{\dagger} \cdot \mathbf{u}_j = \delta_{ij} \quad , \tag{3}$$

but in general $\mathbf{u}_i^{\dagger} \cdot \mathbf{u}_j \neq 0$ and $\mathbf{v}_i^{\dagger} \cdot \mathbf{v}_j \neq 0$.

Both \mathbf{v}^{\dagger} and its c.c. are left eigenvectors of M, and both \mathbf{v} and its c.c. are right eigenvectors of M^T . Similar comments apply to the \mathbf{u} 's.

In either Case 1 or Case 2, the matrix M is diagonalizable:

$$M = UDV^{\dagger} = \begin{pmatrix} \uparrow & \uparrow \\ \mathbf{u}_1 & \cdots & \mathbf{u}_N \\ \downarrow & \downarrow \end{pmatrix} \begin{pmatrix} \lambda_1 & \\ & \ddots \\ & & \lambda_N \end{pmatrix} \begin{pmatrix} \leftarrow \mathbf{v}_1^{\dagger} & \to \\ & \vdots \\ \leftarrow \mathbf{v}_N^{\dagger} & \to \end{pmatrix}$$
(4)

where the notation indicates that the columns of U and the rows of V^{\dagger} are given by the right and left eigenvectors, respectively. Note that $UV^{\dagger} = V^{\dagger}U = I$, and in Case 1 U = V.

Case 3. If $M \neq M^T$ and there are degeneracies among the eigenvalues, then

- for each solution λ of Eq. 2 there are k left eigenvectors and k right eigenvectors, where $1 \leq k \leq K$ and K is the degeneracy of the solution. Thus there are $N^* \leq N$ left eigenvectors and an equal number of right eigenvectors.
- If $N^* = N$, the conclusions of Case 2 still apply (in particular M is diagonalizable).
- If $N^* < N$, neither the left nor the right eigenvectors form a complete set (obviously!), and M is not diagonalizable, but can be transformed into Jordan canonical form.

Examples. As you can (and should!) verify, the following matrices illustrate Case 3, with $N^* = N$ (diagonalizable) and $N^* < N$ (non-diagonalizable), respectively:

$$\begin{pmatrix} -3 & 3 & 3 \\ 2 & -4 & 2 \\ 1 & 1 & -5 \end{pmatrix} , \begin{pmatrix} -17 & 19 & 13 \\ 3 & -9 & 9 \\ 14 & -10 & -22 \end{pmatrix}$$
 (5)