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Abstract—Complex reaction kinetics and mechanisms, physical changes and transport effects, non-ideal mixing, and
strong process nonlinearity characterize polymerization processes. Polymer reaction engineering is a discipline that
deals with various problems concerning the fundamental nature of chemical and physical phenomena in polymeriza-
tion processes. Mathematical modeling is a powerful tool for the development of process understanding and advanced
reactor technology in the polymer industry. This review discusses recent developments in modeling techniques for the
calculation of polymer properties including molecular weight distribution, copolymer composition distribution,
sequence length distribution and long chain branching. The application of process models to the design of model-based
reactor optimizations and controls is also discussed with some examples.
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INTRODUCTION between the process variables and end-use properties is generally
very difficult and not well established. Polymer reaction engineer-
The polymer industry is facing many challenges to meet a raping is a discipline that deals with various issues concerning these
idly changing and diversifying market environment and the pressurgroblems. Table 1 illustrates some examples of major topics dis-
for cost reductions and new product developments. Product qualitgussed in recent international conferences on polymer reaction engi-
specifications are becoming tighter, and timely introduction of newneering attended by academic and industrial researchers. Notice
products to customers is becoming critical to staying in business. that fundamental studies on polymerization kinetics and polymeriza-
Many problems encountered in industrial polymerization reac-tion process modeling continue to be the main topics of discussion.
tors or processes are associated with inherent complexities in poly- Modeling of polymerization processes, especially modeling of
merization kinetics and mechanisms, physical changes and trangolymer architectural properties, is of enormous industrial impor-
port effects (e.g., viscosity increase, particle formation, precipita-tance because it plays a key role in achieving the industry’s goal of
tion, interfacial mass and heat transfer limitations), non-ideal mix-speedy introduction of new products into markets. Many polymer
ing and conveying, and strong process nonlinearity (potential thermanufacturers find that a better understanding of their existing poly-
mal runaway, limit cycles, multiple steady states). Moreover, manymerization reactions and process behaviors would enable them to
of the process variables that affect important product quality indi-design more efficient polymerization technology and to develop
ces are difficult, if not impossible, to measure on-line or they canimproved or new products. In general, polymerization models are
be measured only at low sampling frequencies with time delaysgderived from the fundamental chemistry and physics of the poly-
making product quality monitoring and control difficult. The actual merization processes to calculate reaction rates and polymer archi-
customer specifications for end-use applications are often repreectural parameters. Such models are called the first principles mod-
sented by non-molecular parameters (e.g., tensile strength, impaets. For certain polymerization systems, complex molecular struc-
strength, color, crack resistance, thermal stability, melt index, dentures are not appropriate for first-principles modeling and hence
sity, etc.) that must be somehow related to fundamental polymeempirical or semi-empirical models such as neural network mod-
properties such as molecular weight distribution (MWD), compo-els are the practical alternatives [Chum and Oswald, 2003].
sition, composition distribution, branching, crosslinking, stereoreg- Polymerization process modeling was started in the 1970s by
ularity, etc. Unfortunately, more than one reaction or process variacademic and industrial researchers, and now it is widely used in
able affects these properties, and quantifying the exact relationshigke polymer industry for a broad range of applications such as pro-
cess design, product development, process control, and optimiza-

To whom correspondence should be addressed. tion. Several commercial process simulation packages utilizing com-
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Table 1. Topics in recent conferences on polymer reaction engineering

Polymer Reaction Engineering DECHEMA Workshop on Polymer Polymer Reaction Engineering

Conference IV Reaction Engineering Conference V

(Palm Cost, USA, 2000) (Hamburg, Germany, 2001) (Quebec, Canada, 2003)

- Recent developments in polymerization - Emulsion and dispersion polymerization- New mathematical modeling techniques
kinetics - Catalytic olefin polymerization - Structure property relationships

- Approaches for developing process - New reactor concepts - New polymerization systems
understanding - Molecular simulation of polymers - Polymer fundamentals

- Commercial viability of processes and - Modeling and simulation of polymeriza- - Industrial applications of polymer reac-
products tion kinetics and reactors tion engineering

- Scale-up of polymerization processes - Polymer modification and reactive pro- - Process monitoring and control

- Process modeling cessing

- Control and monitoring of polymeriza- - Heterogeneous polymerization in various
tion processes reaction media

ended package for the analysis and design of polymerization sysar weight distribution (MWD), molecular weight averages, copol-
tems with a highly modular structure. It allows for performing steadyymer composition (CC), copolymer composition distribution (CCD),
state and dynamic simulations, stability analysis, and parameter esthonomer sequence length distribution, short-chain and long-chain
mation with an extensive library of kinetic models for polymeriza- branching, crosslinking, and stereoregularity. Polymer particle size,
tion process systems. PREDI@ also a CAD simulation pack- particle size distribution (PSD, and polymer morphology, etc., are
age that enables the modeling and dynamic simulation of industriahot molecular properties but meso-scale properties that influence a
polymerization processes with detailed kinetic models includingpolymer’s physical, chemical, thermal, mechanical, and rheologi-
rigorous computation of molecular weight distributions, and com-cal properties. The macro-scale modeling that deals with the over-
position and branching analysis. Advanced features such as paramill reactor behaviors through macroscopic mass and energy bal-
eter estimation, treatment of cascades and their recipes, as well asances is not discussed in this paper.
interfacing to other applications are supporting this task [Wulkow, 1. Modeling of Molecular Weight Distribution
1996, 2003]. Polymers PfugAspentech) is another commercial Polymer molecular weight and MWD, along with other proper-
simulation package for the design of industrial polymerization pro-ties such as short chain branching (SCB) and long chain branching
cesses. (LCB), affect a polymer’s mechanical, rheological, and physical prop-
In this paper, we discuss some recent trends in polymer reactioarties. Besides polymer MWD, the rheological behavior of a poly-
engineering, but this review is not intended to provide a compre-mer also depends on many other factors, such as the types of flow
hensive review of all the advances in polymer reaction engineerfield, the intensity of the rate of deformation, temperature, and ther-
ing; rather, we will focus on recent advances in modeling and conmal histories. For example, for a given polymer, one type of rhe-
trolling the polymer’s molecular properties that impact the polymer’sological response (e.g., shear viscosity) is not as sensitive to a slight
end-use properties. For a review of general modeling techniqueshange in molecular parameters as others (e.g., normal stress ef-
for polymerization kinetics and reactors, see recent reviews pubfects) [Han and Kwack, 1983]. Therefore, it is important to under-
lished elsewhere [Ray, 1972; Choi, 1993; Kiparissides, 1996; Dubétand that controlling the MWD in a polymerization process does

etal., 1997]. not necessarily implicate the control of rheological properties during
polymer process operations. Nevertheless, the MWD is regarded

MODELING OF ARCHITECTURAL as one of the most important polymer architectural parameters to
PARAMETERS OF POLYMERS be controlled in any industrial polymerization processes. Table 2 illus-

trates the qualitative effects of polymer density, melt index (MI),

The two most representative objectives in modeling polymeriza-and MWD on some end-use properties of polyolefins.
tion reactions are to compute (1) polymerization rate and (2) poly- Controlling the MWD is a key operational objective in many in-
mer properties (molecular level and microscopic level) for variousdustrial polymerization processes. In the polymer industry, Ml is
reaction conditions. Quite often, these two types of model outputfrequently used as a measure of viscosity, or indirect polymer mo-
are not separate, but are very closely related to each other. For eecular weight, but the limitations in using Ml as a property mea-
ample, an increase in reaction temperature in free radical polymeisure should be understood. The Ml is the measurement of the flow
ization results in increasing polymerization rate but decreasing polyrate in g/10 min of polymer flowing through a die at a given tem-
mer molecular weight; an increase in catalyst concentration raisegerature under the action of a weight loaded onto a piston. Typical
polymerization rate but lowers polymer molecular weight. There-MI test conditions are 190/2.16, i.e., 2@0temperature and 2.16
fore, there is a need for detailed understanding of the polymerizekg weight. Many different conditions exist for performing the Ml
tion kinetics to devise a scheme to simultaneously achieve high prdest which require different weight loadings and different tempera-
ductivity and desired polymer properties. tures. However, Ml does not represent the true rheological charac-

Here, for process modeling purposes, we define the polymer progeristics of the resin under high shear processing conditions because
erties as those that represent the polymer architecture: e.g., moledw is, at best, a single value of viscosity at the particular shear rate
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Table 2. Effect of density, melt index and molecular weight distribution of polyolefins on end-use properties

Property As density increases, property As Ml increases, property As MWD broadens, property
Tensile strength (at yield) Increases Decreases

Stiffness Increases Decreases slightly Decreases slightly
Impact strength Decreases Decreases Decreases

Low temperature brittleness Increases Increases Decreases
Abrasion resistance Increases Decreases

Hardness Increases Decreases slightly

Softening point Increases Increases

Stress crack resistance Decreases Decreases

Permeability Decreases Increases slightly

Chemical resistance Increases Decreases

Melt strength Decreases Increases

Gloss Increases Decreases

Haze Decreases Decreases

Shrinkage Decreases Decreases Increases

and temperature employed in the test [Han et al., 1983a, b]. Nevetength n is expressed as=Pl—a)a"™'P where P is the total live
theless, Ml is still used in the industry, and quite often Ml is cor- polymer concentration arw is the probability of propagation. In
related with molecular weight averages (e.g., N=2a ). a-olefin polymerization with single site metallocene catalysts, it is
To calculate MWD in a polymerization process, a kinetic model easy to show that the polymer MWD also follows the Flory’s most
is needed. A typical polymerization process model consists of matgarobable distribution expressed in continuous form as
rial balances (component rate equations), energy balances, and an
additional set of equations to calculate polymer chain length distri- w(n)=rnexp(-m) @
bution. The kinetic equations for a linear addition polymerization where w(n) is the weight fraction of polymers with chain length n
process include initiation or catalytic site activation, chain propaga-andr s the ratio of chain transfer rates to propagation rate. The chain
tion, chain termination, and chain transfer reactions. Table 3 illusdength distribution function is often combined with a reactor resi-
trates the reactions that occur in homogeneous free radical polyence time distribution function to calculate the overall molecular
merization of vinyl monomers and coordination polymerization of weight distribution in a continuous process.
olefins catalyzed by transition metal catalysts. We can calculate MWD by solving the population balance equa-
In general, MWD is not represented by a simple distribution func-tions (rate equations) for the polymers of different chain lengths.
tion because many reactions and polymerization conditions conHowever, it is often impractical to solve a large system of polymer
tribute to the growth and termination of polymer chains. When quasipopulation balance equations represented by an infinite number of
steady state assumption is applied to live polymers or propagatingifferential equations. Hence, molecular weight averages are fre-
active centers, the MWD of live polymers is often represented byquently used as a measure of molecular weight properties. The mo-
the Schulz-Flory most probable distribution. For example, in freelecular weight averages can be calculated by solving the molecular
radical polymerization the concentration of live polymers of chain weight moment equations derived from the polymer population bal-
ance equations. Only the first few leading moments are sufficient
Table 3. Reaction schemes for addition polymerizations to calculate the molecular weight averages.
For homopolymerizations, the polymer molecular weight mo-
ment is defined as follows:

Free radical polymerization Coordination polymerization

Initiation Site activation
14%2R C+ASC A=Y M, @)
R+5p Initiation ”=1
Propagation C+M5Pp, whereA, is thg k-th molecular weight moment, n is the ngmber of
P+M 5P, Propagation monomer units, and Ms 'Fhe concentration of polymers with n re-
o P+M 5P peat units (monomer unl'Fs). Notice that the zero-th momen.t repre-
P+M =P, (n22) o sents the total concentration of polymer molecules and the first mo-
Chain transfer PitM =P, (n22) ment represents the total weight of polymer. The number average
P+M fim, M +P, Chain transfer and weight average molecular weights are defineMas:A,/A, ,
P +X 25 M, +X P+M M 4P, M, =A/A,. Z-average molecular weight is definedvas=A+/A,
Chain termination P.+X M +C The ratio of the two molecular weight averagés/M, , Isamea-
PP K, M. P s, M +C sure of MWD broadening and it is called thg polydispersity (PD).
. The variances of number average and weight average molecular
PP = Mo+ M, weights can also be calculated as follows:
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Table 4. Kinetic equations in free radical polymerization

W. J. Yoon et al.

Mass balance equations

MW moment equations

m k Al_
=—k,| -
dt dd"l ZKRM *+(k.M +k.S)(P-A})
+K,MP = (K, *k) PA1=0
1
%Ff =2fk,| =k RM % =K RM +(k,, M +k.S)(P A1)
+Kk,M (241 +P) = (K, +kig) PA;=0
dM _ o o dAd _1
gt = KRM kM 5 P ~kM 3 P, ot —Ekaz +kP(P~Py) * (kM +k:S)(P ~P.)
:1ka2 (KM *k:S tkP) aP
dpl —_ —_ + + ad — + i dAl _l PZ n-2 + PZ n-1
’n =k,RM —k,MP, *+(k;M +k,S) nZan (K km)Panan i km (1-a)? zn(n a2 +kP(1- a)z na

+(kme +kfsS)P( 1_0) z na"il
n=2

:lTla[ktcPZ-'-(kme +kfss+ka)P( 2(1 _az)]
dp, dAs_ P

dt =k M(Pn 17Po) = (KM Tk S)P, ~ (K thia) Py z P.(n=2) a _(l—a)z M +K. S+ ka)(GS -3¢? +40) +k P(a +2)]
dMn =(KuM Kk S)P, kP, ZP 4+ kmz P.P._.(n>2) where »
as >

koM *kinM +KS + (K, k)P

molecular weight of comonomer 2 MThe derivation of molecular
oA ==m— [/\ E}%D} ©)] weight moment equations for a copolymerization system is much more
S>n, complicated than for a homopolymerization system. Table 5 shows

o the copolymer molecular weight moment equations for a free rad-

ical binary copolymerization of vinyl monomers [Butala et al., 1988].
For a linear binary copolymerization system, the instantaneous

chain length and composition distribution can be calculated by using

the modified Stockmayer bivariate distribution function [Dubé et

. . . . al., 1997]:
where M is the molecular weight of a repeating unit. To calculate

the molecular weight moments, dynamic molecular weight moment
equations must be derived for the first three leading moments. Then, eXp% Bjy ©
they are solved together with the rate equations for monomer, ini-
tiator (catalyst), and polymers. Table 4 illustrates the kinetic equawhere w(r, y) is the instantaneous chain length and composition
tions for initiator, monomer, live polymers and dead polymers, anddistribution of polymerB=F,(1-F,)[1+4F,(1-F,)(r.r, —1)]"* ,
the molecular weight moment equations for live and dead poly- 1-w/w,
mers in free radical polymerization. The molecular weight moment ™ w,/w, +F,(1-w,w,)’
equations for other addition polymerization processes such as trangi- r=chain length, y=deviation from average copolymer composi-
tion metal catalyzed olefin polymerization can also be derived simijon, r=ratio of chain transfer rates to propagation rate, amgr
larly. The mathematical techniques to derive the molecular weighteactivity ratios. The instantaneous chain length distribution is ob-
moment equations can be found elsewhere [Ray, 1972; Schork @hined by integrating Eq. (6) with respect to y:
al., 1993; Dotson et al., 1996].

For a homopolymer, number and weight average degrees of poly- w(r) = f w(r,y)dy =Trexp(—1r) 6.1)
merization are often used: i.&,=M,/M, X,=M,/M, . But for
a copolymer, the degree of polymerization is not defined excepNote that Eqg. (6.1) is the Schulz distribution. Also, the composition
for alternating copolymers. The k-th molecular weight moment ofdistribution over all chain lengths is given by:

a binary copolymer is defined as 3 1+
w(y) =jZW(r,y)dr=-—(—@— 6.2)

) m@%&g

i(M, -M.)’nM,

o o X

w(r,y)drdy=(1+yd) F’rexp(— Tl’)dl’

: F,=average mole fraction of monomer

A =§ i (nw, +mw,)*
n=1m=1
where w is the molecular weight of comonomer 1,Yishd w is the Although molecular weight averages are a convenient measure
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Table 5. Free radical copolymerization model and molecular weight moment equations [Butala et al., 1988]

Kinetic scheme

Molecular weight moment equations

Initiation dAS _1 1
I ﬂ>2R d_to =§ktc11P2 +ktc12PQ+§ktc22Q2 _'—kmup2
R+M, P, 2K PQH Q"
R+M lqéQOl +(kf11M +kf12M 2)P+(kf21M +kf22M Z)Q
dA!
Prgpafi‘ﬂt'OL o L =K P P ke(PQHPQ) e QQ

n+1l,m

P wtM, 22 Q,
QuatM, ﬂwm .
QuatM, "> Q, .
Combination termination
P, .+P. % 1Y/
Pt Q5 Mm,
Qurn*Qua"Z Mo

Dlsproportlonatlon termlnatlon

QuntQ, B Mn.m+M.

+ ktdllp Pl + ktdlz( PlQ +Q1P)
+ ktdZZQQl +(kf11M 1 + kleM 2) Pl
+(kf21M 1 + kuZM Z)Ql
dA;
dt2 “Kie11(PoP +P}) +kier( P.Q +PQ, +2P,Q1)
+ kthZ(QZQ +Qi) + ktdllp PZ
Fhaa(P2Q +Q:P) Tki2:QQ;

+(kf11M 1+kf12M 2) P2 +(kf21M 1 +kf22M Z)QZ
where

ey YAO
w.C.a, 0 rly%?l +Wlal% + rlQD

151

rnq P1: —
Chain transfer to monomer 1-a,
Pn m-'—'vI H Mn m+ Pl 0 W1C101+%q_1y%32 +2W1(11%’1+XQE"'Wfal%’ﬁ'le%
an+M éMn m+Q01 P2: M M N
Qn m-'—lvI éMn m+P10 l_all
Qn m-'—lvI é Mn m+Q0 1 WZCZC(Z + %&1+W202%? +Eyp%
' 1-a,
a 1
Q _Wgczaz +j/P2 +2W202%Z_VP1+Q1%+W§02G P+QD
, =

1-a,

of polymer molecular weight, these molecular weight averages da<r<m) is calculated, resulting in the dramatic reduction of com-
not describe the complete characteristics of polymer MWD. Fur-putational load. This method is different from simply discretizing
thermore, for some polymers such as polypropylene with stereoirthe polymer population balance equations to finite difference form
regularities, knowing the full MWD may not be always sufficient for numerical MWD calculations. In the following, the method of
for many practical applications. It is possible that two polymer sam-finite molecular weight moments is briefly presented.

ples of different chain length distribution can have identical num- The key component in the method of finite molecular weight is
ber and weight average molecular weights. Quite obviously, theséo define the following function:

polymers will exhibit different rheological properties under melt

flow conditions. Also, bimodal or multi-modal MWD curves can- iiM,

not be represented by molecular weight averages and polydisper- f, ,=="

sity. >iM;
i=2

The major limitation in using the molecular weight moment tech-
nigue is that only molecular weight averages are calculated and a
complete MWD is not obtainable. Certain functions, such as the
Schulz distribution and Wesslau distribution, are often adopted andFig. 1 illustrates how the functiog, f, is defined. As the number
fitted with molecular weight average. Certainly, such methods areof chain length intervals is increased, the resulting chain length dis-
no more than curve fittings, lacking any physical implications. Re-tribution will approach the continuous distribution. The function
cently, Crowley and Choi [1997a, 1998a, b] developed the method,,, , is different from the similar function used by Scali et al. [1995]:
of finite molecular weight moments to calculate the chain IengthFIW:nE(n)/an(n)dn where F is a normalized weight fraction of
distribution in free radical polymerization of vinyl monomers with- polymer consisting afl monomer units. In their model, the instan-
out using a MWD functiom priori. This technique fully utilizes  taneous Schulz-Flory distribution function is adopted for).An
the convenience of the molecular weight moment technique but athe method of finite molecular weight moments, no such distribu-
the same time it enables the computation of full chain length distion is chosera priori and the chain length distribution is directly
tribution. In this method, instead of calculating the concentration orcomputed from the kinetic model equations.
weight fraction of polymer with a certain chain length (w(n)), the  Having defined the function,f,, we can derive the following
weight fraction of polymers in a finite chain length interval (e.g., differential equation forf,, using the dead polymer population

_weight of polymer with chain lengths from m to ?7)
total weight of polymer

Korean J. Chem. Eng.(Vol. 21, No. 1)
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-E’= 0.1+ . °
2 0.084
2 Nmax (]
; 0.061+ =
<
S(n+1.00) 0.04} o =
(e9) 1]
S (m.) 0.024 5
> 0 o g © ; g I
f(mon) 10 100 1000 10000
Fig. 1. Definition of function f(m, n). Average chain length in each interval
Fig. 2. Calculated and experimentally measured molecular weight
balance and the first moment equation: distributions: solution polymerization of methyl methacry-
late in a batch reactor [Crowley and Choi, 1997].
iM
g 18 M, Moy 1o ©
dt A& dt a2 dt A& dt A, dt

koM +k,P+kM kS
we can derive the following equation:

djdr;_'n! ={m(-a)+ara™ *+{(n+1)(1-a) +a}a™’

k,MP
_(2 _a)f(m,n)] /\
1

(10)

In Eg. (10), M is the monomer concentration and P is the total poly:
mer radical concentration. Eg. (10) represents how the weight frac
tion of polymer in a chain length interval (m, n) changes with reac-
tion time.

To calculate the polymer chain length distribution, Eq. (10) is
solved with molecular weight moment equations and the kinetic
modeling equations as illustrated in Table 4. It is necessary to as
sign appropriate values to m and n and to replace the infinite chai
length domain with a finite range bounded by a maximum chain
length (R..,). The maximum chain length is searched until a preset
convergence criterion such as f(2,yi=¢ where xis the final mono-
mer conversion anelis a number that is very close to unity (e.g.,
0.999). This criterion indicates that polymer produced in the chain
length range from 2 ta. 3 represents 1@0% of all polymers that
will be produced during the polymerization. Here, the minimum
chain length of 2 is assumed but a larger value can be used if dk
sired. Fig. 2 illustrates the experimentally measured and model pre
dicted molecular weight distributions in solution polymerization of
methyl methacrylate (MMA) in a batch reactor. Considering the
simplicity of the computational method, we see that the agreemer
between the model predictions and the experimental data is exce
lent.

This technique has been extended to thermal polymerization o'f: 9:
styrene [Yoon et al., 1998] and to an industrial process of continu-
ous free radical polymerization of styrene in a series of reactors shown
in Fig. 3 [Yoon, 2003]. In this process, three reactors are used: the

Weight fraction (x10)

Cumulative fraction

January, 2004

Fig.

By applying the quasi-steady state assumptions to live polymer rac _Feed
icals and using the probability of propagation defined as
Product
o= koM

Separator

3. Industrial continuous styrene polymerization process [Yoon,
2003].

3.5
3.0 — GPC Data
— — Simulation
2.5
2.0
1.5
1.0
.5
0.0
0 2 4 6 8 10
Molecular weight (x10-°)
1.0
.8
.6
4
2 B
0.0 T | ' | ' T T T '
0 2 4 6 8 10

Molecular weight (x10)

4. Molecular weight distribution of polystyrene in a continu-
ous process: solid lines-commercial plant data, dashed lines
model simulations; reactor residence times+147 min, t=
73 min, ;=12 min; reaction temperature T,=134°C, T,=
168°C, T,=172°C.
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first reactor (R_1: CSTR) is followed by a horizontal reactor (R_2) for modeling the hydrodynamic volume distribution of a copoly-
that consists of multiple compartments. Each compartment in R_2ner in a batch free radical copolymerization process. Here, the meth-
can be approximated as a CSTR. The third reactor (R_3) is a plugd is similar to the finite molecular weight moment method: hydro-
flow reactor with short residence time that acts as a preheating unidtynamic volume distribution is calculated by computing the weight
for the reactor content before it is supplied to a separator. Fig. 4 showigaction of polymers over a number of hydrodynamic volume in-
the actual gel permeation chromatography (GPC) data and the motervals. Chain length and copolymer compositions are related to
el-calculated polymer molecular weight distribution of polystyrene hydrodynamic volume by using the bivariate distribution function
at steady state. Note that excellent agreement has been obtaineshd the universal calibration method with composition dependent
demonstrating the practical utility of the finite molecular weight Mark-Houwink constants. Experimentally, it is possible to mea-
moment technigue to compute polymer molecular weight distribu-sure the weight fraction of copolymer molecules in a fixed interval
tion in a continuous process. The method of finite molecular weighbf hydrodynamic volume from a GPC chromatogram, given that a
moments has also been applied to the design of optimal operatingieasurement of average copolymer composition in that same vol-
conditions for a batch free radical polymerization process [Crow-ume interval is also available. The corresponding copolymer chain
ley and Choi, 1997b, 19983, b]. lengths bounding the hydrodynamic volume interval can then be
For a copolymer system, comparing copolymer MWD predic- calculated to reconcile GPC measurements with model predictions
tions based on a first principles model to actual GPC measurement&sed on chain length.
is not always straightforward. This is because the modeled vari- The following function is defined to represent the weight frac-
ables are usually formulated in terms of the number of repeat unition of copolymers with hydrodynamic volumes betweeand
(chain length) of monomer or overall molecular weight averagesv, ;.
in the copolymer, whereas GPC separates copolymer molecules
based on their hydrodynamic volumes in dilute solutions. Gold- j‘o B“Ij(‘;(f’I[w1F1+w2(1—F1)]%?¥dlgjt
wasser and Rudin [1983] derived the following general expression f(v;,v,.,)=
for the hydrodynamic volume of a copolymer in terms of the con-
tributions of its distinct homo- and hetero-interaction segments as wherel is the overall copolymer chain length, () is the mo-
4 ] lecular Wejght of monomer 1 '(monomer 2)jshe instantaneous
v=3—(p,§w,(K,Mc )] § (12) mole fraction of monomer 1 in the polymer, and) i3 the dead
' copolymer concentration of chain lengtfio calculate the copoly-
where wis the weight fraction of the i-th type of interactionaikd
¢ are the corresponding Mark-Houwink constagitss the univer- 0.3F , i i i . -
sal constant, and Ms the copolymer molecular weight. To relate ) A
hydrodynamic volume with chain length, we encounter the prob-
lem that there is no unique relationship between chain length ani ozl . . |
hydrodynamic volume for copolymers having different composi-
tions except for the special case of a copolymer with constant an
uniform copolymer composition. Strictly speaking, for statistical
copolymerization, even this special case is physically unrealizable .
because there exists a copolymer composition distribution even fc
copolymer produced instantaneously. The sizes of solvated poly 0.0ke. o 0.0 8. . ' e
mer molecules in the GPC mobile phase (solvent) depend on so 10" 10® 10" 10" 10" 10  10*
vent interaction with the chain segments that consist of monome Mean hydrodynamic volume in interval (v,,v; )
and comonomer units with a certain sequence length distributior ' . , . .
[Goldwasser et al., 1982; Goldwasser and Rudin, 1983]. For ex 0.70r7 B ]
ample, two copolymer molecules having different chain lengths F e e ® e,
and different copolymer composition could still conceivably elute J
at the same time because they have the same hydrodynamic v¢ = 9-691 * 7
ume. The overall degree of solvation may change with copolymel
composition and use of a single average set of Mark-Houwink con
stants in column calibration may produce incorrect molecular weight — 0-50 - °
data from the GPC analysis. In other words, there is no unique re
lationship between chain length and hydrodynamic volume for a ° o
copolymer with heterogeneity in the copolymer composition distri- 0.40 . . et . . =
bution. Therefore, it is not possible to measure the weight fractior 10® 10® 10"  10™ 10  10™ 10"
of all copolymer molecules having the same chain length in a sam Mean hydrodynamic volume in interval (v;,0;/)
ple. ,Thi_s fact carries i.mpl'ications fqr the Qevelopment ofa COpOIy'Fig. 5. Simulated weight hydrodynamic volume distribution and
merization model which is compatible with MWD measurements corresponding copolymer composition distribution for sty-
using GPC. rene and methyl methacrylate copolymerization [Crowley
Crowley and Choi [1999a] developed a computational technique and Choi, 1999a].

/\1 12

f("/")/‘l)
°

1)

Fp (0,0
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mer weight fraction, the following equation is derived and solved 0.00004
with other copolymer kinetic equations: 0.000035 |
P o (1 —p 9DV 0.00003 |- OVERALL
df(v,v,.,) :ﬁjpj I[w,F, +w,(1-F))] et H(v)dA, )
ot a N dt ~ 0.000025 |
. . . ... & 0.00002
Fig. 5 shows the copolymer weight hydrodynamic volume distri- =
bution (A) and the copolymer composition distribution (B) for sty- ® 0000015 |

rene-MMA copolymerization in a semibatch reactor at the final poly- 0.00001
mer weight fraction of about 0.35. Notice in Fig. 5 (B) that the en-

richment of monomer 1 (styrene) in the copolymer does not occu 0.000005 |*

uniformly over the molecular size range but rather is concentratec 0

in the higher molecular weight region. 0 1 2 3 4 5 6
The control of polymer MWD in industrial polymerization pro- log n

cesses is a difficult task even with a high performance size echuFig 6. Bimodal polyethylenes with two single site catalystg0.95
sion chromatograph (SEC). The time required for sample condi- ©=0.05: 1,21.0x10°. 1,22.5x10°) )

tioning and analysis is often unacceptably long for on-line process
control purposes. For insoluble polymers (e.g., polytetrafluoroethye-
lene), it is nearly impossible to directly measure the MWD. Recentlylecular weight fractions. A bimodal resin can be made in a series
many attempts have been made to obtain the MWD from the rheef two reactors operating at different reaction conditions. For ex-
ological properties that are relatively easy to measure on-line. Foample, the first reactor can be operated without hydrogen (chain
example, correlations are made using the storage and loss modatansfer agent) to obtain a high molecular weight polymer. Then,
and the shape of the viscosity vs. shear rate curve. The modulysolymerization is continued in the second reactor in the presence
data can be transformed into a cumulative MWD function that isof hydrogen to produce lower molecular weight chains. Another
fitted with a hyperboalic tangent function and then differentiated to technique is to use a combination of different catalysts in a single
obtain the MWD [Lavallée and Berker, 1997; Carrot and Guillet, reactor. If we assume that molecular interactions between two dif-
1997]. For practical applications, the inverse MWD calculation meth-ferent active sites or catalysts are negligible, we can describe the
ods have limitations in the accessible range of shear rate, expemverall MWD by combining the two different Flory distributions
mental errors, and possibly ill-posed nature of the inverse integralor each catalyst [Kim et al., 1999]:
transform of viscosity to MWD.
2. Design of MWD in Polyolefins
Catalytic polymerization of olefins is of enormous industrial im- where W(n) is the weight chain length distributigris the weight
portance since the first commercialization of Ziegler-Natta catalyzedraction of polymer made on the i-th active site (or catalyst)z;and
ethylene polymerization started in the 1950s. Ethylene or propyis the overall ratio of chain transfer rates to chain propagation rate
lene polymers synthesized with multi-site Ziegler-Natta type cata-for each type of active site. Fig. 6 illustrates how MWD can be mod-
lysts have broad MWDs (PD=5-20 or larger) and MWD control ified by using two single site catalysts that have significantly differ-
in industrial polyolefin processes was difficult. However, the MWD ent responses to chain transfer reactigr<(95,¢=0.05;7,=1.0x
control problem in olefin polymerization processes changed drad0*, 7,=2.5x10°).
matically with the development of single-site metallocene catalysts3. Living Free Radical Polymerizations for MWD Control
in the 1980s. It is now possible to tailor MWD by using ingenious  Living free radical polymerization (LFRP) is a relatively recent
catalyst and reactor technology. development gaining popularity to synthesize the polymers with
In the current polyolefins industry, the major issues are: (1) pretailored macromolecular structure. Although true living polymer-
cise control of polymer properties, (2) manufacturing cost reduc-ization conditions are only possible for ionic polymerizations, LFRP
tion, and (3) development of new product grades and new applicasffers the convenience and versatility of free radical polymeriza-
tions. The research and development activities are divided broadltion chemistry with living polymerization capabilities [Georges et
into the development of advanced catalyst systems, molecular deal., 1993]. Unlike in conventional free radical polymerization sys-
sign of polymers, and advanced polymerization process technoltems where mean chain lifetime is about ~0.1-1 sec, irreversible
ogy. High throughput catalyst screening technique or combinatoriabimolecular termination reactions are significantly suppressed in
chemistry technique is becoming popular in designing and screerliving polymerization, allowing for the synthesis of polymers with
ing polymerization catalysts [Keil, 2003]. designed microstructure and MWDs. The applications of LFRP tech-
With single site metallocene catalysts, it is possible to make poly-nique have also been extended to heterogeneous polymerizations
olefins with narrow MWD that is very close to the theoretical Schulz- such as emulsion polymerization, suspension polymerization, and
Flory most probable distribution. However, a harrow MWD poly- dispersion polymerization [Bon et al., 1997; Holderle et al., 1997;
mer is not necessarily the most desirable. For high molecular weighButté et al., 2000; Brouwer et al., 2000; Cunningham, 2002].
polyethylene, too narrow MWD often causes difficulty in process- The current living polymerization systems are based on either
ing the polymer into blown films. To improve the flowability of reversible termination (SFRP (stable free radical polymerization),
such polymers, a himodal MWD resin is made by adding low mo-ATRP (atom transfer radical polymerization)) or reversible transfer

W(n) =@ntie “"+@nne (14)
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mechanisms (RAFT (reversible addition-fragmentation transfer), Table 6. Kinetic model for styrene polymerization by living free

degenerative transfer) [Cunningham, 2002]. In SFRP and ATRP, a radical polymerization [Butté et al., 1999]

controlling agent is used to yield a dormant polymer chain by reKinetic scheme Reaction rates Remarks

gctlng rgver5|bly W|t.h a priopagatlng pqumer radical. For gxample,.rh ermal initiation R, =k M°

in the nitroxide mediated living polymerization (NMLP), a nitroxide M-85 2R

stable radical such as 2,2,6,6-tetramethyl-1-peperidinoxyl (T EMPO)I _
Pmator decomposition R=kyl

is used to trap the propagating radicals in a reversible nonpropagal

. . . . —2R
ing species. The trapping reaction can be represented as follows: ®
gsp pping P Propagatk:)on R,=k,MA, A =nzon'Pn
Pn+ M - Pn+1
o k) — O Exchangk::: reaction Rd:kdxﬂ0 a':Omfolr NMLP
Pn+x (T—> Dn+Y Ra:kaY Hy Hi :nZOn Dn
Combination termination R=kA3

Since the reaction equilibrium is shifted toward the dormant spe- P,+P, > M, ..,

cies, the radical concentration becomes low and bimolecular terminashain transfer to monomer R, =k,MA,

tion rate is significantly reduced. Every polymer chain grows through  p,+M Hme M P

a series of regularly alternating periods (i.e., active or dormant chainspormant speues decompositi®), =k, X1, a"=0 for NMLP

Therefore, all of the chains grow at the same average rate to uni- p _+x AM +S

form chain length. A major drawback is that the overall reaction

time becomes very large because of low active radical concentra-

tion. In ATRP the equilibrium between active and dormant chainsnarrow MWD polymers show inferior processability in extrusion

is regulated by a redox reaction which involves metal ion8,(Cu and injection molding operations. Besides broadening the MWD

RU", Md?, F&") [Matyjaszewski et al., 1997]. Kinetic models were by adding a small fraction of low molecular weight polymer chains,

also developed for living free radical polymerization by NMLP and the processability of polyolefins, especially linear low density poly-

ATRP techniques [Butté et al., 1999a; Zhang and Ray, 2002]. Table 6thylene (LLDPE) can also be improved by introducing long chain

shows the kinetic scheme for NMLP and ATRP [Butté et al., 1999b].branching (LCB) to polymer chains. The long chain branching af-

Zhang and Ray applied the kinetic model to batch, semibatch, anfiécts the polymer melt flow properties such as shear viscosity, ex-

continuous stirred tank styrene and n-butyl acrylate polymerizatiortensional viscosity, and elasticity. In olefin polymerization, the LCB

reactors. Their simulation shows that a semibatch reactor is mogs formed when a dead polymer chain with a terminal double bond

flexible to make polymers with controlled architecture. generated bys-hydride elimination reaction is incorporated into a
In RAFT and degenerative transfer, a chain transfer agent is usedrowing polymer chain as shown below:

An end group originating from the chain transfer agent is exchange: '

between a dormant chain and an active polymer radical. Addition:

fragmentation process is used to exchange a moiety such as a

thioester between the two chains. 7t /\/\/\R _ /\/\ /\R
1 1

Addition:

Step 1: Formation of vinyl end group

Step 2: Insertion into a growing polymer chain

S
. \\(S\ S\Ks\
Re® + ) Rj _— R /\/\/\R1 - /\Rz
FR, R. Fo + -
Fragmentation: VAN /\R
2

S
/e S

RiF.Rj %R- Not all metallocene catalysts are known to produce the polyole-
: fins with long chain branches. The most well-known metallocene
If a highly active chain transfer agent is rapidly consumed, few deadatalyst system for LCB is a constrained geometry catalyst system
chains are formed from irreversible termination and as a result, @Dow Chemical) in a solution polymerization of ethylene at high
narrow MWD is obtained. temperatures and short reactor residence times. Recently, long chain
4. Chain Branching in Addition Polymerization branched isotactic polypropylene has also been synthesized by us-
Branched polymers exhibit strongly different behaviors from lin- ing metallocene catalysts [Weng et al., 2002, 2003]. The LCB con-
ear polymers. For example, short chain branching in polyethylengent in polyolefins can be analyzed't& NMR spectroscopy, mul-
impedes the crystallization and long chain branching influences thdiple-detector SEC, SEC with multi-angle light scattering (SEC-
rheological properties. Although single site metallocene catalystaMIALS), and rheological measurements.
produce polyethylenes of narrow MWD (polydispersi0), such For a single site catalyst, a kinetic model for homopolymeriation
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of ethylene leading to LCBs can be modeled as: __ 1 21 2qv2 o
. w(n,y, q)dndy (2q+1)|n " exp(- n)dn
Propagation
P M B, (R) (15) e oy (20)
Chain transfer where y is the deviation from the average copolymer composition
P X5 M, +Pyo (Ry) (16) (F.) andB=F,(1-F)[1+4F,(1-F,)(r.r,-1)° r, and  are the reac-

Bhydride elimination tivity ratios. Eq. (20) can be integrated to:

P22 M, +Pyo (Ry) @7 w(y,q) =[ w(n,y,dn= [(29+52) 1 1)

21
a+D)! 2rBr(1+y72p1)""*
LCB formation 2nBr(1+y”/21)
P, +MkaL£> Prnieer (Rics) 18) The frequency of LCBs in metallocene polyolefins is about 0.1-1.0

LCB per molecule, measured by analytical temperature rising elution
where R, is a live polymer of chain length n with i long chain fractionation (ATREF) [Soares and Hamielec, 1995a, b]. ATREF
branches, N is a dead polymer of chain length n with i long chain is a technique to fractionate semicrystalline polymers according to
branches having a terminal double bond, and X is a chain transfetheir solubility-temperature relationship (i.e., molecular structure).
agent (e.g., hydrogen). Since the dead polymer with a terminal bond Yiannoulakis et al. [2000] developed a dynamic model for the
(M,,) can be involved in the long chain branch formation, suchcalculation of MWD and long chain branching distribution in a so-
dead polymer is often called a macromonomer. The mobility of deadution polymerization of ethylene with constrained geometry cata-
polymer with a terminal double bond increases as the reactor temyst. They divided the total polymer chain population into a series
perature is increased. Hence, the rate of incorporatior) ofd- of classes according to the LCB content (e.g., linear chains without
cies is higher in high temperature solution polymerization than inLCB, chains with one LCB, chains with two LCBs, etc.). For each
other processes such as gas phase or slurry phase polymerizatioclass of polymer chains, molecular weight moment equations were
The absence of hydrogen also favors the LCB formation [Chum etlerived. Then, Schulz-Flory distribution function was used to recon-
al,, 1995]. In slurry polymerization processes changes in mass transtruct the MWD for each class of polymer chains. The overall weight
fer properties of polymerization system may also influence branchehain length distribution was then calculated by the weighted sum
ing formation. of all polymer class distributions. Since molecular weight moment

At steady state, the weight chain length distribution of a homo-equations are solved with kinetic equations, this method can be used
polymer with LCBs is expressed as [Soares and Hamielec, 1996o simulate the changes in the MWD and LCB during the transi-

19974, b; Zhu and Li, 1997]: tion period of a polyethylene reactor.
Late transition metal catalysts such as Pd-based complexes con-
w(n,q) = 1 N "% 2ex( —1n) (19) taining bulky diimine ligands are also effective for ethylene poly-
(2q+1)! merization. These catalysts are known as Brookhart catalysts and
wheret=(R+R,+R ¢z)/R,. TheT value is in the range of 1a.0°. have a potential to generate branched polyolefins in the absence of
Fig. 7 illustrates the weight chain length distributions of branched@-olefin comonomer. Polyethylene with a broad spectrum of topol-
polyethylenes [Soares and Hamielec, 1996]. ogies (e.g., linear, hyperbranched, dendritic) can be synthesized by

For a binary copolymerization, the following modified form of controlling the competition between monomer insertion and cata-

Stockmayer’s bivariate distribution has been suggested for chainyst isomerization (catalyst walking) with these catalysts. Here, the
with g LCBs: coordination bond among the metal, olefin monomer and polymer

chain stays together for a longer time than in a metallocene and the
metal hydride can be re-added after some rearrangement in the poly-

0.0018 mer chain. The catalyst in the middle of the chain can start a branch
00016 . [Linear Fraction [Tullo, 2001; Guan et al., 2003].
number  weight The long chain branching in metallocene catalyzed olefin poly-
_ oot lnear  0.8843  0.6792 merization does not lead to crosslinking reactions. But in free rad-
g 00012 1o J0e0s 0209 ical polymerization, long chain branching can lead to the broaden-
£ 0.001 1Lee SLes 00048 00258 ing of MWD and the formation of nonlinear polymer chain through
% 0.0008 21cB 5LCB  0.0004  0.0035 crosslinking reactions. In free radical polymerization, short chain
= 3Lcs oree 000t 0.0013 branches are introduced by intramolecular chain transfer (back-biting
— 4LCB
5000 sLcB reaction) and long chain branches by intermolecular chain transfer
0.0004 sLce (e.g., high pressure free radical ethylene polymerization to LDPE). In
0.0002 LDPE processes, the relative rate of branch formation or the frequen-
0 cy of short chain branches is represented by the following equation:
0 1000 2000 (?;:J](;:)n o t;ﬁOOr 5000 6000 7000 Rh ka
gth (r) S,(;B_Ep _kpm (22)

Fig. 7. Weight chain length distributions of branched polyethyl- . )
enes §=0.004507) [Soares and Hamielec, 1996]. where R is the rate of intramolecular chain transfer, P is the total
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live polymer concentration, and, R the rate of chain propagation. dv_ . x — . .

. . N — =C M]oM,  (M]o=initial monomer concentration) (28
Notice that the short chain branch formation is independent of poly- dx BDl—Xa Jo (] o=ini ) @8)
mer molecular weight. The number of LCBs in LDPE may vary

from 0.6-6.0 per 1000 carbon atoms. High reaction temperature ! ! & -
and low pressures favor the formation of LCBs. mathematical modeling technique for LCB modeling.

The long chain branching in free radical polymerization can be 1€ modeling of crosslinking and gelation in addition polymer-

represented by the following polymer chain transfer reaction: ization is a difficult computational problem. Recently, Teymour and
Campbell [1994] developed a new computational method (numer-

P +M, 5 M +P,, 23) ical fractionation technique) to model the dynamics of gelation in
addition polymerization systems. This method uses the kinetic ap-
where B, is the polymer chain of chain length m with a branch point proach and identifies a succession of branched polymer generations
in the backbone. It should be noted that chain transfer to polymethat evolve en route to gelation. In other words, polymer popula-
by hydrogen abstraction could occur at any position in the dead polytion is segregated into a series (generations) of unimodal subdistri-
mer chain, . Note that the rate of formation of Fs given by butions of similar structure (linear or branched) and size. As one
— c moves from one generation to the next the average molecular size
R, =kismM,.> P,. ) . . ; .
& will grow geometrically, leading toward a generation of infinitely
The overall branching density (number of branches per monofarge polymer molecules. Numerical Fractionation has been applied
mer molecule polymerized) can be calculated by using the follow-successfully to a variety of nonlinear polymerization systems by a
ing method. Let M-total number of monomer molecules (both poly- number of research groups [Arzamendi and Asua, 1995; Butté et
merized and unpolymerized), x=fraction of monomer moleculesal., 1999a; Papavasiliou et al., 2002].
polymerized defined as x5NN/N, where N=number of mono- 5. Copolymer Microstructure
mer molecules left when the fractional monomer conversion is X. For a binary addition copolymer, the instantaneous average co-
Also, definev=total number of branches. Then, the following equa- polymer composition is described by the Mayo-Lewis equation us-

Pladis and Kiparrisides [1998] provide an excellent review of the

tions are derived: ing the reactivity ratios, and 5. Besides average copolymer com-
q position, copolymer microstructure is represented by other attributes
d_‘t/ =k ,PN,Xx (24) such as chemical composition distribution (the fraction of chains

having a particular mole fraction of comonomer) and monomer se-
guence length distribution (the fraction of comonomer sequences
of a particular length). For binary copolymers, Anantawaraskul et
al. [2003] derived a bivariate distribution of kinetic chain length
and chemical composition using a statistical approach:

dv ke X oy X .
dx Ekp%\ll’l‘x_CBNOl‘X 9 fulring = [t [PLAICT A PLAIE™
' 2mn,(1-n)Un, O O1-n, O

WaN tWe(1—n,)
WP A] +wg(1-P[ A])}

dx _ _
prr =k,P(1-x) (25)

From these two equations, we obtain

Upon integration, the following is obtained

xrz(l—a)za’“[ (29)

p= =—CB[1+)%In(1—x)J @7)

v
Nox where r is the kinetic chain length, a is the probability of propaga-
Fig. 8 illustrates the chain branches as a function of monomer corfion; 1 is the mole fraction of comonomer A, P[A] is the average
version. Notice that branching frequency increases rapidly as mondhole frr?\ctlon of comonomer A, s the molecular weight of A,
mer conversion increases high. Eq. (26) can also be written as ~ @nd W is the molecular weight of comonomer B. They general-
ized the chemical composition distribution [Eq. (29)] to describe

the chemical composition distribution of multicomponent random

0.0007 copolymers (m-components) as follows:
.“g 0.0006 [~ fw(r1 n’11 nZ1 eey n'rrl)z W(n11 nZ1 eey r,'n’llr)fw(r) (30)
>
g 0.0005 |- where
o
S 0.0004 [ fw(r):r(l—a)za”l (31)
£ Cg = 0.0002
&8 0.0003 | i | \/ L
] WD Ny, Npmy) =
é 0.0002 v ' (27T)m’1n1n2'"nm’l(l_nl_nz T _nm’l)
g SOV 4 M (o
0.0001 Op, O0Op, 00 n,., O
0 ><[jL—P[ N-P[2A-...-P[m-1] ™™ "
0 0.2 0.4 06 0.8 1 g 1-n-n,-..-n,, U
Conversion, x " "
. . L. . X M;n, M.P[i 32
Fig. 8. Branching frequencies in the polymer chain. {21( ! 'y.;( ! [I])} ©2)
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Fig. 9. Effect of norbornene content on glass transition tempera-

80

ture of ethylene-norbornene copolymer [Park, 2003].

Note that the average chain length has a linear relation with the mo-
lar ratio of monomers in the bulk reaction phase.

Park et al. [2003] and Park [2003] report that penultimate effect
cannot be ignored in quantifying the kinetics of ethylene-nor-
bornene copolymerization with homogeneoasEt(1-indenyl)
ZrCl/methylaluminoxane catalyst. They show that the penultimate
norbornene has a strong effect on the propagation activity of the
catalyst. With the penultimate model, the following equations are
obtained:

Dl Ly,n=1 O

(M),=g -2 0 37
DLleLlll(l Llll) n>2D
Dl Limn=1 O

(M),=g ! 0 (38)
DL122L222(]' L222) n>2D

where the probability functioryLis given by:

For many copolymers, the effect of copolymer microstructure |_m=R Rgrlg = rl;vl (39)
has little effect on the macroscopic copolymer properties. But for pitt - T2 ru+M—2
some copolymers, copolymer microstructure can be quite impor- !
tant. To illustrate this point, let us consider ethylene-cyclic olefin
copolymers (COC). COC is emerging as a potential new class ¢ 0.8
engineering polymers for various interesting applications. Ethylene B Experimental
norbornene copolymers (ENC) are the most well known of COCs 0.7 1 O Terminal model
having high glass transition temperature (up to°€ydow mois- 06 |- [ Penultimate model

ture absorbance, and excellent optical properties. This copolyme
can be made over homogeneous metallocene catalystgastich
Et(1-indenylZrCl/methylaluminoxane catalyst. ENC is an inter-
esting polymer in that the polymer’s glass transition temperature
varies with the amount of cyclic olefin monomer in the copolymer

0.5 |
: . , N 0.4 | __
ies Wi ' ' 0.3 |
(Fig.9). The microstrgcture of EN? depentjs on the nature of cata 02 I
For example, when norbornene content in the cogolyme’r is smé 01 |
(less than 6 mol-%), most of the norbornene units are present ¢ 0 _._|_|

isolated units with random sequence distribution [Bergstrom et al.

lyst and the polymerization conditions [Tritto et al., 2001, 2002]

1998]. At norbornene mol-% larger than 45%, micronorbornene Diad Alt Iso Triad
blocks of varying lengths (dyads, triads) can be formed. The copoly 0.8

mer becomes completely amorphous as norbornene content excee B Experimental
14 mol-%. 0.7

For linear binary copolymerization with no penultimate effect,
the monomer sequence distribution is represented by the followin

probabilities:
(M), =LT;1(1_L 1w

(M), =L2;1(1_L22)

where |; is the probability that a growing chain ending in an i mono-
mer unit (i=M or M,) will add a j (=M or M,) monomer unit next.
(M), ((M,),) is the probability of having exactly n units of {#,)

in a series of a growing chain. The average sequence lengths of ©

and M monomers are given by:

—14r My
ML= 3 n(M), == =L+t

M,
N =3 n(My), === =L+

January, 2004
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g. 10. Sequence distribution of norbornene in ENC at triad level:
() 42 mol-% of norbornene in ENC; (b) 55 mol-% of nor-
bornene in ENC. Here Diad, Alt, Iso, and Triad represent
ENN, NEN, ENE, and NNN sequence, respectively [Park,
2003].
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Fig. 10 illustrates the comparison of experimental data and the mode
predicted sequence length distributions at triad level. Although the
rates of ethylene and norbornene copolymerization are strongly ir
fluenced by the penultimate unit in the propagating chains [Park €
al., 2003], the penultimate effect on the comonomer sequence leng
distribution seems to be insignificant. It is expected from Egs. (39)-
(42) that only the monomer mole ratios and reactivity ratios, not
individual rate constants, affect the development of sequence lengt
distributions.

Recently, Teymour [2003] proposed an interesting technique (“dig- 9000 °
ital encoding technique”) to calculate the monomer sequences il
addition copolymerization processes. This method aims at profil- ~ 0.180 7
ing a complete chain sequence distribution for a given copolyme
molecule by identifying chains at the level of “polymeric isomers.”
The method uses symbolic binary arithmetic to represent the arch
tecture of a copolymer chain. Thus, each binary number describe
the exact monomer sequence on a specific polymer chain, and i
decimal equivalent is a unique identifier for this chain. For example,
if the binary digits 0 and 1 are assigned to monomeranid M, II_L
respectively, a chain with 6 monomer units in the sequeridgN] 0.000 I Lo L lia
M;M,M, is represented (excluding the chain end entities) as 01001 0 7 14 21 28 35 42 49 56 63
and its decimal equivalent d=17 identifies this particular chain. For d
chains with 6 monomer units, d ranges from 0O (i.e., 000000) to 6%ig. 11. Effect of feed monomer composition for a binary copoly-

0.018 1

fists =0.531
(azeotropic)

0.009 1

Concentration fraction

f1st.st.=o-796

0.120 1

0.006 1

Concentration fraction

(i.e., 111111). Using this scheme, the propagation reaction can be merization of styrene and methyl methacrylate with dis-
expressed as proportionation termination [Teymour, 2003].

L 101101*+1—~L 1011011* 43)
Similarly, combination termination is expressed as trial polymerization processes. For example, for the production of

high impact polypropylene, it is desired that the polymer particle
should have high bulk density, large particle size, high rubber con-
Consequently, population balances can be formulated to follow théent, yet low degree of stickiness and improved flowability [Bouzid
evolution of chains of a decimal code ‘d’ and chain length ‘j. Fig. and McKenna, 2003]. The morphology of polymer particles also
11 shows an example (adapted from Teymour [2003)]) of such resultaffects the operability of a gas phase fluidized bed polymerization
for chains of length 6 and varying codes. This figure also showseactor and the choice of the catalyst to be used. In free radical vinyl
the utility of this technique in following the effect of changing the chloride polymerization, polymer particle morphology affects the
reactor feed composition on the exact sequencing of monomers atiffusion of additives such as plasticizers.
the chains. As the fraction of monomer 1 in the feed is increased The mechanism of polymer particle formation in any heteroge-
from 0.265 to 0.796, one observes a noticeable shift in the peakseous polymerization process is often quite complex and difficult
from the high end of the code scale to the low end. This of courséo quantify. In heterogeneously catalyzed olefin polymerization pro-
is a result of the more frequent appearance of Os than 1s. It is thu®sses, catalyst fragmentation and particle growth affect the cata-
clearly possible to accurately design the architecture of new copollyst activity and polymer properties. A catalyst fragmentation is prac-
ymer products by simply manipulating the reaction conditions. Thetically very important to maintain the sufficiently fast access of the
binary encoding technique has also been applied to the sequenegonomer to active catalyst sites located within the pores of the sup-
analysis resulting from penultimate effects, azeotropic copolymerizaport. The traditional particle models such as polymeric flow model
tion and compositional drift [Teymour, 2003]. or multigrain model have been very successful in predicting the ef-
6. Polymer Particle Morphology fect of mass and heat transfer limitations on the polymerization rate
The control of particle morphology is important in many indus- and molecular weight properties [Floyd et al., 1986, 1987; Hutch-
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inson and Ray, 1987]. However, these macroscopic models are oftayenerate some data for kinetic model development. In this regard,
inadequate to model the complex development of particle morpholthere is a need to develop advanced parameter estimation techniques
ogy such as hollow particles, pieces of shells and small fragmentasing plant data without disturbing normal commercial production,
for very high activity catalysts [Kittiisen et al., 2000]. With very particularly in a large-scale continuous polymerization process.
high activity catalysts, a rapid polymerization often results in local Another point to be made in modeling an industrial polymeriza-
melting of the polymer inside a catalyst/polymer particle, blocking tion process is that one must decide the level of sophistication of
the access of monomer to active sites. Therefore, understanding titiee model. Unlike academic polymerization kinetic models, indus-
catalyst fragmentation and polymer particle growth phenomena idrial process models should be developed with clear objectives or
important for the optimal design of high activity supported olefin purposes for a given set of constraints (e.g., personnel, cost, time).
polymerization catalysts. There is absolutely no reason for an industrial process modeler to
Some recent modeling work incorporates the convective flowover-develop a process model. In this context, it is suggested that
effect inside the growing particles [McKenna et al., 2000; Kittilsen the goals of the reactor/process modeling project be clearly defined
et al., 2000]. Grof et al. [2003] and Kosek et al. [2003] developed awith specific applications laid down before the commencement of
new meso-scopic modeling technique to study the morphogenessny modeling project. Sensible assumptions and/or simplifications
of polyolefin particles. In their modeling, they assume that cohesiveare the keys to the successful modeling of an industrial polymer-
forces keep the fragments of catalyst particle encapsulated in polyzation process.
mer together. The two driving processes for the growth and mor- In transition metal catalyzed olefin polymerizations, the kinetic
phogenesis of polymer macro-particle are the growth of micro-graingparameters are catalyst dependent. Therefore, whenever a new cat-
and the binary and ternary visco-elastic interactions among microalyst is employed, a new set of kinetic parameters must be deter-
grains. They used various visco-elastic models to represent theined. Considering the fact that the properties of polyolefins are
interactions between micro-grains. Their work illustrates that themostly dictated by the nature of catalyst being used and that a large
pore space reconstruction can be used to relate effective transpartimber of different types of catalysts are used for different poly-
properties of porous catalyst/polymer particles to the geometry andner grades, we can easily understand the importance of having a

topology of the pore obtained from microscope images. well-established parameter estimation procedure that can be applied
to any catalyst systems. In practice, the model parameters obtained

PARAMETER ESTIMATION IN from the laboratory data are used as a reference and actual plant
POLYMERIZATION REACTION MODELING data are used to adjust the model parameters. Sirohi and Choi [1996]

presented on-line parameter estimation techniques where the ex-

A modeling is never complete until all the relevant model param-tended Kalman filter and the nonlinear dynamic parameter estima-
eters are determined or estimated. In fact, determining the paraméen technique are used. In their method, dynamic process data dur-
ters of a kinetic model by using laboratory, pilot plant, or plant dataing a grade transition in a continuous gas phase olefin polymerization
is perhaps the most critical step for the successful development akactor, by switching the catalyst type, are used to estimate several
a process model and at the same time it might be the most time cokey kinetic parameters for the new catalyst which is assumed to
suming, costly, and difficult process. Typical model parameters in-exhibit similar polymerization characteristics. In their method, instead
clude rate constants (in Arrhenius form) and relevant transport andf re-determining all of the kinetic parameters for a new catalyst
thermodynamic parameters such as mass and heat transfer coeffiystem, only a few selected rate constants that affect the polymer-
cients, diffusivity, density, heat capacity, active site concentrationsjzation rate and polymer properties (average copolymer composi-
etc. Some kinetic parameters may change with a changing reactidion and molecular weight averages) are determined.
environment. In some polymerization processes, developing a first-principles

Parameter estimation is difficult because a multitude of reactiongnodel can be practically infeasible. For example, when several vinyl
affect each other and relevant kinetic parameters are often maskedonomers are copolymerized using several free radical initiators,
by physical transport phenomena (e.g., diffusion, mass, and heittis extremely difficult, if not impossible, to develop model equa-
transfer effects). Practically, it is not always possible to design extions to calculate the rate of polymerization and polymer properties
periments to determine all the relevant kinetic parameters. Theresuch as molecular weight averages and copolymer composition. In
fore, in modern kinetic modeling, pseudo-rate constant methods anslich cases, building a statistical model based on experimental data
computer aided parameter estimation techniques are widely usediould be a more pragmatic approach. Of course, the statistical mod-
Nonlinear multivariable regression techniques integrated with open kiel should be used with some cautions because it does not contain
netics equation-oriented models could significantly improve the speedny physical or chemical information about the process itself and
and accuracy of the parameter estimation calculation [Chen, 2002ihe applicable process range can be quite narrow. Nevertheless, sta-

A polymerization process model validated solely on the labora-tistical models are frequently used in the polymer industry for quality
tory data may fail to provide accurate predictions of the behaviorcontrol purposes.
of a large-scale plant reactor because reaction environments can be
quite different (e.g., impurities, efficiency of mixing, etc.). It is also CONTROL OF POLYMER PROPERTIES
important to realize that extracting process data from plant opera-
tions for process modeling purpose is not as easy as one may ex- The primary goals of reactor control in industrial polymerization
pect. It is because plant managers or plant engineers might be vepyocesses are to maintain stable reactor operations and product qual-
reluctant to the idea of disturbing normal commercial operations tdty indices at their target values. For an existing plant, improved
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reactor controls are needed to increase the polymer yield and to redize the product yield by increasing monomer conversion and/or
duce production cost. Fig. 11 illustrates a typical industrial procesgeducing batch reaction time [Flores-Cerrillo and MacGregor, 2003].
control hierarchy [Congalidis and Richards, 1998]. Process knowl- In many industrial batch polymerization processes, the design of
edge, sensors, transmitters, and analyzers are the prerequisites éobatch polymerization reactor control consists of two stages: 1)
the design of basic control system to regulate pressure, temperatuiaff-line design of a control trajectory (recipe), and 2) implementa-
level, and flow rate. With the regulatory control system in place,tion and execution of the control trajectory. The control trajectory
one can design advanced regulatory control, model based contrgban be developed through experimentation, plant experience, or by
and intelligent scheduling and optimization system. using a process model [Butala et al., 1988; Scali et al., 1995; Crow-
There have been a large number of publications on the contrdey and Choi, 1997, 1999b]. There might exist some conflicting con-
of polymerization reactors in the past two decades. Many of thesg&ol objectives (e.g., polymer yield, molecular weight, composition,
publications dealt mainly with reactor temperature control and poly-batch reaction time) that require special treatments. For example,
mer property control problems. It is not the objective of this papemultiobjective dynamic optimization techniques might be needed
to provide a comprehensive review of all aspects of polymeriza-
tion reactor control. Instead, in the following discussion, the focus
will be given on the issues relevant to the control of polymer prop-
erties based on some selected recent references.
Exothermic polymerization processes often exhibit strongly non-
linear dynamic behaviors (e.g., multiple steady states, autonomot Scheduling
oscillations, limit cycles, parametric sensitivity, thermal runaway), opﬁ;?:aﬁon
particularly when continuous stirred tank reactors are used [Kiparis

sides, 1996; Kim et al., 1990, 1991, 1992]. Some polymerization Model Based Control
processes are open loop unstable and susceptible to unmeasui
disturbances, or upsets, even with a feedback controller in place Regulatory Control (P, T, L, F)

For example, in a transition metal catalyzed olefin polymerization
process, unmeasured small amount of catalyst poisons can chan

the polymerization kinetics, and hence, the polymer yield and poly- Sensors, Transmitters, Analyzers
mer properties. In worst cases, process disturbances may lead t
reactor to instability [Choi and Ray, 1985, 1986]. Process

Since many of the polymer properties are hard to monitor on-
line, first-level process variables are controlled to follow a certain Fig. 12. Typical industrial process control hierarchy [Congalidis
process recipe. Typical first-level reactor variables are polymeriza- and Richards, 1998].
tion temperature, pressure, feed rates of monomer(s), catalysts or
initiators, chain transfer agents, solvents, etc. In principle, as long
as these variables are tightly controlled, consistent product quality off-line measurements
can be warranted. In general, polymerization rate and polymer prop
erties are non-linearly correlated and hence a polymerization proprgcess model dx =f(x,u) +w(t), w(t) N[0, Q(1)]
cess control system is inherently a multivariable control system. In dt
presence of unexpected process disturbances, or upsets, little can X(0)ON[Xo, o]
be done to correct the damages made on the product properties. #1-1ine measurementsyo, =Mo(x«) *Vo; VoxIN[0, Ro]

a batch process, the consequence of not being able to handle pfgélayed measuremenl;aikfﬁho(xkf{) *Vaier; Varr N[O, Rad]
cess upsets is a heavy economical loss. State estimation propagl( =f[R(1), u(t)]

The second-level control objectives include the direct control of  gation dt
polymer properties using on-line measurements or estimates of poly=rror covariance prop qP:F(t) P(1) +P()F"(t) +Q(t)
mer quality indices. Any variations in the product quality can be  gation dt
corrected, in principle, if such quality indices are available duringstate estimate update x,(+)=x(=)+ Ky «~ hax.(=)]]
the polymerization. with on-line

Let us consider some issues concerning batch polymerization easurements
reactor control. A batch polymerization process is a multivariateg oy covariance P(H)=[1-KHo JP-)
and non-stationary or dynamic process. Quite often, direct on-line update with on-line ’
control of polymer properties is not feasible, or very difficultin many  easurements
batch polymerization processes. For example, sampling from a rgzjj;qr gain matrix with K, =PeHL[HoP(~)HLx +Ro.]
actor can be quite a challenge in some high-pressure batch reactor o ' '
systems. For short batch reaction time, there is simply no time to
analyze polymer samples off-line and use the result to make ap-

Table 7. Extended Kalman filter algorithm with on-line and

on-line measurements where
F(t) =9f[x(1). u()]

. . . o ox(t -
propriate corrective control actions before the batch operation is oh (XX)() X200
terminated. A batch polymerization reactor should also be operated Hox :5_Xk

K |xe=x(-)

to maintain consistent batch-to-batch product quality and to maxi-
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to develop optimal reactor operating policies or target control tra-wherex is the state variable ands the control variable.

jectories in presence of conflicting control objectives [Butala et al., Recently, an attempt has been made to control the entire poly-

1988, 1992]. mer molecular weight distribution curve by using a process model
Quite obviously, an accurate dynamic polymerization reactor mod-and optimization technique [Crowley and Choi, 1997b]. Fig. 13 illus-

el is a prerequisite for such advanced control designs. Many excetrates the design of optimal reactor temperature trajectories to obtain

lent dynamic optimization techniques have been developed and they desired molecular weight distribution in a batch methyl methacry-

are readily available to control engineers. A typical objective func-late polymerization process. Here, feasible sequential quadratic pro-

tion (F) for reactor optimization takes the following form: gramming (FSQP) technique is used to find the sequence of opti-
S mal reactor temperature set points which will yield the best match
F=w.t; +Z\Wi%{jm (46) between target and actual polymer chain length distribution at the

end of the batch. The graphs on the left in Fig. 13 represent the com-

where wis the weighting factor, is the batch time, ¥ the pro- 1 te4 sequence of reactor temperature set points at selected itera-
duct quality parameter (e.g..Mverage copolymer composition,  ions and the graphs on the right show the resulting chain length

etc.), and ‘#’[s the desired quality parameter value. The 0b.jeqivedistribution compared with the target distribution. The final tem-
function is minimized subject to process model and constraints: perature set point program can be implemented and executed or
the trajectory can be updated on-line if imely measurements or esti-

dx _ .
dt =, u®), 9 e(x(®), u(®), H=<0 S mates of polymer molecular weight distribution are available dur-
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Fig. 13. Design of reactor temperature set point program to control polymer chain length distribution.
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ing the batch operation [Crowley and Choi, 1998b)]. behaviors [Seki et al., 2001; Young et al., 2002].

Once the reactor control trajectory is designed, the next goal is Continuous reactors are operated at steady state and hence the
to execute the trajectory as closely as possible. Traditional PID corkey objective in controlling a continuous polymerization reactor
trollers are still widely used but model predictive controllers (MPC) system is to maintain reactor stability in presence of any process
are also used in some polymerization processes where the use ybsets and during normal steady state operations and grade transi-
advanced reactor control can be economically justified. In MPC, dion operations. In some continuous polymerization processes such
process model is utilized to predict the output into the future andas liquid slurry olefin polymerizations, reactor fouling may develop
minimize the difference between the predicted model output andbver a period of time, gradually deteriorating the control perfor-
the desired output using some open loop objective function. Thanance. In such a case, one may adjust the control variables to com-
measurement is used to update the optimization problem for theensate for the changes in process characteristics. Then, some poly-
next time step. The MPC algorithms are reasonably well developedner property indices that are not directly measured or controlled
and utilized in many chemical processes including polymerizationon-line may drift from their specifications to result in poor product
processes [Peterson et al., 1992; Ogunnaike, 1995; Seki et al., 20G]yality. Therefore, the development of on-line estimation techniques
Jeong et al., 2001; Young et al., 2002; Doyle et al., 2002]. Sincdor polymer property indices that cannot be measured on line or
industrial polymerization processes exhibit strong nonlinearity theonly measured off-line with significant time delays becomes nec-
application of linear model predictive control (LMPC) is often lim- essary [Chien and Penlidis, 1990].
ited, particularly for grade transition control and for regulatory con- In continuous polymerization processes, polymers of different
trol. In nonlinear model predictive control (NMPC) algorithms, a properties are manufactured in a single product line. Therefore, de-
nonlinear programming problem has to be solved on-line and hencsigning efficient grade transition controls and optimal production
computational load is generally quite heavy. To reduce the compuscheduling becomes another important control design objective [Mc-
tational burden, a successive linearization of the original nonlinearAuley and MacGregor, 1992; Debling et al., 1994; Sirohi and Choi,
process model can be used to approximate the nonlinear proce$896; Wang et al., 2000; Chatzidouskas et al., 2003]. In some sense,
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Fig. 14. Effect of molecular weight measurement time delay)(on estimation of MW during open loop transients to step change in reactor
residence time @) [Kim and Choi, 1991].
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the grade transition control problem is similar to the optimal design 2000
of a batch polymerization reactor control. Polymerization processe
are nonlinear and multivariable systems in nature and thus signifi
cant control loop interactions are expected in conventional feed
back control systems. The work by Congalidis and coworkers [1989
illustrates the value of a process model for the design of feedfor
ward and feedback control of a continuous solution copolymetizatior -
reactor using a multivariable transfer function model. They ana-
lyzed control structure/loop pairings using singular value decom- estimator with model A
position and relative gain array. Then, they determined the loop pait Y] T S R
ings and developed a combined feedforward/feedback strategy fc
servo and regulatory control problems. For a continuous terpolymer
ization process, Ogunnaike [1995] illustrates the design of a two
tier control system. In the first tier level, the flow rates of mono-
mer, catalyst, solvent, and chain transfer agent are used to regule
reactant composition in the reactor. Then, at the second tier leve
set points for the composition of the reactor contents are used at
less frequent update rate to regulate final product properties. In tr -
second tier, an on-line, dynamic kinetic model, running in parallel
with the process, supplies estimates of product properties. The mo
el predictions are updated by using delayed laboratory measurt 0
ments and on-line stochastic filter. 2000
A process model can be a powerful tool for the design of on-line
polymer properties control system when it is used in conjunction
with optimal state estimation techniques. Indeed, several on-line
state estimation techniques such as Kalman filters, non-linear ex x
tended Kalman filters (EKF), and observers have been well devel -)7" 1000
oped and applied to polymerization process systems [Kim and Cho - v
1991; Sirohi and Choi, 1996; Park and Rhee, 2003]. Table 7 show
the extended Kalman filter algorithm with delayed off-ine measure-
ments. In implementing the on-line state estimator, several issue e bt e L e
may arise. For example, the standard filtering algorithm needs t 0 10 20
be modified to accommodate time-delayed off-line measurement t (hn)
(e.g., MWD, chemical composition, conversion, etc.). The update
frequency of state estimation needs to be optimally selected to conf-d- 15. Effect of model accuracy on MW control with 60 min de-
pensate for the model inaccuracy. Fig. 14 illustrates the use of on- layed MW measurements [Kim and Choi, 1991].
ine state estimator (EKF) with delayed molecular weight measure-
ments in a continuous stirred tank styrene polymerization reactoB hr [Fig. 14(al), (b1)], whereas Fig. 14(cl) illustrates the failure of
[Kim and Choi, 1991]. In this particular simulation, the minimum the grade transition control without on-line state estimator. Here,
off-line measurement time for molecular weight averages is set afeedback control is carried out using time-delayed off-line mea-
30 min and irregular sampling intervals are assumed. The two modsurements with Pl controllers. Notice that the target MW is not at-
els of different accuracies are used for plant simulations (dotted linedpined in Fig. 15(c1) due to integral windup.
and state estimation (solid lines). The simulation results shown in The state estimation technique can also be incorporated into the
Fig. 14(d) and (e) indicate that unequal MW sampling gives muchdesign of optimal batch polymerization control system [Crowley
better estimates than with a large time delay of 90 min even with and Choi, 1997b, 1999b]. For example, a batch reaction time is di-
model that exhibits a significant model-plant mismatch. Kim and vided into several control intervals and the optimal control trajec-
Choi [1991] further show that when the modeling error is large, morgory is updated on-line using the molecular weight estimates gener-
frequent measurements of the molecular weight (or other polymeated by a model/state estimator. Of course, if batch reaction time
parameters) are required to obtain good estimates from the on-lineere short, such feedback control of polymer properties would be
state estimator. Fig. 15 illustrates the use of on-line estimate of polyelifficult to implement. Nevertheless, the on-line stochastic estima-
mer molecular weight for servo control with two models of differ- tion techniques and model predictive control techniques offer prom-
ent accuracies (Model A is more accurate than Model B). In thisising hew directions for the improved control of polymer properties
simulation, the set point &f,  (weight average degree of polymer-n batch polymerization reactors.
ization) is step increased. The steady state model calculates the new
set point values of other variables (e.g., reactor temperature, mono- CONCLUDING REMARKS
mer conversion, feed initiator concentration). With the extended
Kalman filter in place, the reactor reaches a new steady state in about Mathematical modeling is a powerful tool not only for the de-
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velopment of process understanding, but also for the design of ad- dition-fragmentation Chain Transfellacromolecules33, 9239
vanced process technology. In particular, a kinetic model plays an (2000).

important role in designing polymerization conditions to tailor a Butala, D. N., Fan, M. K. H. and Choi, K. Y., “Multiobjective Dynamic
polymer’s molecular architecture. In this review, we discussed re- Optimization of Semibatch Free Radical Copolymerization Process
cent developments in modeling techniques for the calculation of with Interactive CAD ToolsComp. Chem. Eng12(11), 1115
polymer molecular weight distribution, copolymer composition dis-  (1988).

tribution, sequence length distribution, long chain branching, andButala, D. N., Liang, W. R. and Choi, K. Y., “Multiobjective Dynamic
particle morphology. A few issues concerning the model parame- Optimization of Batch Free Radical Polymerization Process by
ter estimation and model-based polymer reactor control are also Mixed Initiator Systemsy. Appl. Polym. Sgi44, 1759 (1992).
discussed. The modeling techniques for polymerization processeButté, A., Ghielmi, A., Storti, G. and Morbidelli, M., “Calculation of
are reasonably well developed and several commercial simulation Molecular Weight Distributions in Free-radical Polymerization with
packages are available. However, modeling of polymerization reac- Chain BranchingMacromol. Theory Simyig, 498 (1999a).

tions is still an active area of academic and industrial research. AlButté, A., Storti, G. and Morbidelli, M., “Kinetics of Living Free Radi-
though not discussed in this paper, the modeling of heterogeneous cal PolymerizationChem. Eng. Sgis4, 3225 (1999b).
polymerizations such as precipitation polymerization and emulsionButté, A., Storti, G. and Morbidelli, M., “Miniemulsion Living Free Rad-
polymerization remains as a challenge. Many excellent design tools ical Polymerization of Styrenéflacromolecules33, 3485 (2000).

have also been developed for multiobjective optimization, on-lineCarrot, C. and Guillet, J., “From Dynamic Moduli to Molecular Weight
state estimation, and model predictive control of industrial poly- Distribution: A Study of vArious Polydisperse Linear Polymérs;
merization reactors. These techniques are gaining favorable accep- Rheo), 41(5), 1203 (1997).

tance in the polymer industry. One of the outstanding issues is t€hatzidoukas, C., Perkins, J. D., Pistikopoulos, E. N. and Kiparissides,
develop more efficient parameter estimation techniques, particularly C., “Optimal Grade Transition and Selection of Closed-loop Con-
in a plant environment, without disturbing normal process opera- trollers in a Gas-phase Olefin Polymerization Fluidized Bed Reac-
tions. With these advanced computational and modeling tools, the tor; Chem. Eng. S¢68, 3643 (2003).

guestion is how one can use them wisely and creatively to produc&hen, C. C., “An Industry Perspective on Polymer Process Modeling;

polymers of highest quality at lowest possible cost. CAST CommunicatiorBummer (2002) [www.castdiv.org/summer02.
htm].
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