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A B S T R A C T   

The piezoresistive silicon based stress sensor has the potential to be part of the Digital Twin implementation in 
automotive electronics. One solution to enforce reliability in digital twins is the use of Machine Learning (ML). 
One or more physical parameters are being monitored, while other parameters are projected with surrogate 
models, just like virtual sensors. Piezo-resistive stress sensors are employed to measure the internal stresses of 
electronic packages, an Acquisition Unit (AU) to read out sensor data and a Raspberry Pi to perform evaluation. 
Accelerated tests in air thermal chamber are performed to get time series data of the stress sensor signals, with 
which we can know better about how delamination develops inside the package. In this study stress measure-
ments are performed in several electronic packages during the delamination. The delamination is detected by the 
stress sensor due to the continuous change of the stiffness and the local boundary conditions causing the stresses 
to change. Although, the stress change in multiple cells can give enough information if it is delaminated or not, 
its delamination area location is unknown. Surrogate models built upon Neural Networks (NN) and Finite 
Element Method (FEM) are developed to predict the out of plane stresses at the delaminated layer. FEM simu-
lation models are calibrated with Moiré measurements and validated at the component and PCB level with stress 
difference measurements. Simulation delamination areas are constructed based on the Scanning Acoustic Mi-
croscope (SAM) images, and are also validated with the equivalent stress measurements. In the end the surrogate 
model is predicting the out of plane stress in the adhesive layer. The results show good correlation when 
compared to the SAM images.   

1. Introduction 

There are several definitions of Reliability [1,2]. In engineering [2], 
it is set as the “ability of a system or component to perform its required 
functions under stated conditions for a specified period of time”. These 
conditions refer to conditions like mechanical, thermal, electrical 
specifications. In this definition, a system [3] is “a combination of 
interacting elements (components) organized to achieve one or more 
stated purposes”. 

Reliability prediction methods date 70 years into the past [4]. In that 
time, the concept of Reliability has been extensively used on design, 
operation and maintenance tasks. On the design stage of a product the 
concept of Design for Reliability (DfR) [5] appears, in which a model of 
the product is developed. This model is used by the manufacturer to 
define the working conditions and lifetime of the product that it will 
guarantee. A more reliable component (or system) works longer hours 

on tougher conditions on the operation stage; saving with this mainte-
nance, repairs and replacement costs. 

There are two main approaches in reliability: A statistic-based 
approach (like the Weibull model [6] or the fault tree analysis [7] that 
considers the reliability of each component to estimate the reliability of 
a system) or a physics-of-failure-based approach [5] (like the use of 
Finite Element Method (FEM) software to simulate loading conditions 
and ensure that the component will perform at its design capacity). 

Both models do not predict the time instance status of a singular 
component. As neither monitors the dynamic state behavior of the 
component. Their assessments are of statistical relevance. 

It is because of this that, for example, other techniques as redun-
dancy are usually used to ensure zero Downtime (the period in which a 
system is unavailable) on relevant components. But this solution re-
quires having another component identical in function as the original as 
backup and this solution is not cost-effective. 
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With this new notion and the foreseeable advent of widespread 
complex consumer grade systems as autonomous vehicles, it becomes 
evident that a new paradigm must be set to overcome the limitations of 
current reliability models. 

This shift, the Digital Twin, integrates ultra-high fidelity simulations 
[8], historical data and machine learning models to mirror the physical 
object. Due to the fact that Digital Twin term is developed for a complex 
system, in this paper, we would like to propose the term Virtual Twin to 
represent the component part. 

Therefore, this paper proposes the virtual twin of an electronic 
package using techniques like geometrical based simulations, experi-
mental data and machine learning models. 

2. Methodology 

2.1. Machine Learning 

ML should not be confused with Artificial Intelligence (AI). AI is the 
concept of a machine exhibiting intelligence similar to humans or ani-
mals. AI is divided into Weak and Strong AI. The former is an AI that can 
perform a narrowly defined set of tasks or just one task. The latter is an 
AI that is capable of applying intelligence to a problem and even 
showing consciousness. This means that the machine exhibiting Strong 
AI is not constrained to just one set of problem, as its knowledge and 
intelligence generalizes to all sets of tasks. 

Strong AIs do not exist up to date. All current AIs are Weak as they 
specialize into solving a set of tasks tightly constrained and work using 
curated data sets, differing from the human learning experience. 

ML is a subset of artificial intelligence (AI) that creates systems to 
learn and predict outcomes without manually programming a computer 
and is also known as predictive analytics or “statistical learning” [9]. It is 
a set of algorithms and techniques focused to learn from data. Here, data 
is an organized collection of measures and/or classes; and learning 
means the ability to get information from data that would generalize to 
other sets of data. This last is what differences ML techniques from other 
statistical tools. They focus on the generalization aspect of the data 
analysis and not only in creating a model that works with the data at 
hand. A ML model is general, it is valid for new data points the model has 
never been exposed to. 

The miniaturization of computers carried an exponential growth in 
computational power that allowed ML models to be applicable, and in 
the later decades to become mainstream with open source projects as 
Scikit-learn, TensorFlow and PyTorch. 

In this paper stress measurements during reliability test are recorded 
by an acquisition unit (AU) capable to send the data to a centralized data 
unit through a WiFi connection. Data stored in the Raspberry Pi is then 
sent to a server where data is processed. The data is transformed by 
removing the outliers, filtering, labeling and scaling. A ML regression 
technique is then applied to create a model to predict the out of plane 
stresses in the adhesive layer by feeding different delamination profiles 
simulation data. The model is then used to assess the out of plane 
stresses in the adhesive layer from the stress difference measurement 
data. It is a known that out of plane stresses are a direct indication where 
the delamination area is located. Therefore, the goal of this model is to 
give an indication where the delamination in the adhesive is located, not 
the magnitude of the stress values. 

2.2. Surrogate modelling 

The amount of cells provides a very good resolution of the stress 
difference distribution over the surface of the silicon die. However, to 
predict the delamination by just looking at the stress difference is not 
trivial, as discussed in the previous section. Machine learning is used to 
cope with this problem. In this paper, as an initial step a model is trained 
with the 21 delaminated simulation data with the stress difference as the 
input and σz at the interface between glue and silicon die as the output. 

Virtual Twin by Surrogate modelling technique is shown in Fig. 1. FEM 
simulation snapshots are used to train the correlation between the stress 
difference on top of the silicon die and the out of plane stresses on the 
adhesive layer. Further, the trained NN is used to predict the out of plane 
stresses based on the measured stress difference from different delami-
nated TVs. 

Nowadays there is a set of techniques that shines for their perfor-
mance called Artificial Neural Networks (ANNs). A simple representa-
tion of a Feed-Forward Artificial Neural Network can be seen on Fig. 2. 
By themselves ANNs are not a method, but a tool to enable the collab-
oration between methods towards a common goal. An ANN is a collec-
tion of Artificial Neurons, therefore it is necessary to review what is it 
and what it does a single Artificial Neuron (AN). 

ANs have been inspired in biology in the way it keeps a biological 
structure aiming to replicate a biological function1 On Fig. 3 it can be 
seen a comparison between a biological neuron (3a) and an artificial 
neuron (3b). 

The most basic model that can be used on an AN is a Perceptron. This 
linear model was invented by Frank Rosenblatt in 1958 [11]. 

Neural Networks consist of the following components:  

• An input layer, x  
• An output layer, y  
• A set of weights and biases between each layer, W and b  
• A choice of activation function for each hidden layer, σ 

Fig. 1. Surrogate modelling.  

Fig. 2. Visual representation of an artificial neural network.  

1 This is a common practice in Engineering: In the same fashion the wing of a 
plane preserves its general structure, replicating a specific function of a bio-
logical wing. ANs keep the structure of biological neuron and aims to loosely 
replicate the biological function of a biological neuron. 
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Having a set of data points organized in the matrix X that is formed 
by individual data points vectors x. The model comprises a mathemat-
ical function as in eq. 1. 

y(x) = f (w× x)+ b (1) 

This means, if we know weight matrix w and bias vector b, under the 
chosen activation function f, we can predict unknown output value y, by 
known input vector x. Input vector x is always known, so how to get 
weight matrix w, and the bias vector b becomes the key problem, which 
is exactly the purpose of ANN training purpose. 

Most used activation functions are step, sign, sigmoid,2 tanh3 and 
ReLU4: 

step(z) =
{

1 if z ≥ 0 ;
0 if z < 0. (2)  

sign(z) =
{

1 if z ≥ 0 ;
− 1 if z < 0. (3)  

sigmoid(z) =
1

1 + e− z (4)  

tanh(z) =
ez − 1
ez + 1

(5)  

ReLU(z) = max(0, z) (6)  

identity(z) = z (7) 

The selection of the activation function depends on what type of 
behavior the perceptron is designed to abstract from the data that will 
feed it. Like this, a perceptron with a sign activation function would be 

used for linear classification tasks, a perceptron with an identity acti-
vation function would be used for linear regression and a perceptron 
with a sigmoid activation function would be used for logistic regression. 

Backpropagation (BP) is a method used in artificial neural networks 
to calculate the error contribution of each neuron after a batch is pro-
cessed. This is used by an enveloping optimization algorithm to adjust 
the weight of each neuron, completing the learning process for that case. 
We predict the input part of training data by the current neural network, 
this is usually called forward propagation. And we get a set of output 
data, which has differences with the output part of the training data, this 
is error. In optimization algorithm, this error is named loss function, our 
goal is to optimize the parameters of the network to make the loss 
function reach its minimum point. Which means the neural network fit 
the training data and can represent the real model. Technically it cal-
culates the gradient of the loss function to reach the optimization goal. It 
is commonly used in the gradient descent optimization algorithm. It is 
also called backward propagation of errors, because the error is calcu-
lated at the output and distributed back through the network layers to 
adjust all the parameters inside the network. This BP method has limi-
tations, because it is gradient based optimization method, so BP is not 
guaranteed to find the global minimum of the loss function, maybe just a 
local minimum. This can be solved by making some improvements, such 
as:  

• add momentum factor to make learning rate adaptive  
• training more times, then we may get the global minimum at larger 

probability 
• combining other optimization algorithms into BP, for example Par-

ticle Swarm Optimization, Genetic algorithm, etc. 

Learning rate can be regarded as improvement step, represent how 
far we take the next step towards the negative gradient direction. If this 
value is big, we only need several steps (iterations) to approach the 
minimum point, which means faster convergence and time saving. There 
are many rule-of-thumb methods for determining an acceptable number 
of neurons to use in the hidden layers, such as the following: the number 
of hidden neurons should be between the size of the input layer and the 
size of the output layer. Momentum factor it can be regarded as an 
adjustment of the learning rate, to make the step length no longer fixed, 
thus can realize large steps at beginning to make loss function drop fast, 
and shrink the step when approaching the minimum. 

3. Experiment 

Accelerated reliability testing are used to stress the Test Vehicles 
(TV). In this study air thermal shock chamber was used, which consists 
in two separate chambers with constant temperature, one at 150◦ and 
the other one at − 40◦ as shown in Fig. 4. The basket containing the TVs 
is moving up and down between chambers. The transition time between 
chambers is relatively small making the experiment suitable to accel-
erate the degradation of the electronic packages. 

The dwelling time was predetermined to provide a condition where 
all components reach the uniform distribution at target temperatures. 

Fig. 3. Comparison between biological [10] and artificial neurons.  

Fig. 4. Thermal chamber procedure description.  

2 Also called logistic function.  
3 Hyperbolic tangent function.  
4 Rectified linear unit. 
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3.1. Test vehicle 

Thin Quad Flat Packages (TQFP) 100 × 100 pins with encapsulated 
piezoresistive silicon based stress sensor are mounted on a PCB. This is a 
standard package for automotive industry in application specific inte-
grated circuit (ASICs). They are mostly used for vehicle airbags, engine 
management, transmission control system, advanced driver assistance 
systems, in-vehicle communication and alternator electronics. As shown 
in Fig. 5 the functional die is replaced by the stress sensor die. 

The package silicon die consists of 8 sensors, with 60 stress 
measuring cells each, having a total of 480 stress sensing cells. The 
packages were specially designed to have low adhesion strength be-
tween the leadframe and the molding compound. One of the way to do 
this was to use oxidized leadframes in the packaging process. Also, two 
molding compounds were used for packaging MC1 and MC2. In total six 
TVs were tested by performing two separate experiments. Two TV are of 
type 1 molding compound MC1_1, MC1_2 and another four of type 2 
molding compound MC2_1…MC2_4, respectively. In this paper MC1_1 
sample is used to show the stress difference, simulation out of plane 
stress distribution and the SAM images in case of delamination. 

3.2. Stress evaluation 

In TQFP stress sensors are encapsulated as a regular die to record the 
mechanical stresses during reliability tests. In this paper TQFP contains 
8 sensors with each 6 by 10 stress sensing cells. To evaluate the stresses 
the following formulas have been used. 

The relationship between measured currents and stresses are: 

D(σ) = σxx − σyy =
1

πp
44

IOUT − IIN

IOUT + IIN
(8)  

σxy =
1

πn
11 − πn

12

IOUT − IIN

IOUT + IIN
(9)  

where π11,π12,π44 are the piezoresistive coefficients of silicon; and IIN, 
IOUT are the currents measured at the input and output of the sensor, 
respectively. More details can be found in Ref. [12–14]. 

After the experiments were performed, data was processed and only 
one measurement point per cycle is extracted at the dwell time. Then the 
stress values at − 40◦ are extracted from the values at 150◦ as follows: 

D(σ)rel
ij =

(
σxx − σyy

)− 40∘C
−
(
σxx − σyy

)150∘C (10) 

Fig. 5. TQFP mounted on a PCB test vehicle.  

Fig. 6. Acquisition unit downsize.  
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where i=1,..,n is the number of measurement points, j=1,…, 480 is the 
number of sensing cells and D(σ)ij are the relative stress difference. 

3.3. Acquisition unit 

A dedicated acquisition unit was used to power, steer and acquire 
data from the stress sensor. Additional improvements has been made to 
the AU to facilitate efficient experiments. In terms of dimension, and 
weight, the former AU is consisted by three board, it is 110 × 66 × 45 
mm in size. The new AU has only one board, its size is 90 × 71 × 20 mm. 
Shown in Fig. 6. 

In terms of speed, the former acquisition unit consumes several mi-
nutes to collect data from 480 cells (8 sensor × 60 cells/sensor), at 12 bit 
accuracy. The new acquisition unit has two ADCs, ADS1115 and 
ADS1015, by changing I2C slave address value in I2C library, one can 
choose between two ADC. When ADS1115 chosen, we can get 16 bit 
accuracy, but it requires more time to go through all 480 cells; When 
choose ADS1015, we still have 12 bit accuracy data, but faster mea-
surements. As for other functions, the new one has built-in WIFI module 
that facilitates the connection with Raspberry Pi, and the wireless data 
transmission through WIFI is realized; Pi was also added, because stress 
value calculation method, stress prediction algorithms based on Neural 
Network (NN), are all coded in Python and can run on Raspberry Pi. That 
is to say, Pi is a microcomputer which can afford all the functions in this 
task, and it is of course lighter, cheaper, more convenient, and mobile 
than a PC. Meanwhile, real time data processing becomes possible, 
because WIFI connection can realize real time data transmission be-
tween Pi and Arduino. 

By realizing wireless WIFI connection between Arduino and Pi (see 
Fig. 7), we can imagine that Pi can communicate with multiple Arduinos 
at same time. Pi has the ability to generate its own network as a hot spot, 
and Arduinos can have access to the hot spot, thus build the grid that 
multiple Arduino transmit data to a common central process Pi. So we 
can realize the in-situ stress monitoring on multiple sensors and AU by 
one Pi. 

3.4. Delamination validation through SAM images 

SAM image of the sample was recorded at 0 cycles, 1050 Cycles and 
at the end. This can help in correlating between the stress difference 
values and delamination. In Fig. 8 SAM images of the TQFP package 
targeting the interface between copper pad/molding compound, die 
attach/copper pad and die/die attach are shown. One image was per-
formed at the beginning of the test, showing no initial delamination. An 
intermediate picture at 1050 Cycles, where initial delamination is 
detected, was performed. The third picture was performed after 2500 
temperature cycles and more than 80% of delamination is found. 

3.5. Data from thermal cycling data 

The in-plane mechanical stresses were recorded during the entire test 
for all the 480 measuring cells. The AUs were placed outside the 
chamber with a wire connection with the samples inside. For visuali-
zation purposes average relative stress changes are calculated by aver-
aging over 480 cells as follows: 

D(σ)average
j =

∑480

1
D(σ)rel

ij (11) 

The influence of delamination in the die attach over the stress dif-
ference on top of the die is shown in Fig. 9. An average value of stress per 
cycle is depicted by using eq. 11. The first observation is that the stress 
values completely change after 900 Cycle reaching a maximum change 
at 1300 Cycle. The stress variation corresponds to the local boundary 

Fig. 7. Data flow.  

Fig. 8. MC1_1 TV SAM image before and after the reliability test. The delamination area is shown in red colour.  

Fig. 9. Normal in-plane relative stress difference average along all 480 Cells for 
MC1_1 Sample. 
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condition changes. The absolute high values of stress are driven by the 
high stresses in the region close to the crack. The delamination is 
confirmed by the SAM image taken at 1050 cycle. For a better under-
standing of the stress signal given by the delamination an FEM model is 
constructed. More details regarding the experiment can be found in 
[15]. 

3.6. Thermal deformation with Moiré interferometry 

Real-Moiré interferometry was utilized to improve the prediction 
accuracy of FEM simulation. The method is a full-field optical technique 
to measure the in-plane deformations with high sensitivity, high signal- 
to-noise ratio, and excellent clarity [16]. The outputs are the contour 
maps of in-plane displacements. It has been used widely for electronic 
packaging design and reliability assessment [17]. The optical/mechan-
ical configuration used in the study consists of (1) a portable engineering 
moiré interferometer that provides two sets of virtual reference gratings 
and (2) a conduction chamber built on a high performance thermo-
electric cooler that provides accurate temperature control. More details 
about the test setup can be found in [18]. 

A cross-line diffraction grating with a frequency of 1200 lines/mm 
was replicated on the specimen surface at room temperature (20◦). The 
specimen was placed inside the thermal chamber and was subjected to a 
thermal excursion. The specimen grating deformed together with the 
specimen to produce two orthogonal in-plane displacement fields. The 
details about the grating and replication procedures can be found in 
[16,19]. The in-plane Ux and Uz displacement fields, obtained at 0◦ and 
150◦, are shown in Fig. 10, where the top figure shows the left-half of the 
TQFP on which the grating was replicated. 

4. Results and discussion 

4.1. Simulation data 

A simulation data set is extracted from Finite Element Method (FEM) 
simulations. It is composed by 21 different thermo-mechanical simula-
tions considering different delamination profiles constructed based on 

the SAM images. The FEM model simulations is performed using ANSYS 
sparse solver with more than 1.5 million elements mesh. 

A detail on the model is shown on Fig. 11. On the zoom image to the 
right, can be seen:  

• On the lower side on beige colour its located the copper heat 
dissipator.  

• On top of the heat dissipator on orange colour there is the silicon die. 
On the top face of the die is where the sensing cells are located.  

• Between the heat dissipator and the silicon die, there is glue on 
magenta colour.  

• On the side, the connection terminals are shown on beige colour. 
These are connected with wires to the sensors on top of the silicon 
die.  

• On the four sides of the die additional glue can be seen on colour 
blue.  

• Around the die, and containing one end of the connection terminals, 
it is the molding compound on cyan colour. 

A visualization of the mesh of the model is shown on Fig. 11. The 
molding compound is modelled using second order solid tetrahedral 
elements. All other regions are modelled using second order solid hex-
ahedral elements. The thickness of the silicon die in the actual sensor 
chip was discretized with a layer of approximately 10 μm thick. Each 
stress sensing cell was divided into 4 × 4 elements so that the elements 
matched to the geometry of the sensor itself (More details can be found 
in [14]). Material properties used in the simulation are shown in Table 1. 

Moiré measurements are used to calibrate the component simulation 
model. Optislang software is used to run an optimisation task to mini-
mise the root mean square error between the moiré measurements and 
simulation. Ranges in values of Young's Modulus, Poisson's ratio, coef-
ficient of thermal expansion and glass transition temperature of the 
molding compound are therefore chosen as shown in Fig. 1. Displace-
ments extracted on x and z direction along a horizontal line in the 
simulation are extracted and can be depicted in Fig. 12a, b. A good 
agreement between simulation and measurements can be seen after the 

Fig. 10. Ux and Uz displacement fields of the left-half of the TQFP obtained at 
0◦ and 150◦. 

Fig. 11. Detail on FEM mesh of a quarter model TV TQFP.  

Table 1 
Material properties.  

Component Young's 
[GPa] 

Poisson's ratio 
Modulus 

CTE below 
Tg 

[ppm/K] 

Tg 

[∘C] 

Outer Mold 22÷32 Below Tg:0.25÷0.3 8÷11E− 06 90÷110 
Above Tg:0.4÷0.46 2÷3E− 05  

Lead Frame 75,000 0.343 1.7E− 05 – 
Stress Sensor x:168.9E+03 νxz:0.064 2.8E− 06 – 

y:168.9E+03 νxy:0.361   
z:130.2E+03 νyz:0.361   

Die attach 7632 below Tg:0.35 5.10E− 05 37.55 
above Tg:0.45 1.71E− 04   
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optimization task is performed. A quarter model is built with half 
symmetry along one direction and free surface along the other direction 
as boundary conditions. The moiré data is extracted along the free sur-
face, which corresponds to the cut in the TQFP. Simulation results are 
extracted at 0◦C and 150◦C with the corresponding room temperature 
reference. 

A second validation is performed on a component level TQFP to 
establish the agreement between stress measurements and simulation. 
This is also a reference for how the stress distribution looks like in the 
healthy samples. Then the simulation is updated with the printed circuit 
board (PCB) to mimic the reliability TV. 

The values of relative stress along the x and y direction on top of the 
die and the stress difference calculation for the TQFP component alone 
from the simulation are shown in Fig. 13. This can give us a better un-
derstanding of what the sensor can measure, which is the stress 
difference. 

The modelling predictions are compared with the measured stress 
difference data from a component alone in Fig. 14. The results show 
good agreement. The deviations are attributed to the uncertainties of the 
stress sensor, geometry imperfections (variations) and the material 
properties used in the simulation. It is worth mentioning that the min-
imum and maximum values of stress difference are located near the 
edges. 

PCB level delaminated TQFP simulation is constructed based on the 
SAM image shown in Fig. 8. The stress values along x and y direction 
when the delamination is present, is depicted in Fig. 15. This visuali-
zation has the purpose to show the link between delamination, the 
stresses along x and y direction and the stress difference. Also, this is an 
efficient indication that the stress difference values are able to capture 
the delamination. 

The same amount of contact area shown in the SAM image (Fig. 8) is 
used for modelling the delamination in the simulation. In the area where 
delamination is considered, the interface mesh node is divided in two 
mesh node with no connection. In the other areas node to node con-
nectivity is maintained. 

Fig. 16 shows the contour plot of the relative stress difference from 
both simulation and measurement with the designated delamination 
area shown in the SAM image. In this case the agreement between the 
measurement and the simulation in the undelaminated area shows the 
limitation of the method used in case of simulating the delamination 
area. Both plots show similar stress distribution where the undelami-
nated area is present. The distribution near the undelaminated area is 
similar as in the case of Fig. 14. Overlay pictures between the stress 
difference and SAM image of both simulation and measurement are 
shown in Fig. 17. The top/bottom and left/right stress distribution of 
maximum and minimum values are exactly on top of the edge of the 
undelaminated area. 

Although the stress difference is giving an indication where the 
delamination areas are present, these are visible only when the package 
is fully delaminated. When the delamination areas are closer to the 
edges of adhesive layer, it is visually difficult to estimate where the 
delamination is located. One such examples is depicted in Fig. 18. 
Therefore, one more intermediate step is needed to reveal the delami-
nation areas. 

From the FEM simulation is observed that σz extracted at the adhe-
sive layer describes the delamination area much better, as depicted in 
Fig. 19. The image shows a top view on the model, where the grey colour 
represents the delaminated area and the red undelaminated area 
respectively. 

The simulation dataset contains the values of D(σ)ij
rel on each element 

on the top face of the silicon die, where the sensing cells would be 

Fig. 12. FEM ETV model.  

Fig. 13. TQFP component level mechanical stress at the top of the die. Loading condition used in the simulation is an environmental temperature of − 40◦ and 150◦. 
The stress values at − 40◦ are extracted from 150◦ stress values. 
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located, and σz of all elements on the lower side of the silicon die. The 
element geometry has been designed so the top and lower faces contain a 
2*3 array of mesh elements. In total 21 simulations are performed 
containing different delamination areas based on the SAM images taken 
during and at the end of the reliability tests. 

The simulation returns two types of data:  

• D(σ)ij
rel on the top face of the silicon die: The simulation gives as 

output the relative stress difference between the peak low tempera-
ture and the peak high temperature. With this values per element, 
visualizations as in Fig. 16 can be created.  

• σz on the lower face of the silicon die: The simulation calculates the 
σz. A visualization of one of this images is shown in Fig. 19. 

As depicted in Fig. 19, σz describes the delamination well in com-
parison to the D(σ)ij

rel, where it is hard to make a visual correlation be-
tween the stress and delamination. Therefore, the values of predicted σz 
are chosen as a virtual sensor to show where the delamination area is 
located. 

4.2. Back propagation artificial neural network 

For our application the input data contains the relative stress dif-
ference from all the 480 cells from 21 simulation data. The output data 
contains σz from all the corresponding 480 cells on the interface with the 
glue. 

A Surrogate Model is the one that is constructed using a model of the 
outcome that is looked upon instead of real-world measures. This 

Fig. 14. TQFP component level mechanical stress at the top of the die measured vs. simulation. Loading condition used in the simulation and measurement is an 
environmental temperature of − 40◦ and 150◦. The stress values at − 40◦ are extracted from 150◦ stress values. 

Fig. 15. Simulation mechanical stress at the top of the die of the delaminated MC1_1 TV. Loading condition used in the simulation is an environmental temperature 
of − 40◦ and 150◦. The stress values at − 40◦ are extracted from 150◦ stress values. 

Fig. 16. Simulation and measured mechanical stress difference at the top of the die of the delaminated MC1_1 TV. Loading condition used in the simulation is an 
environmental temperature of − 40◦ and 150◦. The stress values at − 40◦ are extracted from 150◦ stress values. 
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technique is used when the real world measures are impossible to obtain 
(like in the case of theoretical physics models), are computationally 
expensive (for example for complex FEM simulations) or a precise 
physical measures are hard to obtain (out of plane stresses in our case). 

Because of the few amount of data points, this model will be trained 
with the whole simulation data set that includes all 21 delamination 
profiles and then the results will be evaluated using SAM scans of the last 

state of the TVs. The input is a 480 signal corresponding to the 480 stress 
difference signals of the sensors that would be located on the top of the 
silicon of the TV, and the output is a 480 signal corresponding to the σz 
on the locations directly opposite to them on the other side of the silicon 
(interface with adhesive). 

The BPNN architecture is as shown on Table 2: 
A summary of the results obtained is shown in the appendix in 

Fig. 20. On these images, the output corresponding to the last thermal 
cycle of the modules experimental data sets is shown besides the SAM 
scan of its last state for comparison. A visual examination shows that the 
simple network created with the small simulation dataset has been able 
to predict until certain degree the final delamination state of the TV. The 
maximum values of out of plane stresses are located at the boundary 
between the delaminated and not delaminated area, seen in the SAM 
images. 

In Fig. 20d it is observed that the σz prediction reveals the delami-
nation area is located around the edge of the adhesive layer. This is 
validated by the SAM image. In this current form, the NN algorithm tries 
to fit the measurement data to one of the delamination profiles given to 
the simulation. It is therefore not able to interpolate between the 
delamination areas. A generalization of this model is therefore possible, 
only when a sufficient delamination profiles data are available from the 
simulation. A time discrete approach to establish a Virtual Twin model 
for an electronic component is required. 

5. Conclusions 

In this paper, a surrogate model based on simulated in-plane and out 
of plane stress is proposed. Mechanical stresses are able to capture 
structural change in the packages including delamination. The BPNN 
model shows promising results to estimate the delamination areas inside 
the package. The neural network is fitting the data to one of the provided 
delamination profiles. If the model contains sufficient discretized 

Fig. 17. MC1_1 TV overlay picture of stress difference on top of SAM image. 
Both simulation and experiment gives a very good indication where there is still 
contact underneath the die. 

Fig. 18. MC1_1 TV stress difference at 1400 cycle.  

Fig. 19. Delaminated area versus σz on simulation dataset. Grey area represents the delaminated area and in the simulation is given as a no contact interface. The red 
area represents no delaminated area and in the simulation is given as a bonded contact interface. 

Table 2 
BPNN parameters.  

Parameter Value 

Hidden layers [100,] 
Activation function ReLU 
Solver SGD 
Learning rate 0.0001 
Max iterations 2200 
Tolerance 0.0005 
Max iterations under tolerance 30 
Momentum 0.1  
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delamination profiles, then the model can be more accurate. This non- 
intrusive method can be used in testing new package designs, which 
can lead in better and fast design. Also, has the potential to be used in 
Digital Twin for automotive electronics as virtual sensors. Future work 
should be focused in acquiring more testing data for different designs 
and implementing more efficient FEM and ML methods. 
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