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A piezoresistive silicon based stress sensor has been demonstrated successfully as an effective tool tomonitor the
stresses inside electronic packages during various production processes. More recently, the sensor has been eval-
uated as a sensor for Prognostics and Health Monitoring (PHM) systems. This paper presents a systematic ap-
proach that evaluates its performance from the perspective of failure mode detection. A detailed Finite
Element method (FEM) model of existing test vehicles is created. The test vehicle consists of six DPAK (Discrete
Package) power packages and three stress sensors. The results of simulation are verified by the signals obtained
from the stress sensor as well as the supplementary warpage measurements. After inserting various failure
modes into the model, statistical pattern recognition algorithms are implemented for fault detection and classi-
fication. The proposed technique can identify detectable failures during reliability testing by utilizing the data-
base of stress sensor responses for healthy and unhealthy state. Thus, the results establish a baseline for the
applicability of the piezoresistive stress sensor for an on-line monitoring PHM methodology.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The piezoresistive silicon based stress sensor offers unique advan-
tages, including direct measurement of the mechanical stresses and
easy integration with existing systems. The sensor has demonstrated
its capability ofmonitoring the stresses during the transfermoldingpro-
cess [1]. In Refs [2,3]., the evolution of the stresses in a package during
the post mold curing process was investigated by the sensor. The
underfill process was also studied by the sensor in Refs. [4,5]. The sensor
was applied further to monitor the stresses during reliability testing. In
Ref. [6], Roberts et al. studied the evolution of stresses during thermal
cycling reliability tests. Similar results were presented by Shindler-
Saefkow et al. [7] and Yu-Yao Chang et al. [8].

More recently, the sensor has been investigated for Prognostics and
HealthMonitoring (PHM) systems [9–12]. PHMhas emerged as a prom-
ising solution to the need for more accurate life time prediction of new
products that are more complex but have reduced development time.
PHM combines in-situ measurements, data acquisition and interpreta-
tion of measured parameters, based on which the state of health of
the electronic system can be assessed [13].
alczynska).
In this paper, the piezoresistive silicon based stress sensor is studied
for a data driven approach to PHM. It has been shown that delamination
can be detected by sensing the signal change of the sensor [14]. Howev-
er, a systematic study about howdifferent failures can influence the sen-
sor output is missing. FEM analysis is conducted to fill this gap. First,
various failuremodes are introduced into a predictivemodel and the re-
sponse of the sensor is investigated.

Collected data is then used to study the applicability of statistical
pattern recognition algorithms. Three different algorithms are studied:
Mahalanobis Distance (MD) [15] and Singular Value Decomposition
(SVD) [16,17] for damage detection and Support Vector Machines
(SVM) for damage typology [18]. The applicability of these algorithms
to the current problem is discussed.

2. Stress sensor

This study focuses on an application of piezoresistive silicon-based
stress sensor, called IForce. In this section the general working principle
and construction of the sensor are presented.

The sensing elements are created by the channels ofMOSFET transis-
tors that are oriented in such away that the change in stress is changing
their resistivity. By measuring the currents flowing through the sensor
in-plane shear stress, σxy, and difference in in-plane normal stress com-
ponents, σxx – σyy, can be calculated from the following relations:
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Fig. 1. X-Ray image of stress sensor used in this study.

Fig. 3. Test vehicle a) top side view b) bottom side view.
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σxy ¼ 1
πn
11−πn

12

IOUT−IIN
IOUT þ IIN

ð1Þ

σxx−σyy ¼ 1
πp
44

IOUT−IIN
IOUT þ IIN

ð2Þ

where:
π11, π12, π44 – piezoresistive coefficients of silicon
IIN, IOUT – currents measured at the input and output of the sensor,

respectively.
The use of MOSFET technology enables the stress measurements

with high spatial resolution. In each sensor there is a whole matrix of
sensing cells. The sensor with 24 sensing cells is used in the test, being
placed in two 4 × 4 array. The cells in the corners of 4 × 4 arrays are in-
active. The X-Ray image of sensor used in this study is shown in Fig. 1,
where cell placements are marked with numbers.

The silicon die is packaged in a standard microelectronic LGA pack-
age, which is widely used to encapsulate a Hall sensor. Construction of
the package is presented in Fig. 2. The silicon die is attached to a PCB
using a die attach adhesive. Electrical connections are formed by wire
bonds. There is also a dummy ceramic component soldered on the
PCB. Thewhole construction is overmoldedwith commercially available
Fig. 2.Construction of LGA Package. 1 –mold, 2 – PCB, 3 – stress sensor, 4 – ceramic, 5 – die
attach, 6 – wire bond, 7 – soldering pads.
epoxy molding compound. The final dimension of the package is 3 mm
× 3 mm × 1 mm.

3. Test vehicle

The test vehicle with stress sensors is a four full copper layer PCB
containing six DPAK packages on one side (Fig. 3a) and three stress sen-
sors on the other (Fig. 3b). This test vehicle is designed for reliability
testing in which data acquisition from the sensors continues until the
failure occurs.

The DPAK packages are placed in pairs at three different positions on
the PCB. Two pairs are located along the edges of the PCB. The DPAKs
within these two pairs have different relative orientations and the ori-
entation toward the edges of PCB. The goal of this design is to
Table 1
Material properties.

Material properties considered in
the simulation

Modulus of elasticity CTE Material law
[MPa] [ppm/K]

DPAK Copper lead frame 125,000 17 Linear-elastic
Solder 49,551 20 Viscoplastic
Silicon die 167,000 8 Linear-elastic
Molding compound 17,000 12 Viscoelastic

PCB Copper (PCB traces) 80,000 17 Linear-elastic
Prepreg 24,000 14 Viscoelastic

Stress sensor Substrate 23,000 19 Homogenized
Adhesive 8000 51 Viscoelastic
Silicon die 167,000 8 Linear-elastic
Molding compound 26,000 8 Viscoelastic



Fig. 4. a) Sensor PCB layout b) calculated homogenized Young's modulus values in x-direction c) in y-direction.
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investigate the influence of the orientation of the package on the stress
state inside it.

The stress sensors are placed underneath each DPAK pair where the
highest temperature during active operation is expected. These are the
locations where the largest load occurs during reliability testing, thus
the failure is likely to occur first. Hence, it is the main region of interest,
as the ultimate goal is to detect the failure that occurs in DPAK package.

4. FEM model

For numerical simulations presented in this work a commercial FEM
code ANSYS® was used. To obtain quantitative results, the model must
be prepared very carefully. The important steps of model preparation
are described in this section.
Fig. 5. Stress measurement vs. simulation.
First of all, all thematerial properties must be assessed. Thematerial
characterization startedwith detailed DMAmeasurements of themold-
ing compound, which is an epoxy based thermosets type. Then, the lin-
ear viscoelastic material model is created and implemented in the
model. Composite materials like PCB's were characterized as well by
measuring the prepreg and copper foils separately. In the global
model a solder and awire bondweremodelled using linear elastic prop-
erties, because it would be computationally too expensive to use the
model considering non-linear properties. The material properties used
are presented in Table 1.

Additionally, a detailed geometrymust be taken into account. In this
simulation especially the internal geometry of the stress sensormust be
very accurate. This includes also the layout of the PCB within the sensor
package. To simulate the exact geometry is computationally too expen-
sive, as the PCB layout contains very small elements. Thus, the PCB in-
side the senor package was modelled using homogenization technique
[19]. This was accomplished in two stages. First, the local properties of
the prepreg and copper layer were calculated for each cell separately
using linear rules of mixture. Effective values were computed as an av-
erage of properties of the individual phases according to their volume
fractions. Then, the layer specific formulation of the PCB, consisting of
insulating and copper layers containing layout was converted into ho-
mogenous block in the thickness direction. An example of calculated ef-
fective Young's modulus distribution is shown in Fig. 4. The results from
simulation, that takes the layout into account, are validating the mea-
surements much better as shown in Fig. 5.

The simulation was done for a passive temperature cycle performed
between −40 °C and 125 °C. The out of plane deformation obtained
from structural simulation at 125 °C is presented in Fig. 6. The test vehi-
cle bends visibly along longer edge, having the largest deformation in
the middle of the PCB.
Fig. 6. Global PCB deformation at 125 °C.



Fig. 7.Warpage measurement and simulation comparison, passive cycling at−40 °C and
125 °C evaluated along a diagonal.

Table 2
Investigated failure modes.

FM1 Delamination in the sensor area

FM2 Delamination in the DPAK area
FM3 Solder crack in sensor area
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The simulations results were validated globally utilizing warpage
measurements. The deformation of the test vehicle was measured
using Digital Image Correlation (DIC). The results of out of plane defor-
mation are evaluated along the diagonal and comparedwith the numer-
ical prediction in Fig. 7. The results correlate very well with results of
experiments.

5. Failure modes

In order to investigate the influence of different failures on the sen-
sor response, theywere inserted explicitly into the validated FEM simu-
lation, as a part of geometry. Here, three failure modes were
investigated. The schematic pictures with the areas, where the failures
were inserted, are marked in orange, are presented in Fig. 8. First of
the investigated failure modes was delamination in the area of the sen-
sor as shown in Fig. 8a. This failure should give the biggest response of a
sensor. The second one was delamination in the DPAK area (Fig. 8b) to
investigate if the failure not placed directly under the sensor can be de-
tected. The third inserted failuremode is a solder crack under the sensor
(Fig. 8c). This failure is inserted in such a way that does not affect elec-
trical connections of the sensor. The inserted failures and the reference
names used later in this paper are summarized in Table 2. This work fo-
cuses on detecting different damage types. Considerations about dam-
age size are beyond scope of this paper.

6. Statistical pattern recognition techniques

In this section used pattern recognition techniques are described, to-
gether with practical application on the data gathered from simulation.
Fig. 8. Locations of the ins
Three algorithms were applied – Mahalanobis distance, Singular Value
Decomposition and Support Vector Machine. Both methodologies
begin with gathering the sensor data i.e. values of stress difference
and shear stress at the 24 sensor cells locations as shown in Fig. 9.
These values will be referred to as performance parameters.

To apply the statistical pattern recognition techniques, the informa-
tion about the variability of sensor response is needed. For this purpose
the uncertainties present in experiment are assessed [20]. After evalua-
tion of the simulation results, it was stated that the sample to sample
variability is too high to detect failure in a reliable way. Thus, only the
variability related to the measurement process itself is taken into ac-
count in the process of creating the statistical distribution. That
means, a database of healthy results was created as a normal distribu-
tion with standard deviation of 0.3 MPa for both stress difference and
shear stress values.

6.1. Mahalanobis distance

Mahalanobis distance is defined as a distance in multidimensional
space that considers correlations among parameters [21]. The MD
value is calculated using the normalized value of performance parame-
ters, which eliminates the problem of scaling. It is different than Euclid-
ean distance, because it takes into account also correlation coefficients
of performance parameters, which is the reason for the algorithm's
sensitivity.

In this approach a healthy baseline and a threshold are needed to
classify a product to be healthy or unhealthy. The performance parame-
ters are stored in amatrixXijwith elements denoted as xij (Fig. 9),where
i=1, 2,…, p and p is the total number of performance parameters (here
p=24) and j=1, 2,…,mwherem is the total number of observations.
The normalized values are calculated as follows:

zij ¼
xij−xi
si

ð3Þ

where:

xi ¼ 1
m

∑
m

j¼1
xij ð4Þ
erted failure modes.



Fig. 9. Input matrix construction for both algorithms.

Table 3
Damage detection by MD algorithm for different failure modes and stress components.

Failure mode σD σXY

FM1 (delamination/sensor) ✓ ✓

FM2 (delamination/DPAK) ✓ ✘

FM3 (solder crack) ✓ ✓
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si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

j¼1 xij−xi
� �2

m−1

s
ð5Þ

The correlation matrix is calculated as:

C ¼ 1
m−1

∑
m

j¼1
Z jZ

T
j ð6Þ

Finally, the MD for a healthy dataset is calculated as:

MDj ¼
1
p
ZT
j C

−1Z j ð7Þ

After calculating the MD values for each observation from healthy
baseline, it is needed to establish a threshold to make a decision be-
tween healthy and damaged state. For threshold determination a prob-
abilistic approach is used. Since the MD are not normally distributed a
Box-Cox transformation [21] is used. It converts the variable which con-
tains only positive values and does not follow normal distribution into
normally distributed variable. Then, the determination of a threshold
can be done based on a mean (μx) and a standard deviation (σx) of the
transformed MD variable. As higher MD values are the ones that indi-
cate failure, only the upper part of the control chart is significant for
this approach. A warning limit threshold is defined as (μx + 2σx) and
a fault alarm threshold as (μx + 3σx).

A result of fault classification conducted with MD approach is pre-
sented in Fig. 10. The first hundred points are from the healthy baseline
and the last data point contains damage. It is clearly detected, crossing
the fault alarm threshold. However, some of the points from healthy
baseline are crossing the warning level. It is caused by the threshold
Fig. 10. Results of MD algorithm.
definition – about 98% of points should lay within the (μx + 2σx)
bound. To dealwith this property, in the real timemeasurements, a cou-
ple of consecutive points should be classified as potentially containing
failure, to give actual the warning.

The detection results for all failure modes using both stress differ-
ence and shear stress data are presented in Table 3. It shows that this
method works very well in detecting failure for different damage
types. Only in case of damage recognition based on shear stress values
the results are not always conclusive.

The main advantage of this method is that it doesn't require knowl-
edge of failure modes for training. That means the only thing needed to
start the algorithm is a healthy baseline that can be created based on the
initial measurements in the system. Another advantage it is represented
by the fast calculation algorithm. In conclusion it can be stated that this
method can easily be used for damage detection. Although, for a robust
algorithm it must be further improved.
6.2. Singular value decomposition

Singular Value Decomposition is a discrete version of the algorithm
known as Proper Orthogonal Decomposition (POD). It is a multi-variate
statistical method for data analysis. Its primary use is order reduction as
it enables projection of high-dimensional data into lower dimensional
space [20]. What is more interesting for this work, it offers also feature
Fig. 11. The SVD algorithm workflow [21].



Fig. 12. The least square SVD results.

Table 4
Normalized calculation time of used algorithms.

Type Calculation time (normalized)

Mahalanobis distance 1
Classic SVD 0.025
Iterative SVD 0.039
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extraction from the data, by unveiling its structure. The main idea here
is to decompose the matrix into a product:

Xij ¼ USVT ð8Þ

where U and V are two orthonormal matrices and S contains the singu-
lar values σ of the matrix Xij. When the matrix Xij contains data with
damage, the decomposition deviates from the one calculated only
with data from intact structures.

The SVD algorithmworkflowused in thiswork is presented in Fig. 11
[21]. The first step is to create a performance parameter space. The ma-
trix Xij is built in the sameway as for MD approach. A condition that has
to be fulfilled to implement this method is that the number of observa-
tions containing damage must be bigger or equal to number of healthy
observations. In this case, a matrix with eight columns is created, four
first columns contain healthy data and the rest data with damage.
Next, the matrix is decomposed according to formula (7). Then all the
singular values below arbitrary chosen noise level are set to zero and a
matrix X1 is resynthesized. Afterwards, the residual matrix E1, the stan-
dard deviation of residuals and standard deviation of every observation
are computed. Finally, the relative distance dj is obtained, which follows
χ2 distribution withmeanm=1. The threshold for fault qualification is
determined based on standard deviation σ of this distributionwith con-
fidence level 95%.

Using this procedure, an automatic classification between damaged
and healthy observations can be made. The problem with the classical
least-squares SVD technique is that it is very sensitive to outliers [22].
Fig. 13. The iterative SVD results.
To reduce the outliers influence an iterative SVD can be used. In this ap-
proach first the classical least-squares SVD algorithm is applied. Then
the observations with outlying distance dj are eliminated and the SVD
of the remaining observations is calculated again.

In Fig. 12 an example of output of classical least square SVD and in
Fig. 13 of iterative SVD is presented. The damage is detected for both
classical and iterative SVD. These methods were tested on data
concerning all three failure modes and in all cases the damage was de-
tected. It is also worth to notice, that the iterative SVD gives much
sharper separation of the healthy and damaged observations. The
main advantage of this approach is short calculation time. As shown in
Table 4 both classic and iterative SVD have a calculation time much
shorter than in case of Mahalanobis distance. Similarly to previous
method it does not require the prior knowledge about the failure
modes and works on normalized data. The main disadvantage here is
that the requirement for damage detection is to have multiple observa-
tions containing failure.

The advantages and disadvantages of both presented methods are
summarized in Table 5.

Support vector machine

Support Vector Machines is a machine learning algorithm that can
solve classification problems. It is very popular because it can form accu-
rate boundaries between dataset even with small amount of training
data [23]. Additionally, it often gives a good generalization and finds a
single global minimum for a problem. The main idea behind it is to
find the plane separating the two datasets in such a way that the dis-
tance between them is maximized. For n-dimensional sets of data, a n-
1-dimensional hyperplane that separates them is searched. This hyper-
plane boundary can have linear or nonlinear character.

To explain the SVMalgorithm, an example of two dimensional linear
problem is presented (Fig. 14). First, the training data are labeled, creat-
ing the sets. For each point xi from the first data set the value yi = −1
and for those from the other set the value yi =1 is assigned. The classi-
fication in this case is performed by considering plane H1 that consist of
the points which satisfy the equationwx+ b=0,wherew is normal to
the plane and b is the perpendicular distance from the plane to the ori-
gin, normalized by length of w. The following conditions should be sat-
isfied for all training data points:

xi �wþ b≥1 for yi ¼ 1 ð9Þ
Table 5
Advantages and disadvantages of tested damage detection algorithms.

Mahalanobis distance SVD

Advantages
Works on normalized data Works on normalized data
Relatively long calculation time Short calculation time
Does not require prior knowledge
about failures

Does not require prior knowledge about
failures

Good accuracy
Easy to implement

Disadvantages
inconclusive for shear stress results Sensitive to noise
False warning result Requires more than one data point for

data with failure



Fig. 14. Linear SVM problem.
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xi �wþ b≤−1 for yi ¼ −1 ð10Þ

The points for which the equality (8) is satisfied, lay on the hyper-
plane H2 and the points for which the equality (9) is satisfied lay on
the hyperplane H3. Hence, the distance between H1 and H2 is d+ =
1/||w||, the distance betweenH1 andH3 is d−=1/||w||, and themargin
is simply 2/||w||. Considering that H2 and H3 are parallel and no points
lie between them, the optimization problem needs to minimize ||w||2,
which is subjected to constraint:

yi xiwþ bð Þ−1≥0 ð11Þ

Eq. (10) simply combines the equalities (8) and (9) into one set of
inequalities.

The optimization problem is then solved by changing the constraints
into Lagrangian multipliers. The objective function can be written as
[23]:

Lp ¼ 1
2

w2
�� ��−∑

m

i¼1
αiyi xiwþ bð Þ þ∑

m

i¼1
αi ð12Þ

where αi are positive Lagrangian multipliers.
The aim is to minimize Lp with respect to w and b.
Fig. 15. Results of SVM algorithmwith RBF kernel function calculated separately for every
cell.
The non-linear classification involves mapping the data points from
a lower dimensional feature space into a higher dimensional space. This
can be made by a function which is called a kernel function. There are
several functions used in the literature, but the one used in this study
is the Gaussian radial basis function (RBF):

K xi; xj
� � ¼ exp −

x−yk k2
2σ2

 !
ð13Þ

After mapping the points, the same linear separation procedure is
applied just in a different space.

For our problem this method is applied to each sensor cell separate-
ly. The training data contains healthy and failure information, such as
the stress difference and shear stress. The results are depicted in Fig.
15. They show the influence of damage to each sensor cell. Different col-
ored areas are specifying the range in which a data point will be classi-
fied as one of the four states – yellow for healthy, red for FM1, orange for
FM2 and blue for FM3. The data sets containing different failures are
separated very well. Only in case of FM2 in some cells the points are
not perfectly separated from healthy data. If the point is already identi-
fied as containing failure, by one of the previous methods, then the
wrong qualification by SVM only between one of the failures and the
healthy data can be easily avoided by not taking into account the
healthy data as a training set. That's the reason why this method is pro-
posed only for damage typology, not for damage detection.

7. Conclusions

In this work, damage detection using the piezoresistive silicon stress
sensor was studied. The stress states in the sensor subjected to different
damage types was collected using validated FEM simulations. Then,
three statistical pattern recognition algorithms were investigated with
the data - Mahalanobis distance and Singular Value Decomposition for
damage detection and Support Vector Machine for damage typology.
Both damage detection algorithms have successfully distinguished the
differences between healthy and damage data, even for the case that
the failure was inserted not directly under the sensor. The advantages
and disadvantages of both algorithmswere evaluated. The Support Vec-
tor Machine was applied to classify the failures.

It is recommended to conduct in the future a broader study to eval-
uate theminimum size of failure that can be detected by the sensor. Ad-
ditionally, the actual damage data of test vehicles should be collected to
evaluate the performance of the proposed approach.
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