
ARTICLES

UNDEBUGGABILITY AND
COGNITIVE SCIENCE

A resource-realistic perspective suggests some indispensable features for a
computer program that approximates all human mentality. The mind’s
program would differ fundamentally more from familiar types of software.
These features seem to exclude reasonably establishing that a program
correctly and completely models the mind.

CHRISTOPHER CHERNIAK

A central tenet of much recent work in cognitive sci-
ence is a commitment to realism about the agent’s re-
sources. Perhaps there is something mean-spirited
about challenging presuppositions that human beings
have unbounded potentialities, but a theory, however
normative or regulative, that proceeds on an assump-
tion that people have God’s brain seems at least inter-
estingly incomplete. What is sought are models that are
both computationally and psychologically realistic, as
well as neurally and genetically realistic.

Starting with such a resource-realistic framework,
this article explores some properties we can now ex-
pect to be inextricable from any computer superpro-
gram that purports to represent all of human mentality.
A complete computational approximation of the mind
would be a (1) huge, (2) “branchy” and holistically
structured, and (3) quick-and-dirty (i.e., computation-
ally tractable, but formally incorrect/incomplete)
(4) kludge (i.e., a radically inelegant set of procedures).
The mind’s program thus turns out to be fundamentally
dissimilar to more familiar software, and software, in
general, to be dissimilar to more familiar types of ma-
chines. In particular, these properties seem inherently
to exclude our reasonably establishing that we have
the right program. In this way, the full mind’s program

Earlier drafts of this article were read as a public lecture at Wichita State
University, Wichita, Kansas, October 1986; at the University of Minnesota
Center for Philosophy of Science. Minneapolis, February 1987; and at the
AAAI/UMIACS Workshop on Theoretical Issues in Conceptual Information
Processing, Washington, DC.. June 1987.

appears to be a type of practically unknowable thing-
in-itself.

Generally, cognitive science seems to presuppose the
manageability and feasibility of such a total mind’s pro-
gram. For example, one of the current standard text-
books of artificial intelligence (AI) begins, “The ultimate
goal of AI research (which we are very far from achiev-
ing) is to build a person, or, more humbly, an animal”
[12, p. 71; that is, to construct a program for the entire
creature. A standard ground plan is then enumerated,
including input modules for vision and language, then
deduction, planning, explanation, and learning units,
and, finally, output modules for robotics and speech.
An important example from the philosophical side of
cognitive science has been Fodor’s thesis that psycho-
logical processes are typically computational, and so
that much human behavior can only be explained by a
computational model of cognition (see, e.g., [21], espe-
cially chap. 1).

A strong tendency to posit “impossibility engines”-
profoundly unfeasible mental mechanisms-Yhas not
been confined to the most abstract reaches of philoso-
phy. It seems to be a pervasive, unnoticed, but problem-
atic element of methodology throughout mind/brain
science, even when that field is explicitly tak.en to ex-
tend all the way down to neurophysiology and neuro-
anatomy. The most extreme philosophical ca:se I know
of is the deductive ability presupposed by conventional
rationality idealizations.’ Standard rationality models
require the agent to be some sort of perfect logician; in

0 1988 ACM OOOl-0782/88/0400-0402 $1.50 ’ I have discussed this example in 113, chaps. 1 and 41

402 Communications of the ACM April 1988 Volume 3;! Number 4

Articles

particular, to be able to determine in finite time whe-
ther or not any given formal sentence is a first-order
logical consequence of a given set of premises. Half a
century ago, however, Church’s theorem showed that
the predicate calculus was undecidable-that is, no
algorithm for this task is possible. What surprised me
most about this simple observation was at a metalevel:
I could find no previous discussion of the point. Now,
what would explain not even raising the question,
“Does the ideal agent’s perfect logical ability have to
exceed even that covered by the classical unsolvability
theorems?” One explanation would be the ultimate in-
attention to scale: not distinguishing between an agent
under the usual constraints of the absolute unsolvabil-
ity results-finite space and (for each input) run time-
and some more highly idealized reasoner that could not
even in principle employ any algorithm.

A less extreme philosophical example of inattention
to scale of resources can be seen in some of the compu-
tational costs implicit in perfect “charity” of interpreta-
tion along conventional Quine-Davidson lines,* where
the fundamental methodological principle is that (ex-
cept for “corrigible confusions”) an agent must be re-
garded as maintaining perfect deductive consistency.
Figure 1 reviews the literally cosmic resources con-
sumed by the agent merely maintaining full truth-
functional consistency, a “trivially” decidable problem.
Quite moderate cases of the task would computation-
ally hog-tie a rather physically ideal truth-table ma-
chine to an extent so vast that we have no familiar
names for the numbers involved.

Our basic methodological instinct, at whatever ex-
planatory level, seems to be to work out a model of the
mind for “typical” cases-most importantly, very small
instances-and then implicitly to suppose a grand in-
duction to the full-scale case of a complete human
mind. Cocktail-party anthropology would deride
Hottentots for allegedly counting “1, 2, many”; the
methodology of mind/brain science seems unthink-
ingly to approach “1, 2, 3, infinity.” The unrealism re-
garding resources that I am suggesting is still pervasive
is an inattention to scale, in particular, to consequences
of scaling up models of the mind/brain, (As a more
moderate example, this scale-up difficulty lurks in the
familiar microworlds approach to the problem of
knowledge representation in AI-that is, the divide-
and-conquer strategy of beginning with small, tightly
constrained domains of total human common sense for
formalization.3) Perhaps overlooking limits to growth of
models is part of our Cartesian heritage, stemming from
the picture of mind as a substance that has spatial di-
mensions no more than do mathematical structures.

’ For explanation of the idea of charity of interpretation of an agent, see [la]
and [47].

’ Dreyfus has attacked the microworlds methodology [ZO] along lines different
from the present discussion. Among other things, he argues that total human
commonsense knowledge cannot typically he separated into such autonomous
zones and that commonsense understanding is indefinitely articulable. It is. so
to speak, “everywhere dense.” like the real-number plane: Between any two
areas. or points, there is always another area.

BIG TEXTS
Suppose we take seriously the working hypothesis of
computational psychology, that a major part of the hu-
man mind is a cognitive system of rules and representa-
tions, captured by some programlike object (one para-
digmatic model would be Fodor’s language of thought
hypothesis). One way of looking at this framework as-
sumption is simply to note that this program, as a syn-
tactic object, is text that has a size. That is, we can ask,
“how big is the mind’s program?“4 It may seem unnatu-
ral to ask such a question if one does not distinguish
between a concrete algorithm and the corresponding
abstract function (asking the size of a mathematical
function seems as much a category mistake as asking
how much the number 15 weighs). Moreover, individ-
uating such cognitive elements as beliefs and concepts
is a notoriously messy business.

This “mind as warehouse” approach is rather primi-
tive, but some evidence that the mind’s storage capaci-
ties are not unlimited can be found in the renowned
overflow phenomena of information explosion. For in-

Test of truth-functional consistency of the belief set
by the truth-table method, and
by an ideal computer I:

I checks each line of the truth table in one ‘supercycle”:
the time a light ray takes to traverse the diameter of a
proton.

Spaed of light = 299,726 km/s, and the proton is lo-j3 cm in
diameter;

so. supercycle = 2.9 x 1 O-23 s.

Maximum number of cycles available during the history of the
universe:

2 x 10” years X 365 days x 24 hours x 60 minutes x 60
seconds x 2.9 x 1023 cycles < 2 x 10” cycles total.

What is the largest belief set I could test?
Number of lines in truth table = 2”,

where n = number of logically independent propositions.

2’% atoms require more than 3 x 10” lines.

So, at 1 truth-table line chacked/supercycle,
I cannot evaluate even the truth table for 136 independent

propositions during the interval from the big bang to the
present.

FIGURE 1. Costs of Truth-Functional Consistency Tests

‘Similar questions have sometimes been raised in AI, with answers that agree
fairly well with the estimates here. Minsky asserted that one million “ele-
ments of knowledge” would suffice for a machine with “very great intelli-
gence” 142, p. 261. Some medical Al workers have estimated a million facts [of
only 10 Lisp words each) to be needed for internal medicine, and a million
more for all the medical specialties [46]. In his production-system model of
cognition in 131. Anderson asserts that an adult human being’s “production
memory” should contain between tens of thousands and tens of millions of
production rules or procedures (there is also a large long-term declarative
knowledae memorvl. Aaain. in an AI context. Lenat claims that. in their
higher l&l analo&al reasoning, people employ “perhaps a million distinct
memories of objects, actions, emotions, situations, and so on” [36]. Lenat’s
current project is the construction of a large computer knowledge base of the
real-world facts and heuristics contained, as commonsense knowledge, in a
typical 30,000~article, one-volume desk encyclopedia (for comparison, Lenat
claims the Encyclopedia Britannica contains nine times as many articles). He
estimates this project will require about 300 programmer-years and one de.
cade [37].

April 1988 Volume 31 Number 4 Communications of the ACM 403

Articles

stance, the preface to the famous 1910 edition of the
Encyclopedia Britannica states the following:

Whereas two or three centuries ago a single mind was able
to acquire and retain in some one particular field of knowl-
edge . . . nearly all that was worth knowing, and perhaps a
good deal of what was best worth knowing in several other
fields also, nobody now-a-days could, whatever his industry,
cover more than a small part of any of those fields. [8]

Sixty years later the mathematician S. M. Ulam re-
ported estimates that 200,000 theorems were published
in recognized mathematical journals per year. He wor-
ried about the fact that “the number of theorems is
larger than one can possibly survey . . .” and that
“there is probably not one mathematician now living
who can even understand all of what is written today”
[56, pp. 287-2911. (Indeed, one wonders whether cogni-
tive science itself has any better prospects of manage-
ability.) In contrast to the Baconian ideal that “all learn-
ing is my province,” or Peircean vistas of limitless
acquisition of knowledge, our contemporary worldview
seems to acknowledge the idea of an upper bound on
the size of a human cognitive system.

TABLE I. Big Texts

Micrrxomputer operating
system

Webster’s Collegiate
Dicfionaty

Oxford English Dictionary
SDI software
Cray supercomputer

Library of Congress
Humao DNA

Human cognitive/
perceptual system

~5,000 lines of code

50,000 entries

500.000 entries
10,000,000 lines of code
10,000,000 pages of disk

storage
80,000,OOO volumes
3,000,000,000 base units

B 1 billion bias (50,000 pp.)
=l O,OOO,OOO items (?)

Let us first consider the relative size of some uncon-
troversial textual objects-books, libraries, software,
and so on-despite the apples-and-oranges problem of
commensurability of the diverse types of items in-
volved (see Table I). With these quantities in mind, we
can begin to grope toward some sort of crude numero-
logical estimates of the approximate maximum size of
the mind’s putative program (perhaps within a couple
of orders of magnitude). For the sake of argument, we
assume some of the conventional cognitivist picture of
the overall ground plan of a cognitive system as a con-
venient approximation.

The mind’s dictionary for a normal adult’s spoken
vocabulary might range as large as an undergraduate’s
abridged Webster’s Collegiate. (Although a lO,OOO-word
active vocabulary is typical for a high-school graduate,
a good reader can understand at least four times as
many.‘) We will also allow a “mentalese dictionary” of
--
’ The average eight-year-old child can recognize cwer 14,000 root words; this
works out. beginning at 18 months, to vocabulary growth at about 5 new
words per day (see [lo] and [41]).

similar size for the internal language of thought (see
Table II). We next include a corresponding mind’s en-
cyclopedia of the individual’s basic factual information,
commonsense knowledge, etc. This will be as.signed as
many entries as the two dictionaries combined, which
is comparable to the size of actual encyclopedias. No
mind could be complete without an additional personal
history, an episodic memory of its own idiosyncratic
microevents: Suppose one actually does “learn some-
thing new every minute.” On average, the mind will
gain one long-term memory in each l-minute short-
term memory cycle. (Haber reported that subjects’
memory for over 2,500 pictures presented 1 every 10
seconds to be “essentially perfect” 1 hour afterward.
Standing then showed that some subjects maintained
60 percent recognition accuracy days after viewing
10,000 pictures [28, 531). In a 70-year life span. (which
equals 36,000,OOO minutes), with one-third spent in
dreamless sleep and nine-tenths of this stream of con-
sciousness forgotten, over two million episodilc memo-
ries could still accumulate. Finally, falling back on the
old yin/yang of a fact/value distinction, I will add a
goal structure that is of the same order of size as the
mind’s encyclopedia. (Procedural know-how, heuristic
rules, etc., will just be subsumed within these declara-
tive knowledge structures. Generally, the algorithm/
data structure distinction will not be observed here;
the debuggability predicaments of each are, for our
purposes, similar.)

TABLE II. Estimating the Size of a Human
Cognitive/Perceptual System

Mind’s dictionary (words + concepts) 100,000
Mind’s encyclopedia 100,000
Episodic memory 2,000,000”
Goal structure
Total cognitive elements

_ 100,000
2,300,000

Visual font
Auditory, etc.
Motor schemata

200,000
200,000

Total perceptual/motor categories
200,000
600,060

Total: About 3,000,OOO cognitive/perceptual/motor elements

’ A person’s stream of consciousness:

Suppose “you learn something new every minute” (=STM):
70-year lie span = 36,000,OOO min.;
% sleep (dreamless), and 8/o forgotten;

Yields 2,000,000+ long-term episodic memories.

If we consider the perceptual abilities of a human
being, the well-read person can learn 50,000 ideograms
for written Mandarin Chinese (although 5,000 suffice as
“basic Chinese” for reading a newspaper). Similarly,
chess experts seem to work with a perceptual pattern
set of about 30,000 board situations [50]. A Mandarin-
reading chess player (perhaps even multilingual) who
manages to find his or her way around town, :recogniz-

404 Communications of the ACM April 1988 Volume 31 Number 4

Articles

Some convergent infonation on a cognitive/perceptual (C/P)
system estimate:

Is there room in our heads for a 10 million-element system?

Total brain volume: ~1.4 I.
Cortex volume: 0.5 I.

10’” neurons x ~5,000 synapses/call = 5 X 1 0’3
synapses.

Suppose only 9% of the synapses are dedicated to
representing C/P elements.

Then, 1 C/P element: 0.06 cu. mm volume; 1,000 neurons;
1 ,ooo,ooo synapses.

Minimum information-rapresantation capacity of cortical
tissue:

Suppose each synapse P 1 on/off bit.

1 C/P element ii 1 Mbit = 60 pp. of text.

Therefore, no Cartesian nonspatial substance is needed yet.
Versus, for example, if the C/P element/synapse ratio were

worse than 1 : 24
(since 24 bits are required just to index 10 million

elements).

FIGURE 2. The Volume of a Concept

ing the faces of acquaintances,6 does not seem an un-
realistic possibility. This individual’s “visual pattern
font” might reach 200,000 items. Yielding to visual
chauvinism, I will assign a similar number for all other
sense modalities combined. Finally, viewing motor
skills on the same hierarchical model as visual pattern
recognition, let us suppose there are as many motor
schemata as visual patterns. (There will also be special-
purpose modules for syntax and early vision, among
others.)

The grand total for the inventory of a cognitive/per-
ceptual/motor system is then around three million
items. Even setting aside the conceptual morass of dis-
tinguishing where one item stops and another begins,
we must still note that, on a standard cognitivist pic-
ture, these items will vary enormously in size. A propo-
sition might be only about the size of the six-chunk
capacity of human short-term memory, whereas a pic-
ture could be worth more than a thousand words. For
the moment, we pass over the question of the average
size of these items themselves.

Some rough neuroanatomical constraints can be
used as a check on this size estimate for a cognitive
system: For example, is there room in our heads for a
10 million-element system, or would crowding it in
require a brain the size of a bathtub? (See Figure 2.)
The cerebral cortex, generally regarded as the seat of
higher cognitive functions in Homo sapiens and other
animals that have them, has a volume of around 0.5
liter for human beings. (Keeping in mind that a cogni-
tive/perceptual element might not be narrowly local-

‘The right cerebral hemisphere seems to contain a face-recognition module
with the caoacitv to learn 600 faces as easilv as 90. and to reidentifv them
years later as ac&ately as a few months l&r. Carey and Diamond claim that
“the limits on this ennrmnus hut everyday capacity, if any, have not yet been
found” [ll. p. 611.

ized in the cortical sheet, the “volume of a concept”
would then average 0.05 cu. mm of gray matter.) Al-
though much information is represented in other fea-
tures of brain structure, the synapse is predominantly
viewed as the site of memory. The human cerebral
cortex is now thought to contain 10 billion neurons,
with perhaps about 5,000 synapses each; there are then
about 5 X lOI3 synapses total.7 With this estimate of
synaptic density, we can attempt a calculation of the
minimum information representation capacity of corti-
cal tissue-after all, it is not going to be unlimited.

Since there are other processing chores, not every
single cortical synapse can be dedicated to representing
cognitive/perceptual elements. If we suppose only a
fifth of them are so occupied (indeed, under suitable
conditions, individuals can lose one entire cerebral
hemisphere without detectable deficit), there are then
about one million synapses per cognitive/perceptual
element. If each available synapse here is supposed to
encode 1 binary bit of information, then a cognitive/
perceptual element (including perhaps some of its in-
terrelations to other elements) can be synaptically rep-
resented by 1 Mbit-a million bits-which would be
about 60 typed, single-spaced pages of arbitrary alpha-
numeric text. All that this establishes is a convergent
confirmation that the aforementioned cognitive system
size estimate is not entirely unrealistic. No Cartesian
nonspatial substance is needed yet.

In contrast, if the ratio of available synapses to cogni-
tive/perceptual elements had turned out to be worse
than 24 : 1, it would fall short of convergent confirma-
tion of the system size estimate since 24 bits are re-
quired just for a minimal unique index of each of
10 million items. Or, again, a cognitive system the size
of the 80 million-volume Library of Congress (with an
average book of about 300 typed pages), or even of the
25 million-volume Lenin Library, would not be synap-
tically representable in a human cortex.’

‘Accessible accounts that include the estimates above can be found in arti-
cles published in [6]. For some review and evaluation of quantitative “euro-
anatomy, see 1151.

“A natural “informational origami” objection is that cognitive structure may
well be represented in brain structure more subtly and efficiently than the
crude additive manner sketched here. For example, it might he encoded with
snme of the compactness that brain structure information must be stored on
the genome (see the “Prospects for Cognitivism” section). Sometimes. snme of
the DNA “Turing tape” eve” can palindromically serve multiple functions.

Mental structure, however, unlike lower order brain structure. seems un-
likely to be amenable to much generative compactification. One reason de-
rives from the familiar philosophical observation of the poor fit between the
physical-here, the neuroanatomical-and the domain of everyday human
situations and needs. The natural kinds of the physical/biological domain
mesh only roughly relative to humanly relevant concepts and knowledge
structures. (E.g., it is easy to envisage a compact genetic code for, say, a l-to-l
mapping from retina to visual cortex, but distinctively more difficult to do so
for a concept set including “telephone, ” “bachelor,” etc.) Hence. exploitable
regularities of psychological structure seem unlikely to correspond well with
regularities of brain structure.

In addition, debate continues about whether human cognitive structure is
regular in the first place, rather than a” intrinsically arbitrary hodgepodge
[see the “Mind As Kludge” section). Consider the huge variation in human
belief systems that can he found today. In contrast, brain structure (e.g..
cortical columns) seems a very large-scale but repetitive array. It is like the
difference between geography and geometry, with geology somewhere in be-
tween. Consequently, the representation scheme for a cognitive system must
he inefficient or inelegant to the extent that it must he flexible enough to
accommodate the deeply ad hoc character of much human knowledge and
interests.

April 1988 Volume 31 Number 4 Communicntions of the ACM 405

Articles

UNVERIFIABLE SOFTWARE
1.f we took seriously the back-of-the-envelope estimate
t.hat a human cognitive system could have a size in the
I-to-‘10 million-item range, what would be some of the
methodological consequences for cognitive science?
One question this size estimate raises concerns the
manageability or comprehensibility of the mind’s pro-
gram. Anatomists are fond of saying the human brain
is the most complex physical structure known in the
universe. Moving from the hardware to software level,
one would expect the mind’s program to be correspon-
dir&y complex. A comparison of the mind’s program
size estimate with the sizes of the big texts in Table I
seems to confirm-with some exceptions-this qual-
itativ’e difference in magnitude, unless the size esti-
mate for the average individual cognitive/perceptual
element is absurdly small, such as under one typed
page.

In particular, if we compare the size of the mind’s
program with size estimates for the battle-management
software for the Strategic Defense Initiative (SDI] (in the
early “total-shield” concept, not more recent scaled-
down proposals), the accepted estimates for the planned
original SD1 software ranged up to about 10 million
lines of code (expected to be in the higher level com-
puter language Ada). Roughly speaking, the size of
the SD1 battle-management software is then at least
100 times smaller than the estimated size of the mind’s
program. Is the proposed SD10 software envisaged to be
comprehensible-in particular, “verifiable” or debugga-
ble? This question has become a topic of current politi-
cal controversy. In 1985 computer scientist David Par-
nas resigned from the SD1 Panel on Computing in Sup-
port of Battle Management. His letter of resignation and
an accompanying set of short tutorials arguing that the
SD1 software system would not be trustworthy were
subsequently published over the ARPANET. Later, an-
other paper with a similar conclusion, that reliable soft-
ware for such a defense may be impossible, appeared as
the lead “Science and Public Policy” article in Scientific
Americmg The basic idea that (moderately) large pro-
gramming projects suffer problems different in kind
from small ones had been vividly argued much earlier
by Frederick Brooks, project manager for development
of the IBM System/360 and its operating system, in [7].
The tenor of Brooks’ essay is conveyed by the cover
illustration, a paleontologist’s drawing of the La Brea
Tar Pits.

The Pascalian game theory of verification for the
mind’s program and for a ballistic missile defense soft-
ware system differ vastly: The downside risk for a fail-
ure of a mind’s program candidate is just a research
embarrassment, whereas failure of SD1 software could
bring ;a catastrophe unprecedented in human history. It
is also difficult to envisage a full-scale test of the SD1
softwalre system without global thermonuclear war,
whereas this seems less of a problem for a mind’s pro-

--
‘Parnas’s material has since appeared in more extensive form as 1451. See also

[381.

gram candidate. Nevertheless, the basic verification
predicament for each of these huge programs is essen-
tially similar.

SOFTWARE VERIFICATION
What is program verification? In short, checking for
local syntax errors in code is routine and computation-
ally cheap; the trouble lies elsewhere. In software engi-
neering, the conventional trichotomy of levels of design
is (1) abstract specification of the software task or logi-
cal function, (2) devising the basic procedural idea or
algorithm for the task, and (3) writing the actual de-
tailed program code that implements the algorithm.
Evaluation of the resulting software includes establish-
ing correctness (for the appropriate range of inputs, the
program yields only the right outputs), completeness
(for the appropriate inputs, the program always yields
an output), and computational tractability (for appropri-
ate inputs, the computational costs of the program are
always acceptable).

Real-world debugging tends to be perceived as only
minor “noise” in the software development process;
however, a number of studies indicate that the majority
of the actual cost of a software project is devoted to
such testing. Also, a range of studies suggest that, even
when it is done properly, the resulting software will
still contain around one bug for every 100 statements.”
Indeed, bug corrections themselves tend to be signifi-
cantly more error prone than the original code. Fur-
thermore, apparently because of combinatorial explo-
sion of transition possibilities, asymptotic bug rates
often seem to go up, not down, with increasing program
size (see, e.g., [7, pp. 88-89)].

Bugs seem to be endemic. The startling character of
such statistics suggests that we tend to unrealistically
presuppose that programs are essentially errsor free.
Such a picture may itself be an instance of the recently
much-studied pathological inability of human beings
to estimate and reason in terms of accurate event base
rates;” perhaps some vivid stereotype of “computer-
like perfection” drives us to overlook observlsd bug fre-
quencies. [A possible harbinger of a paradigm shift here
is the ACM journal Software Engineering Notes, which
regularly publishes lists of bug episodes.)

To an outsider, the classic verification methodol-
ogy, exemplified by Dijkstra [19], seems to be self-
consciously modeled on a Cartesian epistemology of de-
ductive science: “Perfect” formal proofs of a program’s
correctness and completeness are required; they resem-
ble metamathematical proofs of consistency and com-
pleteness of deductive systems. Although controversy
surrounds this stringent program verification methodol-
ogy, I think there are some reasonable questions about
whether history’s majority verdict will be that the full-
scale methodology becomes more of an interesting art

lo These studies are reviewed in 14, pp. 1-3, 33-351. See also [7, p. 20).

” A review of psychological studies of the role of human base-rate
path&&s in real-world risk assessment is found in [51].

466 Communications of the ACM April 1988 Volume 3:1 Number 4

Articles

for art’s sake end rather than a real-world feasible tech-
nique. Parnas remarks that the programs for which
he has seen such proofs have all been “well under
500 lines” [45, p. 4391. In the preface to a recent book in
the Dijkstra tradition, Gries acknowledges that the
methodology has been applied only to programs consist-
ing of “one or two pages” of text. (Gries asserts that
“finding an error should be the exception rather than
the rule.” Ironically, however, a typographical error oc-
curs by the second page of his preface [27, pp. vii-viii].)

The underlying strategic problem for such perfection-
ism is a new wrinkle on the traditional epistemological
problem of regress. Program verification, like theorem
proving, tends to be computationally complex.‘* To es-
tablish adequate confidence in a program by this meth-
odology, one moves out of the frying pan of questions
about the program’s correctness and into the fire of an
even more real-world unmanageable correctness proof.
A conventional proof of formal system consistency
must always be relative-it must rely on some back-
ground level of intuitions about correctness. The clas-
sical concern is the adequacy of our metatheoretic no-
tions of consistency that must be appealed to in such
a consistency proof. For example, in 1936 Gerhardt
Gentzen gave a consistency proof for elementary arith-
metic using extremely powerful nonelementary meth-
ods (as required by Godel’s Incompleteness theorem),
that is, methods not formalizable in arithmetic itself
involving transfinite induction. According to Kleene,
the logician Alfred Tarski, “asked whether he felt more
secure about classical mathematics from Gentzen’s con-
sistency proof, replied, ‘Yes, by an epsilon”’ [34, p. 2571.

This type of no-win predicament is now mirrored at a
practical level for program verification: When the proof
itself must be so unmanageable, a Cartesian method of
analyzing it down to a vast series of humanly obvious
individual steps simply introduces its own unreliability.
The very high observed error rates described earlier
heighten this practical regress problem. There seems
to be a point of diminishing returns: As programs and
their verifications get bigger, the proofs’ power as con-
vincing machines thereby asymptotes. (I believe corre-
sponding worries underlie much of the methodological
puzzlement that greeted Appel and Haken’s proof of the
Four-Color theorem by computer-assisted exhaustive
checking of huge numbers of possible cases.13)

It is worth emphasizing that, although total correct-
ness proofs may be an overreaction, there is a sound
motive behind them. Dijkstra is concerned that, with-
out such proofs, programmers live “in a limbo of folk-
lore, . . . never quite sure what the system will do to
their programs” [19, p. 2021. Indeed, in the beginning is

I2 For a brief discussion, see [46]. A survey of practical and theoretical unfea-
sibility of formal proofs of pmgmm correctness is found in 139).

‘3See. for example, 1551. For an overview of another huge proof (15,000 pages
long. primarily by hand. in group theory) see (261. In arguing for his methods
ofprobabilistic prwf, Rabin has noted in effect (apparently not in print) the
diminishing-returns problem for the convincingness of large mathematical
proofs: see [35].

our end: In “Computing Machinery and Intelligence,”
Turing already seemed to glimpse this predicament:
“We also wish to allow the possibility that an engineer
or team of engineers may construct a machine which
works, but whose manner of operation cannot be satis-
factorily described by its constructors because they
have applied a method which is largely experimental
[l, p. 71.”

A more applicable approach than perfect verification
is probabilistic analysis of program performance. The
basic idea is to make a representative sampling of a
range of input instances from the total problem space
and then to evaluate program behavior for those cases.
The evaluation can be by formal methods, as in Smale’s
proof that computationally “hard” problem instances
for the simplex linear programming algorithm are in a
sense “rare” [52]; or the evaluation may be “empirical,”
by actually observing computer running times.*“ Thus,
the goal shifts from “perfect” verification to establishing
a sufficiently high probability of simply adequate pro-
gram performance, as in engineering tests of conven-
tional machinery. The crucial methodological puzzle in
probabilistic program testing is, how is one to define
the problem-space regions that are of interest (how
much, how often) for a given purpose? Correspon-
dingly, how is one to identify a sufficiently systematic
sampling procedure on those problem-space regions?
Problem instances are typically interesting or important
only relative to a whole context of human goals, needs,
and so on. Thus, probabilistic program verification be-
comes intimately and inextricably linked to exactly
those volatile phenomena that are the most distinc-
tively resistant to “clean, scientific” definition.

A PASCALIAN PREDICAMENT
It is important to be aware that some of the simplest
software with the best track record of actual perfor-
mance is quite buggy. The most startling stories I know
concern floating-point arithmetic algorithms for micro-
processors, for example, a square-root function that in
some cases produces outputs differing from target val-
ues by an order of magnitude. William Kahan, of the
Computer Science Department at the University of Cal-
ifornia, Berkeley, has argued that no calculator in the
foreseeable future will be free of serious round-offer-
rors.15 Similarly, the operating system for the IBM PC
microcomputer still harbors a number of nontrivial
bugs; indeed, each new version seems to engender in
turn its own new crop of them. (Thus, much of the
business of user publications such as PC Week consists
of bug patrolling and reporting.) Therefore, even micro-

” For an empirical study of actual run times of a simplex package, see 1401
For an analysis of basic methodological issues involved in such empirical
evaluations, see [24].

“See [30]. (I recall that Kahan’s office used to be littered with pocket calcula-
tors that he could net to exhibit the most exotic behavior.1 See also the
discussion of an&is and control of ernxs in [29] (reportedly, it was largely
ghostwritttm by Kahan). The approach them is toward learning to live with
unavoidable errors as design limitations rather than as unanticipated bugs-
that is. to predict and manage important classes of them.

April 1988 Volume 31 Number 4 Communicntions of the ACM 407

Articles

processor software engineering seems to diverge from buggability of a poem (“A poem is never completed,
the unclouded optimism of any prospect of monotonic only abandoned”], it seems that “a program is never
refinement toward the ideal (e.g., along the classical finished, only released.” Large software will be con-
pragmatist lines of C. S. Peirce’s model of scientific demned to the Sisyphean regime of the iron law of
inquiry). The decision-theoretically correct conclusion Murphy. When we extrapolate beyond actual software
here is: not some Luddite advice to trash our calcula- to the complete purported program of the human mind,
tors; the rather unsystematic intuition, on the basis of the cost-benefit analysis becomes still more problem-
which we are willing to design bridges, is that we can atic. Of course, actual human reasoning procedures di-
be reasonably certain that the buggy cases are quaran- verge far from formal perfection. As reviewed in the
tined am identifiable when they do get loose. The line upcoming discussion of quick-and-dirty heuristics, their
between bug and undocumented design feature can unreliability seems a profoundly Faustian bargain, in-
blur; we learn to live sometimes with bugs along the dispensable to avoid computational paralysis. But the
lines-“A weed is just a plant for which we have not peculiar possibility emerges that, even if a fully intelli-
yet found a use.” We do not demand perfection. We gent program could be constructed, it might be right-
thereby bet our lives on hunches about the probability fully condemned to remain a toy or laboratory curi-
distribution of the bad cases; but the alternative is a osity. Could we rationally rely on it as much <as we
kind of Cartesian paralysis. depend on a human taxi driver, for instance?

It is important to be aware that some of
the simplest software with the best track
record of actual performance is quite
WKY-

When one scales up the software to programs recog-
nizable as AI, intuitions about proper risk assessment
become more hesitant. For example, a number of medi-
cal diagnosis expert systems are among the oldest and
most impressive successes in AI. MYCIN, an expert sys-
tem for the diagnosis of infections, has been outper-
forming human physicians for over a decade. Yet
Lawrence Kingsland, head of the expert-systems project
at the National Library of Medicine, has reported that
to his knowledge only a very small handful of diagnos-
tic medical expert-system programs (which did not in-
clude MYCIN) were yet being used at all in regular
clinical practice. (Indeed, the Federal Drug Administra-
tion has been reviewing the question of certification of
medical diagnostic systems.)16 In this context, the man-
ufacturer’s standard denial for a mere word-processing
program of even implied warrantability of fitness for
use of a:ny kind (it is always provided on an “as-is”
basis, and so on) would be unheard of for a conven-
tional machine such as an automotive brake system. In
fact, the laws of some states do not permit such exclu-
sion of implied warranty. These remarkable disclaimers
now take on the character of a further symptom of
the practical undebuggability of even small-sized
software.

Thus, to travesty Verlaine’s aphorism on the unde-

“For sane performance evaluations of MYCIN. see [S, part 10). [A caution:
Reports of software outperforming human beings on statistical prediction tasks
must be taken cum gmno salis. Given the startling ineptness of people at
reasoning in terms of objective base rates as noted earlier, it is no surprise
that the crudest actuarial formulas outperform clinical experts. For a review
of the three decades of studies of these comparisons. see 144, chap. 71 (espe-
cially pp. US-141).) Kingsland’s remarks are from 1331.

The corresponding possibility from the perspective
of the cognitive science millennium would be that the
Martians might present us with the correct vast pro-
gram for the human mind; or, more plausibly., Mother
Nature might blindly have constructed it over the
aeons. But we might be unable to verify or evaluate it
in the sense explained, much less to establish that the
program succeeds in mapping the human mind (includ-
ing bug-isomorphism). The point is that this unmanage-
ability might stem from the essential nature of the hu-
man mind, from the intrinsic structure of the mind’s
program-its vast size, for example-rather than from
mere historical accidents of slovenly programming
style.” Thus, an appearance/reality distinction: A huge
program for the mind may be objectively possible, but
it may also be that we cannot establish its existence.
The mind’s program may then be a Ding an sich that is
practically unknowable to a philosophically interesting
extent.” Of course, complete understanding of the
mind’s program is still possible in principle, as is the
use of hopelessly unwieldy quantum mechanics instead
of classical mechanics in designing a bridge. But the
whole thrust of a resource-realistic philosophical per-
spective is just that so abstract a feasibility is cold
comfort.

THE TEXTURE OF FAILURE
Software for a cognitive system will differ in its failure
proneness from conventional types of machines for rea-
sons other than just its brute complexity. A cognitive
system’s program will tend to act as a failure amplifier
because of its intrinsically branchy structure and its
distinctively holistic structure of interconnection. Con-
sider the vivid contrast between reliability of computer
software and hardware. Running any given program
requires a machine that is more complex than the soft-
ware, in the most primitive sense of the number of
comparable elements. First, the hardware must include

” Only the latter, contingent type of defect seems to be the sc~unx of the
program incomprehensibility discussed by Weizenhaum in [57, chap. 91.

“I have discussed this concept, for example. in [13, chap. 6]

408 Communications of the ACM April 1988 Volume 31 Number 4

Artic :lt3

at least one independent memory location for storing
each symbol of the program. Yet commercial software
continues to have defect rates that would be exotic for
conventional machinery, current computer hardware
surpasses any other artifact of our era in both its intri-
cacy and reliability. Hardware failures are relatively
rare events. Why is this? The remarkable record of
hardware reliability owes something to a concern with
such things as fault-tolerant design and error-correcting
codes that dates back to von Neumann.

But the difference between hardware and software
that is mainly responsible for this qualitatively different
order of failure proneness concerns structure. Tacitly
we tend to extend our picture of the behavior of con-
ventional artifacts to software, but the latter is in fact
an entirely different regime. A massive memory (e.g., a
disk system) differs from a massive program it contains
in that the memory has a simple additive structure,
rather than a branching complexity. Very roughly, a
satisfactory memory medium (e.g., basically iron filings
embedded in Mylar sheet) just has to be tested for pu-
rity and uniformity to ensure there are no imperfec-
tions in the physical material. Unlike software, the
diskettes that contain it are routinely guaranteed free
of defects in materials and workmanship. To test a
memory to establish that it is good, one only has to
sample and check the relatively independent elements.
The failure modes of memory media do not include
cases where insidious, fine-structured, extensive propa-
gation is likely.

The texture of failure for a program differs because of
its branchy structure: There are not just many distinct
states, but a combinatorially exploding number of ways
in which one state can be connected to another. The
branching is not just wide, but deeply hierarchical in
organization, nested iteratively through many layers as
in truth tables. Debuggability by exhaustive checking of
this vast number of potentially possible transitions is
then not remotely feasible. (Recall the example of the
costs of truth-functional consistency testing sketched
earlier.) Here again we confront a problem of scale.

In addition, the essential structure of a cognitive sys-
tem ensures that computational approximations of it
will function as failure amplifiers. In philosophy, Quine
[47, sec. 61 and Davidson [18] have long emphasized the
distinctively holistic character of cognitive systems. But
that interconnectedness means that defects, as well as
revisions, will tend to propagate via the flow of infor-
mation throughout the web of belief. In this way, such
a nexus acts as a bug detector, rather like a spiderweb.
Divide-and-conquer software design methodologies
that prescribe a hierarchy of self-contained, clean-
interfacing modules and submodules are, of course,
good strategy; but the intrinsically holistic nature of
program models of cognition entails limits to such mod-
ularity. Quine, Davidson, and the philosophical tradi-
tion they epitomize deny or recoil from departures of
actual cognitive webs from ideal rationality; it is there-
fore ironic that such nonidealities-nonclosure of the
belief set under deduction, compartmentalization of it,

and so on”-act as a type of fault-tolerant software
design feature, namely, as valuable quarantines on bug
propagation. (So that, e.g., contrary to Quine and others,
a contradiction in the system does not in fact actually
threaten to generate every proposition.)

MIND AS KLUDGE
Another source of undebuggability is intrinsically
messy program structure. Over the past two decades, a
set of methodological constraints on the very form of a
cognitive science have been urged, particularly by the
Cambridge Cartesians-Chomsky, Fodor, et al. (see,
e.g., [16, chap. l] and [22]). The correct form of a cogni-
tive theory must be as a small set of elegant, powerful,
general principles, on a model such as classical me-
chanics, because such hyper-Euclideanism is supposed
to be part of the essence of good scientific explanation,
just as being a male sibling is the nature of brother-
hood. It has been claimed that, if the mind turns out
not to have this clean, compact structure, but instead
turns out to be designed as a patchwork hodgepodge of
many ad hoc kludges (i.e., inelegant rules), then there
can be no cognitive science. Whatever cognitive scien-
tists are doing, it will be merely something low level
and descriptive, like geography or writing large, messy
Russian novels.

It is at least a question of current empirical investiga-
tion, and of some controversy, whether the mind is in
fact hyper-Euclidean in this way. After all, what is ele-
gant to the eye of the cognitive theoretician may not be
obediently implemented by Mother Nature because it
may not be efficient for actual processing: Thus, the
alternative emerging picture of mind instead as an
in-practice anomalous kludge of limited-applicability
special-purpose procedures. But how much comfort
can we take from a kludge model of the mind?

If all of the mind had a neat, regular (and modular)
hyper-Euclidean structure, its software would be rela-
tively easy to debug on the pattern of conventional
consistency and completeness proofs for formal systems
in logic as mentioned earlier. But kludge-structured
software for the mind’s vastness will be seriously
harder to verify just because it’s messy. In a backhand
way, for an unanticipated reason, the Cambridge Carte-
sian commitment to hyper-Euclideanism is at least
somewhat vindicated. Whether or not a science of the
kludge ceases in essence to be science, it is in danger of
being impossible, because a huge kludge threatens to be
a practically unknowable entity.

THE QUICK AND THE DIRTY
It is important to distinguish between a kludge and a
quick-and-dirty procedure-one that is computation-
ally cheap, but formally incorrect and incomplete. A
program can be inelegant, but still correct and com-
plete. Conversely, a program can be compact, but incor-

“1 have discussed these in [13, chaps. 3-41

April 1988 Volume 31 Number 4 Communications of the ACM 409

Articles

rect and/or incomplete. A variety of converging evi-
dence has emerged that suggests for a wide range of
reasoning procedures a profound antagonism between
formal correctness/completeness and computational
tracta.bility (see, e.g., [13, chap. 41). At least the flavor of
these complexity-theoretic results is conveyed by the
example of the computational cost of tautology testing
by truth tables, mentioned at the onset of this article.
The conclusion 1 have drawn, which I think has inde-
pendently become a leitmotiv of a variety of current
research, is that human beings must evade this compu-
tational paralysis by using quick-and-dirty procedures.

The optimism of this picture of quick-and-dirty heu-
ristics as the ultimate speed-reliability trade-off, how-
ever, is darkened when we turn to evaluation of the
performance of such heuristics. Perfection may be im-
possible, but it is simple. It is no accident that correct
and complete procedures were objects of study long
before quick-and-dirty heuristics. For example, the
concepts of perfect correctness and completeness for
a deductive system are rather easy to define, and it is
often relatively easy to establish that a system satisfies
them. A quick-and-dirty deductive system is, of course,
guaranteed not to be correct and complete; the most
that can be sought is that it possess acceptable incor-
rectness and/or incompleteness. But notions of such
acceptable “dirtiness” will tend strongly to have the
character that we already saw earlier for probabilistic
software verification.

That is, to evaluate whether a program is acceptably
dirty, one has to be able to specify, again, the subset of
input problem instances that are of interest-for exam-
ple, th.at are likely to arise often in relevant conditions.
Blind trial and error cannot suffice. Then one must
estimate whether the program’s behavior will be cor-
rect, complete, and computationally tractable suffi-
ciently often in those cases. Such probabilistic analyses
of heuristics are just beginning to emerge, principally in
the areas of computer science that deal with optimiza-
tion procedures that are computationally costly and
much more clearly defined than most AI tasks.“’

One leading worker in the area, Richard Karp, views
the venture of probabilistic analysis of combinatorial
optimization algorithms as “only partially successful”
because of continued use of “the most simplistic of
probabilistic models” [31, p. 1081. He adds later, “There
is a really fundamental methodological problem: How
do you choose the probability distributions? How can
you possibly know what the population of problem in-
stances is going to be?” [23, p. 1131. Indeed, Karp and
Luby felt obliged to conclude a recent paper proposing
and formally analyzing some Monte Carlo techniques
by citing results of actually running the algorithm on
six examples [32, p. 631. In-practice performance eval-
uation still seems to compel a quasi-experimental ap-
proach. A basic difficulty, once again, seems to be that

--
“For an overview of such probabilistic analyses, see Karp’s ACM Turing
Award Lecture [31] @p. 106-108 are especially relevant here) and also the
interview with Karp in the same issue (231.

complete specification of the set of relevant typical
problem instances will often be delicately enmeshed
in the whole context-sensitive nexus of human goals,
needs, and purposes. Such probabilistic analyses are not
merely hard to accomplish as a practical matter; the
very concept of success here does not seem susceptible
of clear specification. Therefore, the threat is of the
reliability of the heuristic becoming merely (a haphaz-
ard “so far, so good” black-box gamble.

A familiar intuition regarding the
complexity of the human brain is that a
low-level description of its structure would
be entirely unmanageable for us.

It is in this way that a higher order dilemma arises
between computational tractability and software veri-
fication: Quick-and-dirty procedures do indeed seem
indispensable for evading intractability, but (at the cost
of loss of clearly definable concepts of verific:ation or
debugging. (In philosophy, the prospect of mind as inev-
itably quick-and-dirty kludge poses methodological
puzzles in this way for recent reliabilist theories of jus-
tification such as Goldman’s [25], which seeks to evalu-
ate basic cognitive processes epistemologicalliy in terms
of their reliability, power, and speed.) In still another
way, the mind’s software seems to recede as a practi-
cally unmanageable Ding an sick

PROSPECTS FOR COGNITIVISM
A familiar intuition regarding the complexity of the
human brain is that a low-level description of its struc-
ture would be entirely unmanageable for us. For exam-
ple, “Even if we had a diagram that included every one
of the billions of neurons and billions of interconnec-
tions in the human brain, it would stare at us as mutely
as the grains of sand in a desert” [5]. As Anderson
asserts, “A neural explanation is too complex and de-
tailed to adequately describe sophisticated human be-
havior. We need a level of analysis that is more ab-
stract” [2, p. 111. The natural inference has then been
to the promise of a computational psychology. The most
powerful level of description of the brain sha’uld be at
the program level of abstraction, rather than, say, a
microlevel neuroanatomical wiring diagram.

The argument here, however, has been that such a
program seems likely still to be unmanageabl.e-une-
valuatable, in particular-because of its vastness and
its branchy, irregular, and necessarily quick-and-dirty
structure. This picture of mind as huge kludge in turn
seems to account etiologically for some of the current
practice, as opposed to ideology, of AI. The conven-
tional optimist view of AI methodology is that it im-
poses valuable discipline 02 cognitive modeling. First,
it serves a Socratic function, forcing us to be honest by
focusing attention on specific implementation details

410 Communications of the ACM April 1988 Volume 31 Number 4

of the model. We thereby find and confront the “and-
then-a-miracle-happens” gaps. Second, AI program-
ming-with performance evaluation-constitutes
a kind of quasi-empirical test of the model. The de-
pressive critique, however, familiar since Dreyfus’s
What Compufers Can’f Do [ZO], is that AI’s approach to
problem-stellung has in fact involved selection of
“toy,” simplified problem instances and quite limited
problem domains, with attendant difficulties of “brittle-
ness” or nonextendability of the resulting custom-
tailored initial program designs. First steps abound, but
few second steps.

We can now see that such practice is not some mys-
terious infantilization or moral defect. It can be made
sense of as an instance of the inattention to scale that I
proposed earlier is a pervasive feature of methodology
throughout cognitive science. Difficulties arise because
a human cognitive system will be so huge that the
distance between pilot and full implementation will
tend to be quite vast. Similarly, the inattention to sys-
tematic performance evaluation of AI programs seems
more than historical accident. Rather, it can be viewed
as a symptom of simple but deep features of the struc-
ture of a cognitive system. Mind as huge kludge poses
specific obstacles to debuggability: identifying the prob-
lem space and the subregions that are of real interest,
devising sampling strategies for them, and verifying
that performance reaches reasonable levels. Recent
neurally inspired connectionisP conceptions of distrib-
uted and massively parallel architectures can only ex-
acerbate these structural unevaluatability difficulties.

As a concluding irony, it is interesting to turn our
attention once more to scale to compare the size esti-
mate for the mind’s program with the information con-
tent of a human DNA strand (see Table I). The brain’s
bottom-level neuroanatomical characterization cannot
be too huge, for it must be able to pass through the
genomic bottleneck of DNA representability: The brain’s
blueprint must be able to fit into less than three billion
base units, the single-copy size of the total human ge-
nome. With allowances for informational inefficiencies
of protein specification, repeated sequences, noncoding
introns, and so forth, somewhere between 10,000 and
30,000 typed alphanumeric pages of brain-specific ge-
netic “text” seem available for representing the mind’s
hardware.” Whatever the vagaries of comparing lines
of SD1 code, cognitive items, and DNA text, it then
seems that a human brain’s genetic blueprint is orders
of magnitude smaller than the proposed SD1 software,
much less the mind’s program. The initial intuition
about complexity of brain structure vastly exceeding
that of the mind’s program then turns topsy-turvy. The
paradoxical conclusion is that a quite low-level descrip-
tion-the DNA representation-of the neural hardware
turns out to be demonstrably more economical than the
envisaged mind’s software of cognitivism.

CONCLUSION
My basic point has been simply that there are reasons
to expect the mind’s program to be inhumanly unman-
ageable stemming from a resource-realistic approach to
cognitive science. To this extent its usefulness to cogni-
tive science itself will be limited. The distinctive recal-
citrance of a science of the mind, compared with the
physical and biological sciences, has long been noted.
We can now see that, correspondingly, the mind’s pro-
gram would differ fundamentally from conventional
machines. The mind’s program would be an impossi-
bility engine, in that it would be practically unfeasible
for us fully to comprehend and evaluate it. This is not
quite Edmund Husserl’s verdict that articulating the
structure of mind is “an infinite task”; but then bare in-
principle possibility seems of limited interest. Nor is the
point an impossibility proof of a complete mind’s pro-
gram cannot be constructed; rather it is that we cannot
deal with or fully understand it. Our stance toward it
might end up a little like that of coral animals toward
the vast reef they have builtZ3 (Recall Ulam’s worries
quoted earlier about a similar current state of mathe-
matical knowledge.)

This argument does not impugn the plausibility of
manageability of all very large programs, only ones
with the distinctively unwieldy structure of models of
the human mind. The present discussion also leaves
open the possibility that there might be some program
that could yield the full range of human-level intelli-
gent behavior, yet have a radically different, in partic-
ular, simpler, structure than that of the human mind.
(This possibility is explored in [la].)

Even with this in-practice anomalousness, some of
the overall ground plan of the mind’s program should
be humanly accessible. Also, the smaller a submodule
(when cleanly isolable), the more manageable it should
be. I therefore feel that it would be an overreaction
here to leap to a grand eliminativist conclusion that
computational or cognitive levels of explanations are
fundamentally misbegotten. (E.g., to conclude that such
categories cannot be the natural kinds for a successful
science of the mind.) Why should we expect a preesta-
blished harmony, where human nature must turn out
to be conveniently comprehensible to us?

I tend to personally lean toward a mutual coexist-
ence: With a picture of the mind’s program as huge,
branchy, quick-and-dirty kludge, the conventional con-
trast in manageability cited earlier between explana-
tions at the level of abstract program and of neural
hardware fades. Full-scale software description of the
mind faces a predicament of diminishing returns. A 10
million-element cognitive system with each element
100 statements long, and a 10 billion-neuron cerebral
cortex begin to some degree to converge in complexity.
Hence, the idea of the mind’s program as an impossibil-

” For an introduction. see [49] and the articles in [17] ‘An emerging symptom of this phenomenon that I lampooned in a recent
cognitive science fiction niece 1141 is AI enaineerina steadilv outoacine the-

**See the papers in [43]; for an accessible review of the molecular biology, see
(541.

- ., . L
ori: that is, increasing practical AI successes with diminishing understanding
of how and where the software works.

April 1988 Volume 31 Number 4 Communications of the ACM 411

Articles

ity engine suggests some redefinition of research
agenda, namely, that not too much is to be lost by
turning back to neuroanatomy and neurophysiology. In
fact, this has been a recent trend in cognitive science;
the field seems to have recalled lately that cognition is,
after all, accomplished with a brain. In this article an-
other, perhaps once unperceived motivation for this
tendency can now be discerned.

Acknowledgments. For generous help on this article, I
am indebted to William Gasarch, Alvin Goldman, Mark
Tuttle, and John Waclawsky.

REFERENCES
1. Anderson, A., Ed. Minds and Machines. Prentice-Hall, Englewood

Cliffs, N.J., 1964.
2. Anderson, J. Cognitive Psychology and Its Implications. Freeman, San

Francisco, Calif., 1980.
3.

4,

Anderson, J. The Architecture of Cognition. Harvard University Press,
Cambridge, Mass.. 1983.
Be&r, B. Software Testing Techniques. Van Nostrand Reinhold, New
York, 1983.

5.
6.
7.

6.

0.

10.

11.

12.

13.
14.
15.

16.
17.
18.

10.

20.

21.
22.
23.

24.

25.

26.
27.

28.

29.

Bernstein, J. A.I. New Yorker (Dec. 14, 1981), 121.
The brain, Scientific American 241 (1979).
Brooks, F. The Mythical Man-Month. Addison-Wesley, Reading,
Mass., 1975.
Bryce, J. Prefatory note. In Encyclopedia Britannica. Vol. 1, 11th ed.
Encyclopedia Britannica Co.. New York, 1910, pp. vii-viii.
Buchanan, 9.. and Shortliffe, E., Eds. Rule-Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project.
Addison-Wesley, Reading, Mass., 1984.
Carey, S. The child as word learner. In Linguistic Theory and Psycho-
logical Reality. M. Halle, J. Bresnan, and G. Miller, Eds. MIT Press,
Cambridge, Mass., 1978.
Carey, S., and Diamond, R. Maturational determination of the devel-
oping course of face encoding. In Biological Studies of Mental Pro-
cesses, D. &plan, Ed. MIT Press, Cambridge, Mass., 1980.
Charniak, E.. and McDermott, D. Introduction to Artificial Intelligence.
Addison-Wesley, Reading, Mass., 1985.
Cherniak, C. Minimal Ration&y. MIT Press, Cambridge, Mass., 1986.
Cherniak, C. The wager. AI Mug. 7 (1986), 120-124.
Cherniak, C. Meta-neuroanatomy: The myth of the unbounded
mind/brain. To be published.
Chomsky, N. Reflections on Language. Pantheon, New York, 1975.
Cognitive Science 9 (1965).
Davidson, D. Psychology as philosophy. In Essays on Actions and
Events. Oxford University Press, New York, 1980.
Dijkstra, E.W. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, N.J., 1976.
Dreyfus, H. What Computers Can’t Do. 2nd ed. Harper and Row, New
York, 1979.
Fodor, J. The Language of Thought. Crowell, New York, 1975.
Fodor. J. The Modularity of Mind. MIT Press, Cambridge, Mass., 1983.
Frertkel, K.A. Complexity and parallel processing: An interview
with Richard M. Karp. Commun. ACM 29,2 (Feb. 1986), 1X-117.
Golden, B., Wasil, E., and Baker, E. Experimentation in optimization.
Eur. J. Oper. Res. 27 (1986). l-16.
Goldman, A. Epistemology and Cognition. Harvard University Press,
Cambridge, Mass., 1986.
Gorenstein, D. The enormous theorem. Sci. Am. 253 (1985), 104-115.
Gries. D. The Science of Programming. Springer-Verlag. New York,
1981.
Haber, R. How we remember what we see. Sci. Am. 222 (1970), 104-
112.
Hewlett-Packard. Accuracy of numerical calculations. In HP-15 C
Advanced Functions Handbook. Hewlett-Packard, Cupertino. Calif.,
1982, appendix.

30. Kahan, W. Mathematics written in sand. In Proceedings of the Joint
-Statr.stical Assowztlon Meetmg (Toronto, Ontario) 1983.

31. Karp, R.M. Combinatorics, complexity, and randomness. Commun.
AU.4 29, 2 (Feb. 1986), 98-111.

32. Karp, R.M.. and Luby, M. Monte-Carlo algorithms for the planar
multiterminal network reliability problem. J. Complexity I (1965),
45-64.

33. Kingsland, L. Overview of medical expert systems. In Proceedings of
the American Society for Information Science Meeting, Potomac Chapter
(College Park, Md., Nov.). ASIS, Washington, D.C., 1985.

34. Kleene, S. Mathematical Logic. Wiley, New York, 1967.
35. Kolata, G. Mathematical proofs: The genesis of reasonable doubt.

Science 292 (1976), 989-990.
36. Lenat, D. Computer software for intelligent systems. Sci. Am. 251

(1964), 204-213.
37. Lenat, D., Prakash, M., and Shepherd, M. CYC: Using common sense

knowledge to overcome brittleness and knowledge acquisition bot-
tlenecks. Al Mug. 6 (1966), 65-65.

38. Lin, H. The development of software for ballistic-miss,ile defense.
Sri. Am. 253 (1965), 46-53.

30. Manna. Z., and Waldinger, R. The logic of computer programming.
IEEE Trans. Softw. Eng. SE-4 (1976). 199-229.

40. McCall, E.H. Performance results of the simplex algorithm for a set
of real-world linear programming models. Commun. ACM 25, 3 (Mar.
1982), 207-212.

41. Miller, G., and Gildea, P. How children learn words. Sci. Am. 257
(1987), 94-99.

42. Minsky, M., Ed. Semantic Information Processing. MIT Press, Cam-
bridge, Mass., 1968.

43. Molecular neurobiology. In Proceedings of the Cold Spr;‘ng Harbor
Symposia on Quantitative Biology, 48 (Cold Spring Harbor, N.Y.). 1983.

44. Nisbett, R.. and Ross, L. Human Inference. Prentice-Hall, Englewood
Cliffs, N.J., 1980.

45. Parnas. D. Software aspects of strategic defense systems. Am. Sci. 73
(1985),432-440.

46. Pauker, S., Gerry, G.. Cassirer, J., and Schwarz, W. Toward the
simulation of clinical cognition: Taking a present illness by corn-
puter. Am. J Med. 60 (1976), 981-996.

47. Quine, W. Two dogmas of empiricism. In From a Logical Point of
View. Harvard University Press, Cambridge, Mass., 19130.

48. Rabin, M. Theoretical impediments to artificial intelligence. In Infor-
mation Processing 74, J. Rosenfeld, Ed. North-Holland, Amsterdam,
1974.

49. Rumelhart. D., and McClelland, J. Parallel Distributed Processing.
Vols. l-2. MIT Press, Cambridge, Mass., 1986.

50. Simon, H.. and Gilmartin, K. A simulation of memory for chess
positions. Cognitive Psychol. 5 (1973), 29-35.

51. Slavic, P., Fischhoff, B., and Lichtenstein, S. Facts versus fears: Un-
derstanding perceived risk. In judgment under Uncertamfy: Heuristics
and Biases, D. Kahneman, P. Slavic, and A. Tversky, Eds. Cambridge
University Press, New York, 1982.

52. Smale. S. On the average number of steps of the simplex method of
linear programming. Math. Program. 27 (1983), 241-262.

53. Standing. L. Learning 10,000 pictures. Q. J. Exp. PsychoI. 25 (1973),
207-222.

54. Sutcliffe, G. mRNA in the mammalian central nervous system.
Annu. Rev. Neurosci. II (1988), 157-198.

55. Tymoczko. T. The four-color problem and its philosophical signifi-
cance. 1. Philos. 76 (1979), 57-83.

56. Ulam, S.M. Adventures of a Mathematician. Scribner’s. New York,
1976.

57. Weizenbaum, J. Computer Power and Human Reason. Freeman, San
Francisco, Calif., 1976.

CR Categories and Subject Descriptors: 1.2.0 [Artificial Intelligence]:
General

General Terms: Performance, Verification
Additional Key Words and Phrases: Cognitive science, mind/brain

science, philosophy of mind

Author’s Present Address: Christopher Cherniak. Department of Philoso-
phy. The University of Maryland, College Park, MD 20742.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

412 Communications of the ACM April 1988 Volume 31 Number 4

