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UNDEBUGGABILITY AND 
COGNITIVE SCIENCE 

A resource-realistic perspective suggests some indispensable features for a 
computer program that approximates all human mentality. The mind’s 
program would differ fundamentally more from familiar types of software. 
These features seem to exclude reasonably establishing that a program 
correctly and completely models the mind. 

CHRISTOPHER CHERNIAK 

A central tenet of much recent work in cognitive sci- 
ence is a commitment to realism about the agent’s re- 
sources. Perhaps there is something mean-spirited 
about challenging presuppositions that human beings 
have unbounded potentialities, but a theory, however 
normative or regulative, that proceeds on an assump- 
tion that people have God’s brain seems at least inter- 
estingly incomplete. What is sought are models that are 
both computationally and psychologically realistic, as 
well as neurally and genetically realistic. 

Starting with such a resource-realistic framework, 
this article explores some properties we can now ex- 
pect to be inextricable from any computer superpro- 
gram that purports to represent all of human mentality. 
A complete computational approximation of the mind 
would be a (1) huge, (2) “branchy” and holistically 
structured, and (3) quick-and-dirty (i.e., computation- 
ally tractable, but formally incorrect/incomplete) 
(4) kludge (i.e., a radically inelegant set of procedures). 
The mind’s program thus turns out to be fundamentally 
dissimilar to more familiar software, and software, in 
general, to be dissimilar to more familiar types of ma- 
chines. In particular, these properties seem inherently 
to exclude our reasonably establishing that we have 
the right program. In this way, the full mind’s program 

Earlier drafts of this article were read as a public lecture at Wichita State 
University, Wichita, Kansas, October 1986; at the University of Minnesota 
Center for Philosophy of Science. Minneapolis, February 1987; and at the 
AAAI/UMIACS Workshop on Theoretical Issues in Conceptual Information 
Processing, Washington, DC.. June 1987. 

appears to be a type of practically unknowable thing- 
in-itself. 

Generally, cognitive science seems to presuppose the 
manageability and feasibility of such a total mind’s pro- 
gram. For example, one of the current standard text- 
books of artificial intelligence (AI) begins, “The ultimate 
goal of AI research (which we are very far from achiev- 
ing) is to build a person, or, more humbly, an animal” 
[12, p. 71; that is, to construct a program for the entire 
creature. A standard ground plan is then enumerated, 
including input modules for vision and language, then 
deduction, planning, explanation, and learning units, 
and, finally, output modules for robotics and speech. 
An important example from the philosophical side of 
cognitive science has been Fodor’s thesis that psycho- 
logical processes are typically computational, and so 
that much human behavior can only be explained by a 
computational model of cognition (see, e.g., [21], espe- 
cially chap. 1). 

A strong tendency to posit “impossibility engines”- 
profoundly unfeasible mental mechanisms-Yhas not 
been confined to the most abstract reaches of philoso- 
phy. It seems to be a pervasive, unnoticed, but problem- 
atic element of methodology throughout mind/brain 
science, even when that field is explicitly tak.en to ex- 
tend all the way down to neurophysiology and neuro- 
anatomy. The most extreme philosophical ca:se I know 
of is the deductive ability presupposed by conventional 
rationality idealizations.’ Standard rationality models 
require the agent to be some sort of perfect logician; in 
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particular, to be able to determine in finite time whe- 
ther or not any given formal sentence is a first-order 
logical consequence of a given set of premises. Half a 
century ago, however, Church’s theorem showed that 
the predicate calculus was undecidable-that is, no 
algorithm for this task is possible. What surprised me 
most about this simple observation was at a metalevel: 
I could find no previous discussion of the point. Now, 
what would explain not even raising the question, 
“Does the ideal agent’s perfect logical ability have to 
exceed even that covered by the classical unsolvability 
theorems?” One explanation would be the ultimate in- 
attention to scale: not distinguishing between an agent 
under the usual constraints of the absolute unsolvabil- 
ity results-finite space and (for each input) run time- 
and some more highly idealized reasoner that could not 
even in principle employ any algorithm. 

A less extreme philosophical example of inattention 
to scale of resources can be seen in some of the compu- 
tational costs implicit in perfect “charity” of interpreta- 
tion along conventional Quine-Davidson lines,* where 
the fundamental methodological principle is that (ex- 
cept for “corrigible confusions”) an agent must be re- 
garded as maintaining perfect deductive consistency. 
Figure 1 reviews the literally cosmic resources con- 
sumed by the agent merely maintaining full truth- 
functional consistency, a “trivially” decidable problem. 
Quite moderate cases of the task would computation- 
ally hog-tie a rather physically ideal truth-table ma- 
chine to an extent so vast that we have no familiar 
names for the numbers involved. 

Our basic methodological instinct, at whatever ex- 
planatory level, seems to be to work out a model of the 
mind for “typical” cases-most importantly, very small 
instances-and then implicitly to suppose a grand in- 
duction to the full-scale case of a complete human 
mind. Cocktail-party anthropology would deride 
Hottentots for allegedly counting “1, 2, many”; the 
methodology of mind/brain science seems unthink- 
ingly to approach “1, 2, 3, infinity.” The unrealism re- 
garding resources that I am suggesting is still pervasive 
is an inattention to scale, in particular, to consequences 
of scaling up models of the mind/brain, (As a more 
moderate example, this scale-up difficulty lurks in the 
familiar microworlds approach to the problem of 
knowledge representation in AI-that is, the divide- 
and-conquer strategy of beginning with small, tightly 
constrained domains of total human common sense for 
formalization.3) Perhaps overlooking limits to growth of 
models is part of our Cartesian heritage, stemming from 
the picture of mind as a substance that has spatial di- 
mensions no more than do mathematical structures. 

’ For explanation of the idea of charity of interpretation of an agent, see [la] 
and [47]. 

’ Dreyfus has attacked the microworlds methodology [ZO] along lines different 
from the present discussion. Among other things, he argues that total human 
commonsense knowledge cannot typically he separated into such autonomous 
zones and that commonsense understanding is indefinitely articulable. It is. so 
to speak, “everywhere dense.” like the real-number plane: Between any two 
areas. or points, there is always another area. 

BIG TEXTS 
Suppose we take seriously the working hypothesis of 
computational psychology, that a major part of the hu- 
man mind is a cognitive system of rules and representa- 
tions, captured by some programlike object (one para- 
digmatic model would be Fodor’s language of thought 
hypothesis). One way of looking at this framework as- 
sumption is simply to note that this program, as a syn- 
tactic object, is text that has a size. That is, we can ask, 
“how big is the mind’s program?“4 It may seem unnatu- 
ral to ask such a question if one does not distinguish 
between a concrete algorithm and the corresponding 
abstract function (asking the size of a mathematical 
function seems as much a category mistake as asking 
how much the number 15 weighs). Moreover, individ- 
uating such cognitive elements as beliefs and concepts 
is a notoriously messy business. 

This “mind as warehouse” approach is rather primi- 
tive, but some evidence that the mind’s storage capaci- 
ties are not unlimited can be found in the renowned 
overflow phenomena of information explosion. For in- 

Test of truth-functional consistency of the belief set 
by the truth-table method, and 
by an ideal computer I: 

I checks each line of the truth table in one ‘supercycle”: 
the time a light ray takes to traverse the diameter of a 
proton. 

Spaed of light = 299,726 km/s, and the proton is lo-j3 cm in 
diameter; 

so. supercycle = 2.9 x 1 O-23 s. 

Maximum number of cycles available during the history of the 
universe: 

2 x 10” years X 365 days x 24 hours x 60 minutes x 60 
seconds x 2.9 x 1023 cycles < 2 x 10” cycles total. 

What is the largest belief set I could test? 
Number of lines in truth table = 2”, 

where n = number of logically independent propositions. 

2’% atoms require more than 3 x 10” lines. 

So, at 1 truth-table line chacked/supercycle, 
I cannot evaluate even the truth table for 136 independent 

propositions during the interval from the big bang to the 
present. 

FIGURE 1. Costs of Truth-Functional Consistency Tests 

‘Similar questions have sometimes been raised in AI, with answers that agree 
fairly well with the estimates here. Minsky asserted that one million “ele- 
ments of knowledge” would suffice for a machine with “very great intelli- 
gence” 142, p. 261. Some medical Al workers have estimated a million facts [of 
only 10 Lisp words each) to be needed for internal medicine, and a million 
more for all the medical specialties [46]. In his production-system model of 
cognition in 131. Anderson asserts that an adult human being’s “production 
memory” should contain between tens of thousands and tens of millions of 
production rules or procedures (there is also a large long-term declarative 
knowledae memorvl. Aaain. in an AI context. Lenat claims that. in their 
higher l&l analo&al reasoning, people employ “perhaps a million distinct 
memories of objects, actions, emotions, situations, and so on” [36]. Lenat’s 
current project is the construction of a large computer knowledge base of the 
real-world facts and heuristics contained, as commonsense knowledge, in a 
typical 30,000~article, one-volume desk encyclopedia (for comparison, Lenat 
claims the Encyclopedia Britannica contains nine times as many articles). He 
estimates this project will require about 300 programmer-years and one de. 
cade [37]. 
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stance, the preface to the famous 1910 edition of the 
Encyclopedia Britannica states the following: 

Whereas two or three centuries ago a single mind was able 
to acquire and retain in some one particular field of knowl- 
edge . . . nearly all that was worth knowing, and perhaps a 
good deal of what was best worth knowing in several other 
fields also, nobody now-a-days could, whatever his industry, 
cover more than a small part of any of those fields. [8] 

Sixty years later the mathematician S. M. Ulam re- 
ported estimates that 200,000 theorems were published 
in recognized mathematical journals per year. He wor- 
ried about the fact that “the number of theorems is 
larger than one can possibly survey . . .” and that 
“there is probably not one mathematician now living 
who can even understand all of what is written today” 
[56, pp. 287-2911. (Indeed, one wonders whether cogni- 
tive science itself has any better prospects of manage- 
ability.) In contrast to the Baconian ideal that “all learn- 
ing is my province,” or Peircean vistas of limitless 
acquisition of knowledge, our contemporary worldview 
seems to acknowledge the idea of an upper bound on 
the size of a human cognitive system. 

TABLE I. Big Texts 

Micrrxomputer operating 
system 

Webster’s Collegiate 
Dicfionaty 

Oxford English Dictionary 
SDI software 
Cray supercomputer 

Library of Congress 
Humao DNA 

Human cognitive/ 
perceptual system 

~5,000 lines of code 

50,000 entries 

500.000 entries 
10,000,000 lines of code 
10,000,000 pages of disk 

storage 
80,000,OOO volumes 
3,000,000,000 base units 

B 1 billion bias (50,000 pp.) 
=l O,OOO,OOO items (?) 

Let us first consider the relative size of some uncon- 
troversial textual objects-books, libraries, software, 
and so on-despite the apples-and-oranges problem of 
commensurability of the diverse types of items in- 
volved (see Table I). With these quantities in mind, we 
can begin to grope toward some sort of crude numero- 
logical estimates of the approximate maximum size of 
the mind’s putative program (perhaps within a couple 
of orders of magnitude). For the sake of argument, we 
assume some of the conventional cognitivist picture of 
the overall ground plan of a cognitive system as a con- 
venient approximation. 

The mind’s dictionary for a normal adult’s spoken 
vocabulary might range as large as an undergraduate’s 
abridged Webster’s Collegiate. (Although a lO,OOO-word 
active vocabulary is typical for a high-school graduate, 
a good reader can understand at least four times as 
many.‘) We will also allow a “mentalese dictionary” of 
-- 
’ The average eight-year-old child can recognize cwer 14,000 root words; this 
works out. beginning at 18 months, to vocabulary growth at about 5 new 
words per day (see [lo] and [41]). 

similar size for the internal language of thought (see 
Table II). We next include a corresponding mind’s en- 
cyclopedia of the individual’s basic factual information, 
commonsense knowledge, etc. This will be as.signed as 
many entries as the two dictionaries combined, which 
is comparable to the size of actual encyclopedias. No 
mind could be complete without an additional personal 
history, an episodic memory of its own idiosyncratic 
microevents: Suppose one actually does “learn some- 
thing new every minute.” On average, the mind will 
gain one long-term memory in each l-minute short- 
term memory cycle. (Haber reported that subjects’ 
memory for over 2,500 pictures presented 1 every 10 
seconds to be “essentially perfect” 1 hour afterward. 
Standing then showed that some subjects maintained 
60 percent recognition accuracy days after viewing 
10,000 pictures [28, 531). In a 70-year life span. (which 
equals 36,000,OOO minutes), with one-third spent in 
dreamless sleep and nine-tenths of this stream of con- 
sciousness forgotten, over two million episodilc memo- 
ries could still accumulate. Finally, falling back on the 
old yin/yang of a fact/value distinction, I will add a 
goal structure that is of the same order of size as the 
mind’s encyclopedia. (Procedural know-how, heuristic 
rules, etc., will just be subsumed within these declara- 
tive knowledge structures. Generally, the algorithm/ 
data structure distinction will not be observed here; 
the debuggability predicaments of each are, for our 
purposes, similar.) 

TABLE II. Estimating the Size of a Human 
Cognitive/Perceptual System 

Mind’s dictionary (words + concepts) 100,000 
Mind’s encyclopedia 100,000 
Episodic memory 2,000,000” 
Goal structure 
Total cognitive elements 

_ 100,000 
2,300,000 

Visual font 
Auditory, etc. 
Motor schemata 

200,000 
200,000 

Total perceptual/motor categories 
200,000 
600,060 

Total: About 3,000,OOO cognitive/perceptual/motor elements 

’ A person’s stream of consciousness: 

Suppose “you learn something new every minute” (=STM): 
70-year lie span = 36,000,OOO min.; 
% sleep (dreamless), and 8/o forgotten; 

Yields 2,000,000+ long-term episodic memories. 

If we consider the perceptual abilities of a human 
being, the well-read person can learn 50,000 ideograms 
for written Mandarin Chinese (although 5,000 suffice as 
“basic Chinese” for reading a newspaper). Similarly, 
chess experts seem to work with a perceptual pattern 
set of about 30,000 board situations [50]. A Mandarin- 
reading chess player (perhaps even multilingual) who 
manages to find his or her way around town, :recogniz- 
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Some convergent infonation on a cognitive/perceptual (C/P) 
system estimate: 

Is there room in our heads for a 10 million-element system? 

Total brain volume: ~1.4 I. 
Cortex volume: 0.5 I. 

10’” neurons x ~5,000 synapses/call = 5 X 1 0’3 
synapses. 

Suppose only 9% of the synapses are dedicated to 
representing C/P elements. 

Then, 1 C/P element: 0.06 cu. mm volume; 1,000 neurons; 
1 ,ooo,ooo synapses. 

Minimum information-rapresantation capacity of cortical 
tissue: 

Suppose each synapse P 1 on/off bit. 

1 C/P element ii 1 Mbit = 60 pp. of text. 

Therefore, no Cartesian nonspatial substance is needed yet. 
Versus, for example, if the C/P element/synapse ratio were 

worse than 1 : 24 
(since 24 bits are required just to index 10 million 

elements). 

FIGURE 2. The Volume of a Concept 

ing the faces of acquaintances,6 does not seem an un- 
realistic possibility. This individual’s “visual pattern 
font” might reach 200,000 items. Yielding to visual 
chauvinism, I will assign a similar number for all other 
sense modalities combined. Finally, viewing motor 
skills on the same hierarchical model as visual pattern 
recognition, let us suppose there are as many motor 
schemata as visual patterns. (There will also be special- 
purpose modules for syntax and early vision, among 
others.) 

The grand total for the inventory of a cognitive/per- 
ceptual/motor system is then around three million 
items. Even setting aside the conceptual morass of dis- 
tinguishing where one item stops and another begins, 
we must still note that, on a standard cognitivist pic- 
ture, these items will vary enormously in size. A propo- 
sition might be only about the size of the six-chunk 
capacity of human short-term memory, whereas a pic- 
ture could be worth more than a thousand words. For 
the moment, we pass over the question of the average 
size of these items themselves. 

Some rough neuroanatomical constraints can be 
used as a check on this size estimate for a cognitive 
system: For example, is there room in our heads for a 
10 million-element system, or would crowding it in 
require a brain the size of a bathtub? (See Figure 2.) 
The cerebral cortex, generally regarded as the seat of 
higher cognitive functions in Homo sapiens and other 
animals that have them, has a volume of around 0.5 
liter for human beings. (Keeping in mind that a cogni- 
tive/perceptual element might not be narrowly local- 

‘The right cerebral hemisphere seems to contain a face-recognition module 
with the caoacitv to learn 600 faces as easilv as 90. and to reidentifv them 
years later as ac&ately as a few months l&r. Carey and Diamond claim that 
“the limits on this ennrmnus hut everyday capacity, if any, have not yet been 
found” [ll. p. 611. 

ized in the cortical sheet, the “volume of a concept” 
would then average 0.05 cu. mm of gray matter.) Al- 
though much information is represented in other fea- 
tures of brain structure, the synapse is predominantly 
viewed as the site of memory. The human cerebral 
cortex is now thought to contain 10 billion neurons, 
with perhaps about 5,000 synapses each; there are then 
about 5 X lOI3 synapses total.7 With this estimate of 
synaptic density, we can attempt a calculation of the 
minimum information representation capacity of corti- 
cal tissue-after all, it is not going to be unlimited. 

Since there are other processing chores, not every 
single cortical synapse can be dedicated to representing 
cognitive/perceptual elements. If we suppose only a 
fifth of them are so occupied (indeed, under suitable 
conditions, individuals can lose one entire cerebral 
hemisphere without detectable deficit), there are then 
about one million synapses per cognitive/perceptual 
element. If each available synapse here is supposed to 
encode 1 binary bit of information, then a cognitive/ 
perceptual element (including perhaps some of its in- 
terrelations to other elements) can be synaptically rep- 
resented by 1 Mbit-a million bits-which would be 
about 60 typed, single-spaced pages of arbitrary alpha- 
numeric text. All that this establishes is a convergent 
confirmation that the aforementioned cognitive system 
size estimate is not entirely unrealistic. No Cartesian 
nonspatial substance is needed yet. 

In contrast, if the ratio of available synapses to cogni- 
tive/perceptual elements had turned out to be worse 
than 24 : 1, it would fall short of convergent confirma- 
tion of the system size estimate since 24 bits are re- 
quired just for a minimal unique index of each of 
10 million items. Or, again, a cognitive system the size 
of the 80 million-volume Library of Congress (with an 
average book of about 300 typed pages), or even of the 
25 million-volume Lenin Library, would not be synap- 
tically representable in a human cortex.’ 

‘Accessible accounts that include the estimates above can be found in arti- 
cles published in [6]. For some review and evaluation of quantitative “euro- 
anatomy, see 1151. 

“A natural “informational origami” objection is that cognitive structure may 
well be represented in brain structure more subtly and efficiently than the 
crude additive manner sketched here. For example, it might he encoded with 
snme of the compactness that brain structure information must be stored on 
the genome (see the “Prospects for Cognitivism” section). Sometimes. snme of 
the DNA “Turing tape” eve” can palindromically serve multiple functions. 

Mental structure, however, unlike lower order brain structure. seems un- 
likely to be amenable to much generative compactification. One reason de- 
rives from the familiar philosophical observation of the poor fit between the 
physical-here, the neuroanatomical-and the domain of everyday human 
situations and needs. The natural kinds of the physical/biological domain 
mesh only roughly relative to humanly relevant concepts and knowledge 
structures. (E.g., it is easy to envisage a compact genetic code for, say, a l-to-l 
mapping from retina to visual cortex, but distinctively more difficult to do so 
for a concept set including “telephone, ” “bachelor,” etc.) Hence. exploitable 
regularities of psychological structure seem unlikely to correspond well with 
regularities of brain structure. 

In addition, debate continues about whether human cognitive structure is 
regular in the first place, rather than a” intrinsically arbitrary hodgepodge 
[see the “Mind As Kludge” section). Consider the huge variation in human 
belief systems that can he found today. In contrast, brain structure (e.g.. 
cortical columns) seems a very large-scale but repetitive array. It is like the 
difference between geography and geometry, with geology somewhere in be- 
tween. Consequently, the representation scheme for a cognitive system must 
he inefficient or inelegant to the extent that it must he flexible enough to 
accommodate the deeply ad hoc character of much human knowledge and 
interests. 
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UNVERIFIABLE SOFTWARE 
1.f we took seriously the back-of-the-envelope estimate 
t.hat a human cognitive system could have a size in the 
I-to-‘10 million-item range, what would be some of the 
methodological consequences for cognitive science? 
One question this size estimate raises concerns the 
manageability or comprehensibility of the mind’s pro- 
gram. Anatomists are fond of saying the human brain 
is the most complex physical structure known in the 
universe. Moving from the hardware to software level, 
one would expect the mind’s program to be correspon- 
dir&y complex. A comparison of the mind’s program 
size estimate with the sizes of the big texts in Table I 
seems to confirm-with some exceptions-this qual- 
itativ’e difference in magnitude, unless the size esti- 
mate for the average individual cognitive/perceptual 
element is absurdly small, such as under one typed 
page. 

In particular, if we compare the size of the mind’s 
program with size estimates for the battle-management 
software for the Strategic Defense Initiative (SDI] (in the 
early “total-shield” concept, not more recent scaled- 
down proposals), the accepted estimates for the planned 
original SD1 software ranged up to about 10 million 
lines of code (expected to be in the higher level com- 
puter language Ada). Roughly speaking, the size of 
the SD1 battle-management software is then at least 
100 times smaller than the estimated size of the mind’s 
program. Is the proposed SD10 software envisaged to be 
comprehensible-in particular, “verifiable” or debugga- 
ble? This question has become a topic of current politi- 
cal controversy. In 1985 computer scientist David Par- 
nas resigned from the SD1 Panel on Computing in Sup- 
port of Battle Management. His letter of resignation and 
an accompanying set of short tutorials arguing that the 
SD1 software system would not be trustworthy were 
subsequently published over the ARPANET. Later, an- 
other paper with a similar conclusion, that reliable soft- 
ware for such a defense may be impossible, appeared as 
the lead “Science and Public Policy” article in Scientific 
Americmg The basic idea that (moderately) large pro- 
gramming projects suffer problems different in kind 
from small ones had been vividly argued much earlier 
by Frederick Brooks, project manager for development 
of the IBM System/360 and its operating system, in [7]. 
The tenor of Brooks’ essay is conveyed by the cover 
illustration, a paleontologist’s drawing of the La Brea 
Tar Pits. 

The Pascalian game theory of verification for the 
mind’s program and for a ballistic missile defense soft- 
ware system differ vastly: The downside risk for a fail- 
ure of a mind’s program candidate is just a research 
embarrassment, whereas failure of SD1 software could 
bring ;a catastrophe unprecedented in human history. It 
is also difficult to envisage a full-scale test of the SD1 
softwalre system without global thermonuclear war, 
whereas this seems less of a problem for a mind’s pro- 

-- 
‘Parnas’s material has since appeared in more extensive form as 1451. See also 

[381. 

gram candidate. Nevertheless, the basic verification 
predicament for each of these huge programs is essen- 
tially similar. 

SOFTWARE VERIFICATION 
What is program verification? In short, checking for 
local syntax errors in code is routine and computation- 
ally cheap; the trouble lies elsewhere. In software engi- 
neering, the conventional trichotomy of levels of design 
is (1) abstract specification of the software task or logi- 
cal function, (2) devising the basic procedural idea or 
algorithm for the task, and (3) writing the actual de- 
tailed program code that implements the algorithm. 
Evaluation of the resulting software includes establish- 
ing correctness (for the appropriate range of inputs, the 
program yields only the right outputs), completeness 
(for the appropriate inputs, the program always yields 
an output), and computational tractability (for appropri- 
ate inputs, the computational costs of the program are 
always acceptable). 

Real-world debugging tends to be perceived as only 
minor “noise” in the software development process; 
however, a number of studies indicate that the majority 
of the actual cost of a software project is devoted to 
such testing. Also, a range of studies suggest that, even 
when it is done properly, the resulting software will 
still contain around one bug for every 100 statements.” 
Indeed, bug corrections themselves tend to be signifi- 
cantly more error prone than the original code. Fur- 
thermore, apparently because of combinatorial explo- 
sion of transition possibilities, asymptotic bug rates 
often seem to go up, not down, with increasing program 
size (see, e.g., [7, pp. 88-89)]. 

Bugs seem to be endemic. The startling character of 
such statistics suggests that we tend to unrealistically 
presuppose that programs are essentially errsor free. 
Such a picture may itself be an instance of the recently 
much-studied pathological inability of human beings 
to estimate and reason in terms of accurate event base 
rates;” perhaps some vivid stereotype of “computer- 
like perfection” drives us to overlook observlsd bug fre- 
quencies. [A possible harbinger of a paradigm shift here 
is the ACM journal Software Engineering Notes, which 
regularly publishes lists of bug episodes.) 

To an outsider, the classic verification methodol- 
ogy, exemplified by Dijkstra [19], seems to be self- 
consciously modeled on a Cartesian epistemology of de- 
ductive science: “Perfect” formal proofs of a program’s 
correctness and completeness are required; they resem- 
ble metamathematical proofs of consistency and com- 
pleteness of deductive systems. Although controversy 
surrounds this stringent program verification methodol- 
ogy, I think there are some reasonable questions about 
whether history’s majority verdict will be that the full- 
scale methodology becomes more of an interesting art 

lo These studies are reviewed in 14, pp. 1-3, 33-351. See also [7, p. 20). 

” A review of psychological studies of the role of human base-rate 
path&&s in real-world risk assessment is found in [51]. 
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for art’s sake end rather than a real-world feasible tech- 
nique. Parnas remarks that the programs for which 
he has seen such proofs have all been “well under 
500 lines” [45, p. 4391. In the preface to a recent book in 
the Dijkstra tradition, Gries acknowledges that the 
methodology has been applied only to programs consist- 
ing of “one or two pages” of text. (Gries asserts that 
“finding an error should be the exception rather than 
the rule.” Ironically, however, a typographical error oc- 
curs by the second page of his preface [27, pp. vii-viii].) 

The underlying strategic problem for such perfection- 
ism is a new wrinkle on the traditional epistemological 
problem of regress. Program verification, like theorem 
proving, tends to be computationally complex.‘* To es- 
tablish adequate confidence in a program by this meth- 
odology, one moves out of the frying pan of questions 
about the program’s correctness and into the fire of an 
even more real-world unmanageable correctness proof. 
A conventional proof of formal system consistency 
must always be relative-it must rely on some back- 
ground level of intuitions about correctness. The clas- 
sical concern is the adequacy of our metatheoretic no- 
tions of consistency that must be appealed to in such 
a consistency proof. For example, in 1936 Gerhardt 
Gentzen gave a consistency proof for elementary arith- 
metic using extremely powerful nonelementary meth- 
ods (as required by Godel’s Incompleteness theorem), 
that is, methods not formalizable in arithmetic itself 
involving transfinite induction. According to Kleene, 
the logician Alfred Tarski, “asked whether he felt more 
secure about classical mathematics from Gentzen’s con- 
sistency proof, replied, ‘Yes, by an epsilon”’ [34, p. 2571. 

This type of no-win predicament is now mirrored at a 
practical level for program verification: When the proof 
itself must be so unmanageable, a Cartesian method of 
analyzing it down to a vast series of humanly obvious 
individual steps simply introduces its own unreliability. 
The very high observed error rates described earlier 
heighten this practical regress problem. There seems 
to be a point of diminishing returns: As programs and 
their verifications get bigger, the proofs’ power as con- 
vincing machines thereby asymptotes. (I believe corre- 
sponding worries underlie much of the methodological 
puzzlement that greeted Appel and Haken’s proof of the 
Four-Color theorem by computer-assisted exhaustive 
checking of huge numbers of possible cases.13) 

It is worth emphasizing that, although total correct- 
ness proofs may be an overreaction, there is a sound 
motive behind them. Dijkstra is concerned that, with- 
out such proofs, programmers live “in a limbo of folk- 
lore, . . . never quite sure what the system will do to 
their programs” [19, p. 2021. Indeed, in the beginning is 

I2 For a brief discussion, see [46]. A survey of practical and theoretical unfea- 
sibility of formal proofs of pmgmm correctness is found in 139). 

‘3See. for example, 1551. For an overview of another huge proof (15,000 pages 
long. primarily by hand. in group theory) see (261. In arguing for his methods 
ofprobabilistic prwf, Rabin has noted in effect (apparently not in print) the 
diminishing-returns problem for the convincingness of large mathematical 
proofs: see [35]. 

our end: In “Computing Machinery and Intelligence,” 
Turing already seemed to glimpse this predicament: 
“We also wish to allow the possibility that an engineer 
or team of engineers may construct a machine which 
works, but whose manner of operation cannot be satis- 
factorily described by its constructors because they 
have applied a method which is largely experimental 
[l, p. 71.” 

A more applicable approach than perfect verification 
is probabilistic analysis of program performance. The 
basic idea is to make a representative sampling of a 
range of input instances from the total problem space 
and then to evaluate program behavior for those cases. 
The evaluation can be by formal methods, as in Smale’s 
proof that computationally “hard” problem instances 
for the simplex linear programming algorithm are in a 
sense “rare” [52]; or the evaluation may be “empirical,” 
by actually observing computer running times.*“ Thus, 
the goal shifts from “perfect” verification to establishing 
a sufficiently high probability of simply adequate pro- 
gram performance, as in engineering tests of conven- 
tional machinery. The crucial methodological puzzle in 
probabilistic program testing is, how is one to define 
the problem-space regions that are of interest (how 
much, how often) for a given purpose? Correspon- 
dingly, how is one to identify a sufficiently systematic 
sampling procedure on those problem-space regions? 
Problem instances are typically interesting or important 
only relative to a whole context of human goals, needs, 
and so on. Thus, probabilistic program verification be- 
comes intimately and inextricably linked to exactly 
those volatile phenomena that are the most distinc- 
tively resistant to “clean, scientific” definition. 

A PASCALIAN PREDICAMENT 
It is important to be aware that some of the simplest 
software with the best track record of actual perfor- 
mance is quite buggy. The most startling stories I know 
concern floating-point arithmetic algorithms for micro- 
processors, for example, a square-root function that in 
some cases produces outputs differing from target val- 
ues by an order of magnitude. William Kahan, of the 
Computer Science Department at the University of Cal- 
ifornia, Berkeley, has argued that no calculator in the 
foreseeable future will be free of serious round-offer- 
rors.15 Similarly, the operating system for the IBM PC 
microcomputer still harbors a number of nontrivial 
bugs; indeed, each new version seems to engender in 
turn its own new crop of them. (Thus, much of the 
business of user publications such as PC Week consists 
of bug patrolling and reporting.) Therefore, even micro- 

” For an empirical study of actual run times of a simplex package, see 1401 
For an analysis of basic methodological issues involved in such empirical 
evaluations, see [24]. 

“See [30]. (I recall that Kahan’s office used to be littered with pocket calcula- 
tors that he could net to exhibit the most exotic behavior.1 See also the 
discussion of an&is and control of ernxs in [29] (reportedly, it was largely 
ghostwritttm by Kahan). The approach them is toward learning to live with 
unavoidable errors as design limitations rather than as unanticipated bugs- 
that is. to predict and manage important classes of them. 
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processor software engineering seems to diverge from buggability of a poem (“A poem is never completed, 
the unclouded optimism of any prospect of monotonic only abandoned”], it seems that “a program is never 
refinement toward the ideal (e.g., along the classical finished, only released.” Large software will be con- 
pragmatist lines of C. S. Peirce’s model of scientific demned to the Sisyphean regime of the iron law of 
inquiry). The decision-theoretically correct conclusion Murphy. When we extrapolate beyond actual software 
here is: not some Luddite advice to trash our calcula- to the complete purported program of the human mind, 
tors; the rather unsystematic intuition, on the basis of the cost-benefit analysis becomes still more problem- 
which we are willing to design bridges, is that we can atic. Of course, actual human reasoning procedures di- 
be reasonably certain that the buggy cases are quaran- verge far from formal perfection. As reviewed in the 
tined am identifiable when they do get loose. The line upcoming discussion of quick-and-dirty heuristics, their 
between bug and undocumented design feature can unreliability seems a profoundly Faustian bargain, in- 
blur; we learn to live sometimes with bugs along the dispensable to avoid computational paralysis. But the 
lines-“A weed is just a plant for which we have not peculiar possibility emerges that, even if a fully intelli- 
yet found a use.” We do not demand perfection. We gent program could be constructed, it might be right- 
thereby bet our lives on hunches about the probability fully condemned to remain a toy or laboratory curi- 
distribution of the bad cases; but the alternative is a osity. Could we rationally rely on it as much <as we 
kind of Cartesian paralysis. depend on a human taxi driver, for instance? 

It is important to be aware that some of 
the simplest software with the best track 
record of actual performance is quite 
WKY- 

When one scales up the software to programs recog- 
nizable as AI, intuitions about proper risk assessment 
become more hesitant. For example, a number of medi- 
cal diagnosis expert systems are among the oldest and 
most impressive successes in AI. MYCIN, an expert sys- 
tem for the diagnosis of infections, has been outper- 
forming human physicians for over a decade. Yet 
Lawrence Kingsland, head of the expert-systems project 
at the National Library of Medicine, has reported that 
to his knowledge only a very small handful of diagnos- 
tic medical expert-system programs (which did not in- 
clude MYCIN) were yet being used at all in regular 
clinical practice. (Indeed, the Federal Drug Administra- 
tion has been reviewing the question of certification of 
medical diagnostic systems.)16 In this context, the man- 
ufacturer’s standard denial for a mere word-processing 
program of even implied warrantability of fitness for 
use of a:ny kind (it is always provided on an “as-is” 
basis, and so on) would be unheard of for a conven- 
tional machine such as an automotive brake system. In 
fact, the laws of some states do not permit such exclu- 
sion of implied warranty. These remarkable disclaimers 
now take on the character of a further symptom of 
the practical undebuggability of even small-sized 
software. 

Thus, to travesty Verlaine’s aphorism on the unde- 

“For sane performance evaluations of MYCIN. see [S, part 10). [A caution: 
Reports of software outperforming human beings on statistical prediction tasks 
must be taken cum gmno salis. Given the startling ineptness of people at 
reasoning in terms of objective base rates as noted earlier, it is no surprise 
that the crudest actuarial formulas outperform clinical experts. For a review 
of the three decades of studies of these comparisons. see 144, chap. 71 (espe- 
cially pp. US-141).) Kingsland’s remarks are from 1331. 

The corresponding possibility from the perspective 
of the cognitive science millennium would be that the 
Martians might present us with the correct vast pro- 
gram for the human mind; or, more plausibly., Mother 
Nature might blindly have constructed it over the 
aeons. But we might be unable to verify or evaluate it 
in the sense explained, much less to establish that the 
program succeeds in mapping the human mind (includ- 
ing bug-isomorphism). The point is that this unmanage- 
ability might stem from the essential nature of the hu- 
man mind, from the intrinsic structure of the mind’s 
program-its vast size, for example-rather than from 
mere historical accidents of slovenly programming 
style.” Thus, an appearance/reality distinction: A huge 
program for the mind may be objectively possible, but 
it may also be that we cannot establish its existence. 
The mind’s program may then be a Ding an sich that is 
practically unknowable to a philosophically interesting 
extent.” Of course, complete understanding of the 
mind’s program is still possible in principle, as is the 
use of hopelessly unwieldy quantum mechanics instead 
of classical mechanics in designing a bridge. But the 
whole thrust of a resource-realistic philosophical per- 
spective is just that so abstract a feasibility is cold 
comfort. 

THE TEXTURE OF FAILURE 
Software for a cognitive system will differ in its failure 
proneness from conventional types of machines for rea- 
sons other than just its brute complexity. A cognitive 
system’s program will tend to act as a failure amplifier 
because of its intrinsically branchy structure and its 
distinctively holistic structure of interconnection. Con- 
sider the vivid contrast between reliability of computer 
software and hardware. Running any given program 
requires a machine that is more complex than the soft- 
ware, in the most primitive sense of the number of 
comparable elements. First, the hardware must include 

” Only the latter, contingent type of defect seems to be the sc~unx of the 
program incomprehensibility discussed by Weizenhaum in [57, chap. 91. 

“I have discussed this concept, for example. in [13, chap. 6] 
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at least one independent memory location for storing 
each symbol of the program. Yet commercial software 
continues to have defect rates that would be exotic for 
conventional machinery, current computer hardware 
surpasses any other artifact of our era in both its intri- 
cacy and reliability. Hardware failures are relatively 
rare events. Why is this? The remarkable record of 
hardware reliability owes something to a concern with 
such things as fault-tolerant design and error-correcting 
codes that dates back to von Neumann. 

But the difference between hardware and software 
that is mainly responsible for this qualitatively different 
order of failure proneness concerns structure. Tacitly 
we tend to extend our picture of the behavior of con- 
ventional artifacts to software, but the latter is in fact 
an entirely different regime. A massive memory (e.g., a 
disk system) differs from a massive program it contains 
in that the memory has a simple additive structure, 
rather than a branching complexity. Very roughly, a 
satisfactory memory medium (e.g., basically iron filings 
embedded in Mylar sheet) just has to be tested for pu- 
rity and uniformity to ensure there are no imperfec- 
tions in the physical material. Unlike software, the 
diskettes that contain it are routinely guaranteed free 
of defects in materials and workmanship. To test a 
memory to establish that it is good, one only has to 
sample and check the relatively independent elements. 
The failure modes of memory media do not include 
cases where insidious, fine-structured, extensive propa- 
gation is likely. 

The texture of failure for a program differs because of 
its branchy structure: There are not just many distinct 
states, but a combinatorially exploding number of ways 
in which one state can be connected to another. The 
branching is not just wide, but deeply hierarchical in 
organization, nested iteratively through many layers as 
in truth tables. Debuggability by exhaustive checking of 
this vast number of potentially possible transitions is 
then not remotely feasible. (Recall the example of the 
costs of truth-functional consistency testing sketched 
earlier.) Here again we confront a problem of scale. 

In addition, the essential structure of a cognitive sys- 
tem ensures that computational approximations of it 
will function as failure amplifiers. In philosophy, Quine 
[47, sec. 61 and Davidson [18] have long emphasized the 
distinctively holistic character of cognitive systems. But 
that interconnectedness means that defects, as well as 
revisions, will tend to propagate via the flow of infor- 
mation throughout the web of belief. In this way, such 
a nexus acts as a bug detector, rather like a spiderweb. 
Divide-and-conquer software design methodologies 
that prescribe a hierarchy of self-contained, clean- 
interfacing modules and submodules are, of course, 
good strategy; but the intrinsically holistic nature of 
program models of cognition entails limits to such mod- 
ularity. Quine, Davidson, and the philosophical tradi- 
tion they epitomize deny or recoil from departures of 
actual cognitive webs from ideal rationality; it is there- 
fore ironic that such nonidealities-nonclosure of the 
belief set under deduction, compartmentalization of it, 

and so on”-act as a type of fault-tolerant software 
design feature, namely, as valuable quarantines on bug 
propagation. (So that, e.g., contrary to Quine and others, 
a contradiction in the system does not in fact actually 
threaten to generate every proposition.) 

MIND AS KLUDGE 
Another source of undebuggability is intrinsically 
messy program structure. Over the past two decades, a 
set of methodological constraints on the very form of a 
cognitive science have been urged, particularly by the 
Cambridge Cartesians-Chomsky, Fodor, et al. (see, 
e.g., [16, chap. l] and [22]). The correct form of a cogni- 
tive theory must be as a small set of elegant, powerful, 
general principles, on a model such as classical me- 
chanics, because such hyper-Euclideanism is supposed 
to be part of the essence of good scientific explanation, 
just as being a male sibling is the nature of brother- 
hood. It has been claimed that, if the mind turns out 
not to have this clean, compact structure, but instead 
turns out to be designed as a patchwork hodgepodge of 
many ad hoc kludges (i.e., inelegant rules), then there 
can be no cognitive science. Whatever cognitive scien- 
tists are doing, it will be merely something low level 
and descriptive, like geography or writing large, messy 
Russian novels. 

It is at least a question of current empirical investiga- 
tion, and of some controversy, whether the mind is in 
fact hyper-Euclidean in this way. After all, what is ele- 
gant to the eye of the cognitive theoretician may not be 
obediently implemented by Mother Nature because it 
may not be efficient for actual processing: Thus, the 
alternative emerging picture of mind instead as an 
in-practice anomalous kludge of limited-applicability 
special-purpose procedures. But how much comfort 
can we take from a kludge model of the mind? 

If all of the mind had a neat, regular (and modular) 
hyper-Euclidean structure, its software would be rela- 
tively easy to debug on the pattern of conventional 
consistency and completeness proofs for formal systems 
in logic as mentioned earlier. But kludge-structured 
software for the mind’s vastness will be seriously 
harder to verify just because it’s messy. In a backhand 
way, for an unanticipated reason, the Cambridge Carte- 
sian commitment to hyper-Euclideanism is at least 
somewhat vindicated. Whether or not a science of the 
kludge ceases in essence to be science, it is in danger of 
being impossible, because a huge kludge threatens to be 
a practically unknowable entity. 

THE QUICK AND THE DIRTY 
It is important to distinguish between a kludge and a 
quick-and-dirty procedure-one that is computation- 
ally cheap, but formally incorrect and incomplete. A 
program can be inelegant, but still correct and com- 
plete. Conversely, a program can be compact, but incor- 

“1 have discussed these in [13, chaps. 3-41 
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rect and/or incomplete. A variety of converging evi- 
dence has emerged that suggests for a wide range of 
reasoning procedures a profound antagonism between 
formal correctness/completeness and computational 
tracta.bility (see, e.g., [13, chap. 41). At least the flavor of 
these complexity-theoretic results is conveyed by the 
example of the computational cost of tautology testing 
by truth tables, mentioned at the onset of this article. 
The conclusion 1 have drawn, which I think has inde- 
pendently become a leitmotiv of a variety of current 
research, is that human beings must evade this compu- 
tational paralysis by using quick-and-dirty procedures. 

The optimism of this picture of quick-and-dirty heu- 
ristics as the ultimate speed-reliability trade-off, how- 
ever, is darkened when we turn to evaluation of the 
performance of such heuristics. Perfection may be im- 
possible, but it is simple. It is no accident that correct 
and complete procedures were objects of study long 
before quick-and-dirty heuristics. For example, the 
concepts of perfect correctness and completeness for 
a deductive system are rather easy to define, and it is 
often relatively easy to establish that a system satisfies 
them. A quick-and-dirty deductive system is, of course, 
guaranteed not to be correct and complete; the most 
that can be sought is that it possess acceptable incor- 
rectness and/or incompleteness. But notions of such 
acceptable “dirtiness” will tend strongly to have the 
character that we already saw earlier for probabilistic 
software verification. 

That is, to evaluate whether a program is acceptably 
dirty, one has to be able to specify, again, the subset of 
input problem instances that are of interest-for exam- 
ple, th.at are likely to arise often in relevant conditions. 
Blind trial and error cannot suffice. Then one must 
estimate whether the program’s behavior will be cor- 
rect, complete, and computationally tractable suffi- 
ciently often in those cases. Such probabilistic analyses 
of heuristics are just beginning to emerge, principally in 
the areas of computer science that deal with optimiza- 
tion procedures that are computationally costly and 
much more clearly defined than most AI tasks.“’ 

One leading worker in the area, Richard Karp, views 
the venture of probabilistic analysis of combinatorial 
optimization algorithms as “only partially successful” 
because of continued use of “the most simplistic of 
probabilistic models” [31, p. 1081. He adds later, “There 
is a really fundamental methodological problem: How 
do you choose the probability distributions? How can 
you possibly know what the population of problem in- 
stances is going to be?” [23, p. 1131. Indeed, Karp and 
Luby felt obliged to conclude a recent paper proposing 
and formally analyzing some Monte Carlo techniques 
by citing results of actually running the algorithm on 
six examples [32, p. 631. In-practice performance eval- 
uation still seems to compel a quasi-experimental ap- 
proach. A basic difficulty, once again, seems to be that 

-- 
“For an overview of such probabilistic analyses, see Karp’s ACM Turing 
Award Lecture [31] @p. 106-108 are especially relevant here) and also the 
interview with Karp in the same issue (231. 

complete specification of the set of relevant typical 
problem instances will often be delicately enmeshed 
in the whole context-sensitive nexus of human goals, 
needs, and purposes. Such probabilistic analyses are not 
merely hard to accomplish as a practical matter; the 
very concept of success here does not seem susceptible 
of clear specification. Therefore, the threat is of the 
reliability of the heuristic becoming merely (a haphaz- 
ard “so far, so good” black-box gamble. 

A familiar intuition regarding the 
complexity of the human brain is that a 
low-level description of its structure would 
be entirely unmanageable for us. 

It is in this way that a higher order dilemma arises 
between computational tractability and software veri- 
fication: Quick-and-dirty procedures do indeed seem 
indispensable for evading intractability, but (at the cost 
of loss of clearly definable concepts of verific:ation or 
debugging. (In philosophy, the prospect of mind as inev- 
itably quick-and-dirty kludge poses methodological 
puzzles in this way for recent reliabilist theories of jus- 
tification such as Goldman’s [25], which seeks to evalu- 
ate basic cognitive processes epistemologicalliy in terms 
of their reliability, power, and speed.) In still another 
way, the mind’s software seems to recede as a practi- 
cally unmanageable Ding an sick 

PROSPECTS FOR COGNITIVISM 
A familiar intuition regarding the complexity of the 
human brain is that a low-level description of its struc- 
ture would be entirely unmanageable for us. For exam- 
ple, “Even if we had a diagram that included every one 
of the billions of neurons and billions of interconnec- 
tions in the human brain, it would stare at us as mutely 
as the grains of sand in a desert” [5]. As Anderson 
asserts, “A neural explanation is too complex and de- 
tailed to adequately describe sophisticated human be- 
havior. We need a level of analysis that is more ab- 
stract” [2, p. 111. The natural inference has then been 
to the promise of a computational psychology. The most 
powerful level of description of the brain sha’uld be at 
the program level of abstraction, rather than, say, a 
microlevel neuroanatomical wiring diagram. 

The argument here, however, has been that such a 
program seems likely still to be unmanageabl.e-une- 
valuatable, in particular-because of its vastness and 
its branchy, irregular, and necessarily quick-and-dirty 
structure. This picture of mind as huge kludge in turn 
seems to account etiologically for some of the current 
practice, as opposed to ideology, of AI. The conven- 
tional optimist view of AI methodology is that it im- 
poses valuable discipline 02 cognitive modeling. First, 
it serves a Socratic function, forcing us to be honest by 
focusing attention on specific implementation details 
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of the model. We thereby find and confront the “and- 
then-a-miracle-happens” gaps. Second, AI program- 
ming-with performance evaluation-constitutes 
a kind of quasi-empirical test of the model. The de- 
pressive critique, however, familiar since Dreyfus’s 
What Compufers Can’f Do [ZO], is that AI’s approach to 
problem-stellung has in fact involved selection of 
“toy,” simplified problem instances and quite limited 
problem domains, with attendant difficulties of “brittle- 
ness” or nonextendability of the resulting custom- 
tailored initial program designs. First steps abound, but 
few second steps. 

We can now see that such practice is not some mys- 
terious infantilization or moral defect. It can be made 
sense of as an instance of the inattention to scale that I 
proposed earlier is a pervasive feature of methodology 
throughout cognitive science. Difficulties arise because 
a human cognitive system will be so huge that the 
distance between pilot and full implementation will 
tend to be quite vast. Similarly, the inattention to sys- 
tematic performance evaluation of AI programs seems 
more than historical accident. Rather, it can be viewed 
as a symptom of simple but deep features of the struc- 
ture of a cognitive system. Mind as huge kludge poses 
specific obstacles to debuggability: identifying the prob- 
lem space and the subregions that are of real interest, 
devising sampling strategies for them, and verifying 
that performance reaches reasonable levels. Recent 
neurally inspired connectionisP conceptions of distrib- 
uted and massively parallel architectures can only ex- 
acerbate these structural unevaluatability difficulties. 

As a concluding irony, it is interesting to turn our 
attention once more to scale to compare the size esti- 
mate for the mind’s program with the information con- 
tent of a human DNA strand (see Table I). The brain’s 
bottom-level neuroanatomical characterization cannot 
be too huge, for it must be able to pass through the 
genomic bottleneck of DNA representability: The brain’s 
blueprint must be able to fit into less than three billion 
base units, the single-copy size of the total human ge- 
nome. With allowances for informational inefficiencies 
of protein specification, repeated sequences, noncoding 
introns, and so forth, somewhere between 10,000 and 
30,000 typed alphanumeric pages of brain-specific ge- 
netic “text” seem available for representing the mind’s 
hardware.” Whatever the vagaries of comparing lines 
of SD1 code, cognitive items, and DNA text, it then 
seems that a human brain’s genetic blueprint is orders 
of magnitude smaller than the proposed SD1 software, 
much less the mind’s program. The initial intuition 
about complexity of brain structure vastly exceeding 
that of the mind’s program then turns topsy-turvy. The 
paradoxical conclusion is that a quite low-level descrip- 
tion-the DNA representation-of the neural hardware 
turns out to be demonstrably more economical than the 
envisaged mind’s software of cognitivism. 

CONCLUSION 
My basic point has been simply that there are reasons 
to expect the mind’s program to be inhumanly unman- 
ageable stemming from a resource-realistic approach to 
cognitive science. To this extent its usefulness to cogni- 
tive science itself will be limited. The distinctive recal- 
citrance of a science of the mind, compared with the 
physical and biological sciences, has long been noted. 
We can now see that, correspondingly, the mind’s pro- 
gram would differ fundamentally from conventional 
machines. The mind’s program would be an impossi- 
bility engine, in that it would be practically unfeasible 
for us fully to comprehend and evaluate it. This is not 
quite Edmund Husserl’s verdict that articulating the 
structure of mind is “an infinite task”; but then bare in- 
principle possibility seems of limited interest. Nor is the 
point an impossibility proof of a complete mind’s pro- 
gram cannot be constructed; rather it is that we cannot 
deal with or fully understand it. Our stance toward it 
might end up a little like that of coral animals toward 
the vast reef they have builtZ3 (Recall Ulam’s worries 
quoted earlier about a similar current state of mathe- 
matical knowledge.) 

This argument does not impugn the plausibility of 
manageability of all very large programs, only ones 
with the distinctively unwieldy structure of models of 
the human mind. The present discussion also leaves 
open the possibility that there might be some program 
that could yield the full range of human-level intelli- 
gent behavior, yet have a radically different, in partic- 
ular, simpler, structure than that of the human mind. 
(This possibility is explored in [la].) 

Even with this in-practice anomalousness, some of 
the overall ground plan of the mind’s program should 
be humanly accessible. Also, the smaller a submodule 
(when cleanly isolable), the more manageable it should 
be. I therefore feel that it would be an overreaction 
here to leap to a grand eliminativist conclusion that 
computational or cognitive levels of explanations are 
fundamentally misbegotten. (E.g., to conclude that such 
categories cannot be the natural kinds for a successful 
science of the mind.) Why should we expect a preesta- 
blished harmony, where human nature must turn out 
to be conveniently comprehensible to us? 

I tend to personally lean toward a mutual coexist- 
ence: With a picture of the mind’s program as huge, 
branchy, quick-and-dirty kludge, the conventional con- 
trast in manageability cited earlier between explana- 
tions at the level of abstract program and of neural 
hardware fades. Full-scale software description of the 
mind faces a predicament of diminishing returns. A 10 
million-element cognitive system with each element 
100 statements long, and a 10 billion-neuron cerebral 
cortex begin to some degree to converge in complexity. 
Hence, the idea of the mind’s program as an impossibil- 

” For an introduction. see [49] and the articles in [17] ‘An emerging symptom of this phenomenon that I lampooned in a recent 
cognitive science fiction niece 1141 is AI enaineerina steadilv outoacine the- 

**See the papers in [43]; for an accessible review of the molecular biology, see 
(541. 

- ., . L 
ori: that is, increasing practical AI successes with diminishing understanding 
of how and where the software works. 
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ity engine suggests some redefinition of research 
agenda, namely, that not too much is to be lost by 
turning back to neuroanatomy and neurophysiology. In 
fact, this has been a recent trend in cognitive science; 
the field seems to have recalled lately that cognition is, 
after all, accomplished with a brain. In this article an- 
other, perhaps once unperceived motivation for this 
tendency can now be discerned. 

Acknowledgments. For generous help on this article, I 
am indebted to William Gasarch, Alvin Goldman, Mark 
Tuttle, and John Waclawsky. 

REFERENCES 
1. Anderson, A., Ed. Minds and Machines. Prentice-Hall, Englewood 

Cliffs, N.J., 1964. 
2. Anderson, J. Cognitive Psychology and Its Implications. Freeman, San 

Francisco, Calif., 1980. 
3. 

4, 

Anderson, J. The Architecture of Cognition. Harvard University Press, 
Cambridge, Mass.. 1983. 
Be&r, B. Software Testing Techniques. Van Nostrand Reinhold, New 
York, 1983. 

5. 
6. 
7. 

6. 

0. 

10. 

11. 

12. 

13. 
14. 
15. 

16. 
17. 
18. 

10. 

20. 

21. 
22. 
23. 

24. 

25. 

26. 
27. 

28. 

29. 

Bernstein, J. A.I. New Yorker (Dec. 14, 1981), 121. 
The brain, Scientific American 241 (1979). 
Brooks, F. The Mythical Man-Month. Addison-Wesley, Reading, 
Mass., 1975. 
Bryce, J. Prefatory note. In Encyclopedia Britannica. Vol. 1, 11th ed. 
Encyclopedia Britannica Co.. New York, 1910, pp. vii-viii. 
Buchanan, 9.. and Shortliffe, E., Eds. Rule-Based Expert Systems: The 
MYCIN Experiments of the Stanford Heuristic Programming Project. 
Addison-Wesley, Reading, Mass., 1984. 
Carey, S. The child as word learner. In Linguistic Theory and Psycho- 
logical Reality. M. Halle, J. Bresnan, and G. Miller, Eds. MIT Press, 
Cambridge, Mass., 1978. 
Carey, S., and Diamond, R. Maturational determination of the devel- 
oping course of face encoding. In Biological Studies of Mental Pro- 
cesses, D. &plan, Ed. MIT Press, Cambridge, Mass., 1980. 
Charniak, E.. and McDermott, D. Introduction to Artificial Intelligence. 
Addison-Wesley, Reading, Mass., 1985. 
Cherniak, C. Minimal Ration&y. MIT Press, Cambridge, Mass., 1986. 
Cherniak, C. The wager. AI Mug. 7 (1986), 120-124. 
Cherniak, C. Meta-neuroanatomy: The myth of the unbounded 
mind/brain. To be published. 
Chomsky, N. Reflections on Language. Pantheon, New York, 1975. 
Cognitive Science 9 (1965). 
Davidson, D. Psychology as philosophy. In Essays on Actions and 
Events. Oxford University Press, New York, 1980. 
Dijkstra, E.W. A Discipline of Programming. Prentice-Hall, Englewood 
Cliffs, N.J., 1976. 
Dreyfus, H. What Computers Can’t Do. 2nd ed. Harper and Row, New 
York, 1979. 
Fodor, J. The Language of Thought. Crowell, New York, 1975. 
Fodor. J. The Modularity of Mind. MIT Press, Cambridge, Mass., 1983. 
Frertkel, K.A. Complexity and parallel processing: An interview 
with Richard M. Karp. Commun. ACM 29,2 (Feb. 1986), 1X-117. 
Golden, B., Wasil, E., and Baker, E. Experimentation in optimization. 
Eur. J. Oper. Res. 27 (1986). l-16. 
Goldman, A. Epistemology and Cognition. Harvard University Press, 
Cambridge, Mass., 1986. 
Gorenstein, D. The enormous theorem. Sci. Am. 253 (1985), 104-115. 
Gries. D. The Science of Programming. Springer-Verlag. New York, 
1981. 
Haber, R. How we remember what we see. Sci. Am. 222 (1970), 104- 
112. 
Hewlett-Packard. Accuracy of numerical calculations. In HP-15 C 
Advanced Functions Handbook. Hewlett-Packard, Cupertino. Calif., 
1982, appendix. 

30. Kahan, W. Mathematics written in sand. In Proceedings of the Joint 
-Statr.stical Assowztlon Meetmg (Toronto, Ontario) 1983. 

31. Karp, R.M. Combinatorics, complexity, and randomness. Commun. 
AU.4 29, 2 (Feb. 1986), 98-111. 

32. Karp, R.M.. and Luby, M. Monte-Carlo algorithms for the planar 
multiterminal network reliability problem. J. Complexity I (1965), 
45-64. 

33. Kingsland, L. Overview of medical expert systems. In Proceedings of 
the American Society for Information Science Meeting, Potomac Chapter 
(College Park, Md., Nov.). ASIS, Washington, D.C., 1985. 

34. Kleene, S. Mathematical Logic. Wiley, New York, 1967. 
35. Kolata, G. Mathematical proofs: The genesis of reasonable doubt. 

Science 292 (1976), 989-990. 
36. Lenat, D. Computer software for intelligent systems. Sci. Am. 251 

(1964), 204-213. 
37. Lenat, D., Prakash, M., and Shepherd, M. CYC: Using common sense 

knowledge to overcome brittleness and knowledge acquisition bot- 
tlenecks. Al Mug. 6 (1966), 65-65. 

38. Lin, H. The development of software for ballistic-miss,ile defense. 
Sri. Am. 253 (1965), 46-53. 

30. Manna. Z., and Waldinger, R. The logic of computer programming. 
IEEE Trans. Softw. Eng. SE-4 (1976). 199-229. 

40. McCall, E.H. Performance results of the simplex algorithm for a set 
of real-world linear programming models. Commun. ACM 25, 3 (Mar. 
1982), 207-212. 

41. Miller, G., and Gildea, P. How children learn words. Sci. Am. 257 
(1987), 94-99. 

42. Minsky, M., Ed. Semantic Information Processing. MIT Press, Cam- 
bridge, Mass., 1968. 

43. Molecular neurobiology. In Proceedings of the Cold Spr;‘ng Harbor 
Symposia on Quantitative Biology, 48 (Cold Spring Harbor, N.Y.). 1983. 

44. Nisbett, R.. and Ross, L. Human Inference. Prentice-Hall, Englewood 
Cliffs, N.J., 1980. 

45. Parnas. D. Software aspects of strategic defense systems. Am. Sci. 73 
(1985),432-440. 

46. Pauker, S., Gerry, G.. Cassirer, J., and Schwarz, W. Toward the 
simulation of clinical cognition: Taking a present illness by corn- 
puter. Am. J Med. 60 (1976), 981-996. 

47. Quine, W. Two dogmas of empiricism. In From a Logical Point of 
View. Harvard University Press, Cambridge, Mass., 19130. 

48. Rabin, M. Theoretical impediments to artificial intelligence. In Infor- 
mation Processing 74, J. Rosenfeld, Ed. North-Holland, Amsterdam, 
1974. 

49. Rumelhart. D., and McClelland, J. Parallel Distributed Processing. 
Vols. l-2. MIT Press, Cambridge, Mass., 1986. 

50. Simon, H.. and Gilmartin, K. A simulation of memory for chess 
positions. Cognitive Psychol. 5 (1973), 29-35. 

51. Slavic, P., Fischhoff, B., and Lichtenstein, S. Facts versus fears: Un- 
derstanding perceived risk. In judgment under Uncertamfy: Heuristics 
and Biases, D. Kahneman, P. Slavic, and A. Tversky, Eds. Cambridge 
University Press, New York, 1982. 

52. Smale. S. On the average number of steps of the simplex method of 
linear programming. Math. Program. 27 (1983), 241-262. 

53. Standing. L. Learning 10,000 pictures. Q. J. Exp. PsychoI. 25 (1973), 
207-222. 

54. Sutcliffe, G. mRNA in the mammalian central nervous system. 
Annu. Rev. Neurosci. II (1988), 157-198. 

55. Tymoczko. T. The four-color problem and its philosophical signifi- 
cance. 1. Philos. 76 (1979), 57-83. 

56. Ulam, S.M. Adventures of a Mathematician. Scribner’s. New York, 
1976. 

57. Weizenbaum, J. Computer Power and Human Reason. Freeman, San 
Francisco, Calif., 1976. 

CR Categories and Subject Descriptors: 1.2.0 [Artificial Intelligence]: 
General 

General Terms: Performance, Verification 
Additional Key Words and Phrases: Cognitive science, mind/brain 

science, philosophy of mind 

Author’s Present Address: Christopher Cherniak. Department of Philoso- 
phy. The University of Maryland, College Park, MD 20742. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise, or to 
republish, requires a fee and/or specific permission. 

412 Communications of the ACM April 1988 Volume 31 Number 4 


