ParlayANN: Scalable and Deterministic Parallel
Graph-Based Approximate Nearest Neighbor
Search Algorithms

By MSBDGSS

Problem

e Given a data set P, an integer parameter k, and a query point q: output the k data
points in P that are closest (according to some metric) to g

Challenges for Efficient KNN Algorithms

e Curse of Dimensionality - Non-trivial algorithms typically have query times that
depend exponentially on the dimension

Approximate Nearest Neighbor Search

Used as the core subroutine for many modern applications including search
recommendations, machine learning, and information retrieval

Some of the best-performing ANNS algorithms today are graph-based ANNS
algorithms

These algorithms construct a “proximity” graph whose vertices are the point
set. Vertices (points) are then connected to “closeby” vertices (points)

An ANNS search consist of a traversal of the proximity graph from a source
point that greedily explores points that are closer to the query until the search

converges

Issues

e There is very little work that systematically studies how parallel graph-based
ANNS algorithms scale

e Existing parallel implementations of graph-based algorithms rely on locks
which introduce non-deterministic outputs

e Existing benchmarks for graph-based ANNS algorithms focus on relatively
small input sizes and evaluate sequential performance

Contributions of this Paper

e ParlayANN - a parallel ANNS library that scales to billion-point datasets,
scales to more than a hundred threads, and is deterministic

e New general techniques for building ANNS graphs in parallel

e A high-performance implementation of ParlayANN that contains
implementations of four state of the art graph-based algorithms: DiskANN,
HNSW, HCNNG, and PyNNDescent

e Accurate depiction of performance comparison among ANNS algorithms on
billion-scale datasets

Scalability Results

—¥— ParlayDiskANN Original —&— ParlayHNSW Original
51x] 36x
40 1 30 7
38x 204 26x
20
104
0 - 04

0 20 40 60 80 48h 0 20 40 60 80 48h

Speed-up Relative to the Original
Implementation on One-thread

~o— ParlayHCNNG Original —&— ParlayPyNN Original
_—758x 28
2001 — 20 i
100 1 // 10
‘(o 28X 2x
0 :

o 20 40 60 80 48h 0 20 40 60 80 48
Threads

Figure 1. Scalability of original and our new implemen-
tations of four ANNS algorithms on various number of
threads. Within each subfigure, all numbers are speedup
numbers relative to the original implementation on one
thread. Higher is better. Results were tested on a machine with
48 cores using dataset BIGANN-1M (10° points). “48h”: 48 cores
with hyperthreads. The two implementations in the same subfig-
ure always use the same parameters and give similar query quality
(recall-OPS curve).

Graph-Based ANNS Algorithms - High Level Approach

e ANNS graph - directed graph with vertices representing points in P (point set)
e For each point p in P, we connect p to points that are “nearby”
e Additionally we connect p to a “small” number of points that are “far” away

Greedy (Beam) Search

Used by most ANNS graph algorithms

Given a query point g, such a search maintains a list (referred to as a beam)
of some bounded size which represents a set of nearest neighbor candidates
of q

Initially the beam contains a given source point s. In each step, the algorithm
pops the closest point to g from the beam and processes it by adding all its
out neighbors to the beam

The algorithm also keeps track of all points that have been processed in the
form of a visited set

Algorithm and Example

Algorithm 1: greedySearch(p, s, L, k).

Input: Point g, starting point s, beam width L, integer k.
Output: Set V of visited points and set K of k-nearest
neighbors to point q.
1Y <0
L — {s}
while £\ V # 0 do
p* « argming,e £\ llp. gl
5 YV «VuU{p*}
6 L — LU Nou(p*)
5 if | L] > L then retain only L closest points to g in £
8 K « k closest points to g in V
9 return V, K

N

[

D ge query point
A '] Pointsin V (set of processed vertices)
W F I\ [Points in L (the beam set)

qe [\ The processed point p* € L, i.e., the

C closest pointto g in L\ V.
Removed from £ because |L£| > L.
Only the L closest points in £ are kept.

E . G Finish here: all points in L are in V.
Starting from A, L =3 Nearest neighbor found is H.

disH. |
L: N +B=D>H JR H|A[D] +g> IR H|F (A +D__H>G IR H|F|A
V:0 v:[v: A0 v: A3

Better Example

https://[pynndescent.readthedocs.io/en/latest/how pynndescent works.html

https://pynndescent.readthedocs.io/en/latest/how_pynndescent_works.html

Existing Techniques

e Incremental Algorithms - DiskANN and HNSW
e Clustering-Based Algorithms - HCNNG and PyNNDescent

Incremental Algorithms

e \Work by inserting points (in some order) into the graph

e Toinsert point p we query the existing graph using a greedy search

e The visited set of this search is then “pruned” and edges are added from/to p
to/from each point in the pruned visited set

e The pruning routine attempts to select a subset of neighbors for p that cover
a diverse range of edge lengths and directions

e Pruning also ensures that the size of p’s neighborhood has at most a given
degree bound

e A smaller degree bound typically results in faster but less accurate searches
compared to a larger bound

prune

Algorithm 2: RobustPrune(p, V, a, R)

e Pruning procedure used in DiskANN Data: Graph G, point p € P, candidate set),
e IfVis {P} / P and R is n-1 then using distance threshold o > 1, degree bound R

: Result: G is modified by setting at most X new
this procedure to produce the sutneiphions for

out-neighbors of every point p, begin

ensures that the distance to any }’V<— (Yu J\éout () \ {p}
query decreases by a multiplicative wﬁﬁ;(p]), ; d.da

factor of a > 1 at every node along p* + argmin, ¢y d(p,p’)
the search path Nout(p) <= Nout(p) U{p"}

e Essentially ensures logarithmic query ‘i“&:ﬁ” = R then

time at the cost of quadratic for o €V do

construction time if «-d(p*,p) <d(p,p’) then
e DiskANN uses greedy searching to L | remove p' from V

carefully choose V =

insert

Algorithm 2: insert(p, s, R, L).

Input: Point p, starting point s, beam width L, degree bound R.
Output: Point p is inserted into the nearest neighbor graph.

1 V,K « greedySearch(p,s,L,1)

Nout(p) < prune(p,V,R)

for g € Noy:(p) do

Nout(q) < Nout(q) U {p}
if |Nout(Q)| > R then Nout(q) — prune(q, Nout(Q)aR)

b

- W

(5]

Challenges for Incremental Algorithms

e Existing parallel implementations of incremental ANN algorithms insert all
points in a single parallel loop over all points

e Such implementations need to use locks to sequentialize conflicts as the
graph is initially empty

e This results in performance issues and non-determinism

Prefix Doubling

e Insert points in batches of exponentially increasing size

e Each point will add itself based on the snapshot at the end of the last batch
and will therefore not conflict with other points in the same batch

e Provides a balance between parallelism (large batches can utilize a large
number of threads), progress (no conflicts within batches), and accuracy
(each point sees a “reasonably” accurate snapshot of the graph)

Batch Insertion and Pruning

Algorithm 3: batchBuild(#, s, R, L).

° US| ng our prefIX dou bllng Input: igi{;tds;t. P, starting point s, beam width L, degree
SCheme we |nsert p0|nts |n Otuttput:lAn ANN graph consisting of all points in P.
batCh es 2 while start < |P| do // Prefix-doubling

. . . 3 end < min(start X 2, start + 6, : batch size upper
e Inlines 7-9, all points in the [Eie gl RElR et
batch construct their own L | B)
. . 5 start «— end +
nelghborhOOd Independently 6 Function BatchInsert(P’) //Insert a batch P’ to the current
I index
on an immutable snapshot . I it
(thus no locks needed) s V, % — greedySearch(p,s, L, 1)
. 9 Nout(p) < prune(p, V,R)
o L|neS 11'1 4 make eaCh p 10 B Ltjpep Nout(p) // All (existing) affected points
el icti 1 arallel for b € B do
VISIbletO the eXIStIng graph by 1 // N': all points in P’ that added b as their neighbors
reversing added edges " N—{plpeP A beNou(p)}

e We use parallel semi-sort to o | | e e e il

avoid having to use locks prune(b, Noa:(5), R)

Batch Size Truncation

e Forlarge batch sizes graph accuracy can suffer
e To account for this we upper bound the batch size by some theta (empirically

set to 0.02n)
e In practice this relaxation doesn’t affect scalability or parallelism since 2% of

the input is enough to utilize all threads

Clustering-Based Algorithms

e These algorithms construct clustering trees

e The algorithm splits the input into two pieces and keeps recursively splitting
until the number of points drops below a given threshold, reaching a “leaf”
cluster

e The recursive structure of the splitting produces the cluster tree

e Within each leaf cluster, a local ANN graph with stronger conditions is build

e \We use different random seeds to generate different cluster trees and hence
multiple local ANN graphs

e The final ANN graph is taken as the union of these local ANN graphs (modulo
some additional post-processing)

Challenges for Clustering-Based Algorithms

e Lock based merging of local ANN graphs
e Local ANN graph construction generates costly intermediate structures
(maintaining all the local ANN graphs is costly in terms of space and time)

Parallelizing Clustering-Based Algorithms

e Construct multiple cluster trees in parallel

e Parallelize the construction of each tree using a parallel divide and conquer
combined with a parallel partitioning primitive to assign points to different
branches in parallel

e To avoid per-point locks when combining local ANN graphs use parallel
semi-sort

DiskANN

e Essentially Algorithm 2 using Robust Pruning
e This can be thought of as streamlining navigation by pruning out long edges

of triangles
e We can optimize DiskANN by using prefix doubling

Short edges are required

N,

The long edge is redundant

PyNNDescent

e Construct an initial ANN graph where each point is connected to k “random” other
points

e This is achieved using random projection trees

e The local ANN graphs connects each point to the exact k nearest neighbors within
each leaf

e |n an interactive manner we refine the initial graph by first undirecting the graph

e Then for for each point p compute its two hop neighborhood and retain the k closest
candidates

e https://pynndescent.readthedocs.io/en/latest/how_pynndescent _works.html

e Optimize using random edge sampling and batch computation for hop
neighborhoods

e Despite optimizations the paper was unable to scale PyNNDescent to work on
billion scale data sets

e The main issue is the computation of each points two hop neighborhood

https://pynndescent.readthedocs.io/en/latest/how_pynndescent_works.html

ool =
%10“ § 'slo"
‘xm= e & 18
§ Build Time am‘ * | Build Time &0 Build Time
gm, - 6.7 s 4.3 ! - B.24
6 * 5.1

—%— ParlayDiskANN —&— ParlayHNSW —&— ParlayHCNNG —+— FAISS

- ‘0
- 8.4 3 o 19.47
- 6.0 10° e Ak 10! -+ 15.97
o 5.2 G A0 -+ 3n
000 025 050 075 100 02 04 06 08 L0 000 0325 050 075
Recall 10§10 Recall 10810 Recall 10510
(a) BIGANN-1B QPS (b) MSSPACEV-1B QPS (c) TEXT2IMAGE-1B QPS
§10°
2103
f""""—/ y
00 02 04 06 08 10 02 04 06 08 10 00 02 04 06 08
Recall 10§10 Recall 10@10 Recall 10§10
(d) BIGANN-1B Dist Comps () MSSPACEV-1B Dist Comps () TEXT2IMAGE-1B Dist Comps

Figure 3. Build time (hours), QPS, recall, and distance comparisons for all algorithms on billion-size datasets.

Results - Continued

107

10°
£100

104

10°
£

10*

090 0.92

QP> On BigANN1OUM

e FASS (PQLIN

0.0 0.2 04 0.6 08 10
Recalil0@10

(a) BIGANN-100M
QPS on BigANN10OM

094 096
Recalll0@10

098 1.00

(d) BIGANN-100M

107

¥
i 10°
4

g10°

QP> On SPALEVIUUM

= ParieyDIANN
— Parlap NS
- ParlagHCNNG

- Parta Py

o~ TASS (2716 Contozide)

w@= TAIS (2718 Contraidn)

0.0 0.2 04 06 08 1.0
Recall 10@10

(b) MSSPACEV-100M
QPS on SPACEV1I0OM

090 002 0084 096 008 1.00
Recall 10@10

(e) MSSPACEV-100M

QPS on TEXT2IMAGE100M

0.0 0.2 0.4 0.6 0.8 1.0
Recall 10@10

(¢) TEXT2IMAGE-100M

QPS on TEXT2IMAGE100M

2x10* =
§ e ParayHRSW
§ 10°
4
§6 x 10°
0.90 0.92 0.94 0.96
Recall 10§10

(f) TEXT2IMAGE-100M

Figure 4. QPS-recall curves on all 100-million size datasets. The first row shows the overall QPS/recall curve, while the second row zooms
into a higher-recall regime. The build times are given in Tab. 1

