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Problem

● Given a data set P, an integer parameter k, and a query point q: output the k data 
points in P that are closest (according to some metric) to q



Challenges for Efficient KNN Algorithms

● Curse of Dimensionality - Non-trivial algorithms typically have query times that 
depend exponentially on the dimension



Approximate Nearest Neighbor Search

● Used as the core subroutine for many modern applications including search 
recommendations, machine learning, and information retrieval 

● Some of the best-performing ANNS algorithms today are graph-based ANNS 
algorithms

● These algorithms construct a “proximity” graph whose vertices are the point 
set. Vertices (points) are then connected to “closeby” vertices (points)

● An ANNS search consist of a traversal of the proximity graph from a source 
point that greedily explores points that are closer to the query until the search 
converges



Issues

● There is very little work that systematically studies how parallel graph-based 
ANNS algorithms scale

● Existing parallel implementations of graph-based algorithms rely on locks 
which introduce non-deterministic outputs

● Existing benchmarks for graph-based ANNS algorithms focus on relatively 
small input sizes and evaluate sequential performance



Contributions of this Paper

● ParlayANN - a parallel ANNS library that scales to billion-point datasets, 
scales to more than a hundred threads, and is deterministic

● New general techniques for building ANNS graphs in parallel
● A high-performance implementation of ParlayANN that contains 

implementations of four state of the art graph-based algorithms: DiskANN, 
HNSW, HCNNG, and PyNNDescent

● Accurate depiction of performance comparison among ANNS algorithms on 
billion-scale datasets



Scalability Results



Graph-Based ANNS Algorithms - High Level Approach

● ANNS graph - directed graph with vertices representing points in P (point set)
● For each point p in P, we connect p to points that are “nearby”
● Additionally we connect p to a “small” number of points that are “far” away



Greedy (Beam) Search

● Used by most ANNS graph algorithms
● Given a query point q, such a search maintains a list (referred to as a beam) 

of some bounded size which represents a set of nearest neighbor candidates 
of q

● Initially the beam contains a given source point s. In each step, the algorithm 
pops the closest point to q from the beam and processes it by adding all its 
out neighbors to the beam

● The algorithm also keeps track of all points that have been processed in the 
form of a visited set 



Algorithm and Example



Better Example

https://pynndescent.readthedocs.io/en/latest/how_pynndescent_works.html

https://pynndescent.readthedocs.io/en/latest/how_pynndescent_works.html


Existing Techniques

● Incremental Algorithms - DiskANN and HNSW
● Clustering-Based Algorithms - HCNNG and PyNNDescent



Incremental Algorithms

● Work by inserting points (in some order) into the graph
● To insert point p we query the existing graph using a greedy search
● The visited set of this search is then “pruned” and edges are added from/to p 

to/from each point in the pruned visited set
● The pruning routine attempts to select a subset of neighbors for p that cover  

a diverse range of edge lengths and directions
● Pruning also ensures that the size of p’s neighborhood has at most a given 

degree bound
● A smaller degree bound typically results in faster but less accurate searches 

compared to a larger bound



prune

● Pruning procedure used in DiskANN
● If V is {P} / p and R is n-1 then using 

this procedure to produce the 
out-neighbors of every point p, 
ensures that the distance to any 
query decreases by a multiplicative 
factor of α > 1 at every node along 
the search path

● Essentially ensures logarithmic query 
time at the cost of quadratic 
construction time

● DiskANN uses greedy searching to 
carefully choose V



insert



Challenges for Incremental Algorithms

● Existing parallel implementations of incremental ANN algorithms insert all 
points in a single parallel loop over all points

● Such implementations need to use locks to sequentialize conflicts as the 
graph is initially empty

● This results in performance issues and non-determinism



Prefix Doubling

● Insert points in batches of exponentially increasing size
● Each point will add itself based on the snapshot at the end of the last batch 

and will therefore not conflict with other points in the same batch
● Provides a balance between parallelism (large batches can utilize a large 

number of threads), progress (no conflicts within batches), and accuracy 
(each point sees a “reasonably” accurate snapshot of the graph)



Batch Insertion and Pruning

● Using our prefix doubling 
scheme we insert points in 
batches

● In lines 7-9, all points in the 
batch construct their own 
neighborhood independently 
on an immutable snapshot 
(thus no locks needed)

● Lines 11-14 make each p 
visible to the existing graph by 
reversing added edges

● We use parallel semi-sort to 
avoid having to use locks



Batch Size Truncation

● For large batch sizes graph accuracy can suffer
● To account for this we upper bound the batch size by some theta (empirically 

set to 0.02n)
● In practice this relaxation doesn’t affect scalability or parallelism since 2% of 

the input is enough to utilize all threads



Clustering-Based Algorithms

● These algorithms construct clustering trees
● The algorithm splits the input into two pieces and keeps recursively splitting 

until the number of points drops below a given threshold, reaching a “leaf” 
cluster

● The recursive structure of the splitting produces the cluster tree
● Within each leaf cluster, a local ANN graph with stronger conditions is build
● We use different random seeds to generate different cluster trees and hence 

multiple local ANN graphs
● The final ANN graph is taken as the union of these local ANN graphs (modulo 

some additional post-processing)



Challenges for Clustering-Based Algorithms

● Lock based merging of local ANN graphs
● Local ANN graph construction generates costly intermediate structures 

(maintaining all the local ANN graphs is costly in terms of space and time)



Parallelizing Clustering-Based Algorithms

● Construct multiple cluster trees in parallel
● Parallelize the construction of each tree using a parallel divide and conquer 

combined with a parallel partitioning primitive to assign points to different 
branches in parallel

● To avoid per-point locks when combining local ANN graphs use parallel 
semi-sort



DiskANN

● Essentially Algorithm 2 using Robust Pruning
● This can be thought of as streamlining navigation by pruning out long edges 

of triangles
● We can optimize DiskANN by using prefix doubling



PyNNDescent

● Construct an initial ANN graph where each point is connected to k “random” other 
points

● This is achieved using random projection trees
● The local ANN graphs connects each point to the exact k nearest neighbors within 

each leaf
● In an interactive manner we refine the initial graph by first undirecting the graph
● Then for for each point p compute its two hop neighborhood and retain the k closest 

candidates
● https://pynndescent.readthedocs.io/en/latest/how_pynndescent_works.html
● Optimize using random edge sampling and batch computation for hop 

neighborhoods
● Despite optimizations the paper was unable to scale PyNNDescent to work on 

billion scale data sets 
● The main issue is the computation of each points two hop neighborhood

https://pynndescent.readthedocs.io/en/latest/how_pynndescent_works.html


Results



Results - Continued


