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As computer systems evolve towards exascale and attempt to meet new 
application requirements such as big data, conventional memory technologies 
and architectures are no longer adequate in terms of bandwidth, power, 
capacity, or resilience. In order to understand these problems and analyze 
potential solutions, an accurate simulation environment that captures all 
of the complex interactions of the modern computer system is essential. In 
this article, we present an integrated simulation infrastructure for the entire 
memory hierarchy, including the processor cache, the DRAM main memory 
system, and nonvolatile memory, whether it is integrated as hybrid main 
memory or as a solid state drive. The memory simulations we present are 
integrated into a full system simulation, which enables studying the memory 
hierarchy with a faithful representation of a modern x86 multicore processor. 
The simulated hardware is capable of running unmodified operating systems 
and user software, which generates authentic memory access patterns for 
memory hierarchy studies. To demonstrate the capabilities of our infrastructure 
we include a series of experimental examples that utilize the cache, DRAM 
main memory, and nonvolatile memory modules. 

Introduction
The rise of multicore systems has shifted the primary bottleneck of system 
performance from the processor to the memory hierarchy, accelerating the 
gap that had already existed between processor and memory performance 
(the memory wall). Previously, the memory wall problem was the result of the 
increasing frequencies of CPUs relative to the latency of the memory system, 
which meant that CPUs were losing more processing time waiting on memory 
accesses. However, as processor frequency improvements stalled and with the 
introduction of multicore systems, a more urgent problem was created since the 
current memory system cannot scale at the same rate as the number of cores. 
Therefore, in modern systems there is actually much less bandwidth and capacity 
per core than there was a few years ago. This trend can be seen in Figure 1. This 
problem, combined with the existing operating frequency problem, has led to the 
memory hierarchy becoming the dominant source of slowdown in the system. 
To address the increased need for capacity, systems are now relying more on solid 
state drives and other high performance storage systems, exacerbating the latency 
problem of the memory system due to the increased frequency of references to 
the slower storage system. Finally, since multicore systems are running threads 
in different address spaces with different access patterns, there is less locality of 
reference for the cache hierarchy to exploit. This implies that overcoming the 
multicore memory wall problem requires examining the entire memory hierarchy 
from the cache system down to the storage system.

“…overcoming the multicore memory 

wall problem requires examining the 

entire memory hierarchy…”

An Integrated Simulation Infrastructure for the Entire 
Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk

Jim Stevens  
University of Maryland

Paul Tschirhart  
University of Maryland

Mu-Tien Chang 
University of Maryland

Ishwar Bhati
University of Maryland

Peter Enns
University of Maryland

James Greensky
Intel Labs

Zeshan Chisti
Intel Labs

Shih-Lien Lu 
Intel Labs

Bruce Jacob
University of Maryland



An Integrated Simulation Infrastructure for the Entire Memory Hierarchy: Cache, DRAM, Nonvolatile Memory, and Disk   |   185

Intel® Technology Journal | Volume 17, Issue 1, 2013

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2000 2002 2004 2006 2008 2010 2012

M
B

/M
IP

S

Year

DRAM (MB)/MIPS

Figure 1: DRAM capacity (MB)/processor speed(MIPS) 
per core for a typical system
(Source: University of Maryland, 2013)

In addition to the strain on memory system capacity and bandwidth that 
has been introduced by multicore chips, memory system capacity is also 
limited by scaling problems at the device level. For DRAM, as the memory 
cells shrink, the charge that can be stored on the capacitor becomes very 
small and the pass transistor leakage increases, which reduces the retention 
time of the cell and requires more complex peripheral circuitry to detect 
the smaller charge. For flash memory, as the dielectric of the floating gate 
shrinks, the amount of damage during program-erase cycles that can be 
tolerated decreases and the cells wear out faster.[1] Additionally, since control 
circuitry has analog components that are difficult to scale down, as the 
DRAM and flash cell size decreases, the control circuitry takes up a larger 
percentage of the chip area relative to the memory array. Architects have 
attempted to address device scaling problems by adding more devices with 
technologies like FB-DIMM and Buffer on Board, as well as technologies 
in currently development like the Hybrid Memory Cube.[2] However, these 
solutions require additional hardware to be designed and added to the 
memory system, making them currently prohibitively expensive for most 
applications. New memory technologies have also been suggested that might 
eventually provide a solution to the capacity problem but these technologies 
are not yet competitive with existing technologies in terms of cost or 
capacity.[17] Meanwhile, software is not helping to alleviate the situation, 
because application working sets continue to increase in size. In recent 
years, big data applications such as bioinformatics and graph analytics 
have only accelerated the increasing demand for faster and more scalable 
storage systems. This has also contributed to the rapid adoption of solid 
state drives. However, much of the storage system’s software and hardware 
infrastructure was constructed around assumptions of millisecond access 
latencies and, as a result, fails to efficiently utilize the new high performance 
storage solutions being implemented. In order to meet the new challenges 
posed by big data applications, the storage system needs to be reworked 
from the OS file system down to the hardware interfaces. Finally, as the 
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community pushes towards exascale computers, the power and resilience 
limitations of the current memory system are becoming more pronounced.
[3] If an exascale-sized main memory system were constructed using today’s 
technology, then just that component alone would consume the entire 
system power budget. Furthermore, given the current probability of failure 
in memory system components, as the number of components approach 
the numbers needed for exascale, the probability of a failure somewhere in 
the system approaches 1. This means that if an exascale computer were built 
with today’s memory technology, not only would it use too much energy, it 
would also be breaking constantly. Therefore, to enable the push to exascale 
it is imperative that new, more energy-efficient and resilient memory 
technologies and architectures be developed.

In order to overcome these problems, new architectures and software need 
to be developed and evaluated. Since the new solutions will involve multiple 
aspects of the system, the feedback between the various components of the 
system is vital to understanding performance. For example, many researchers 
are studying how to integrate nonvolatile memory into the system as a first 
class citizen, which involves both the hardware and the software. Trace-based 
simulation has been used in the past to study these kinds of architecture 
problems. Unfortunately, trace-based simulation does not capture the feedback 
loops between software and hardware. One way to produce these feedback 
loops is to build a real-world prototype. However, due to the engineering effort 
required, real-world prototypes are impractical and costly for studying large 
design spaces. Full system simulation models those complex interactions and 
can provide valuable insights into the dynamic behavior of a variety of system 
designs. Previously, no full system simulator existed that could study all levels 
of the memory and storage hierarchy. In this article, we describe our simulation 
infrastructure that addresses this need by providing a full system simulator 
capable of modeling the entire processor and memory hierarchy, including the 
storage system.

Simulator Description
Our memory hierarchy simulation infrastructure is an extension of the 
MARSSx86 full system simulation environment[4] developed at SUNY 
Binghamton. We utilize MARSS to simulate the microprocessor and other 
non-memory hierarchy components of the system. The memory infrastructure 
builds on top of the prior MARSS memory hierarchy and incorporates 
detailed simulations of every level of the hierarchy including the cache, the 
main memory system, and the storage system. The cache simulator is an 
extended version of the existing cache simulation in MARSS that allows for 
heterogeneous technologies at different levels of the cache hierarchy. For 
traditional DRAM-based main memory systems, our simulation environment 
uses DRAMSim2, which is a detailed, cycle-accurate DRAM memory system 
simulator developed by our lab[13]. For nontraditional hybrid nonvolatile/
DRAM memory systems our simulation environment uses two modules, 
HybridSim and NVDIMM, which simulate the memory controller and 
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nonvolatile DIMMs that would be used by such a system. The hybrid 
memory components can also be reconfigured to simulate solid state drives. 
Figure 2 shows the overall structure of our simulation environment, including 
its constituent modules and how they communicate with one another.
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Figure 2: Block diagram of simulation environment for 
hybrid memory (top) and SSD (bottom)
(Source: University of Maryland, 2013)

MARSS
MARSS is designed to simulate a modern x86 computer system. MARSS utilizes 
PTLSim to simulate the internal details of the processor. PTLSim is capable of 
simulating a multicore processor with the full details of the pipeline, micro-op 
front end, reorder buffers, trace cache, and branch predictor. In addition, PTLSim 
also simulates a full cache hierarchy and can implement several cache coherency 
protocols. For the hardware that is not explicitly simulated, such as disks or the 
network card, MARSS uses the QEMU emulation environment. MARSS is 
able to boot full, unmodified operating systems, such as any Linux distribution, 
and then run unmodified benchmarks. We selected MARSS as the basis for our 
memory hierarchy simulation infrastructure because of its ability to simulate 
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both the user programs and the operating system functionality, while most other 
simulation environments are only capable of simulating user-level instructions. 
Therefore, in addition to being the most realistic simulation environment possible, 
MARSS can be used to study the behavior of the operating system, which we view 
as vital to solving the problems of future memory and storage systems.

Cache Simulation
While PTLSim already provides an SRAM-based cache simulation, studying 
other technologies is vital because of the power, bandwidth, and capacity 
problems that arise in the design of the memory hierarchy for future 
systems. Memory technologies such as SRAM, STT-RAM, and eDRAM 
have been considered for implementing on-die LLCs. Though they all 
have low read latency and high write endurance, they can be very different 
for other performance characteristics. For instance, SRAM is low density 
and has high leakage current, STT-RAM has high write latency and write 
energy consumption, and eDRAM requires refresh. Additionally, due to the 
very different inherent characteristics of each of the memory technologies, 
researchers have proposed various power and performance optimization 
techniques. Therefore, in order to make useful comparisons between SRAM, 
STT-RAM, and eDRAM LLCs, we expand MARSS with the following:

1.	 We integrate a refresh controller into MARSS to support eDRAM LLCs.

2.	 In addition to the parameterized cache access time, we expand MARSS 
with parameterized cache cycle time, tag access latency, and refresh period. 
Separating cycle time and tag access latency allows the user to evaluate 
pipelined caches and sequentially accessed caches (such as when data array 
access is skipped on a tag mismatch). We also modify MARSS to support 
asymmetric cache read and write latencies. This property is required to 
evaluate STT-RAM caches realistically.

3.	 We integrate dead line predictors to enable low power modes for SRAM 
and eDRAM caches.

These changes allow our environment to investigate future cache designs 
incorporating new technologies and techniques.

DRAM Main Memory Simulation
Since the DRAM-based main memory system has a large number  of 
configuration and timing parameters, such as the command and data queues, 
address mappings, refresh timings, low power modes, activate and pre-charge 
periods, and so on, choice of one or another scheme could have drastically 
different power or performance implications.[14] Therefore, DRAMSim2, a 
cycle-accurate JEDEC DDRx memory system simulator, was developed.[12][13] 
It models the memory controller, memory channels, DRAM ranks, and banks. 
The DRAMSim2 timing behavior has been compared and validated against 
Verilog-based device models published by DRAM vendors.

Recently, JEDEC published the next generation DDR4 standard.[15] DDR4 
devices could operate at double the speed of previous generation DDR3 chips, 
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and moreover DDR4 will have additional features enabling low power and 
high memory capacity. DDR4 devices will have banks separated into multiple 
bank-groups to facilitate higher bandwidths and greater bank-level parallelism. 
However, since banks within a bank-group share some peripheral circuitry, 
requests to banks of the same bank-group takes longer time than banks on 
different bank-groups. We modified the DRAMSim2 memory controller to 
incorporate these DDR4 specific changes.

Power dissipated due to DRAM represents a substantial portion of the total 
system power budget, as the main memory capacity and bandwidth increases 
to satisfy requirements of the current and future data-intensive applications. 
Therefore, to study the tradeoffs involved with switching to various DRAM 
low power modes, such as active, power-down, self-refresh, and deep power-
down , requires accurate switching time as well as the current drawn during 
each mode. Furthermore, refresh command scheduling could also potentially 
affect the switching to low power modes. We have augmented DRAMSim2 
with detailed low power modes and a range of refresh policies, allowing users 
to study the performance and power tradeoff when using different low power 
modes and refresh methods.

Nonvolatile Memory Simulation
Recently many designs have been proposed that utilize nonvolatile device 
based DIMMs to address the capacity issues of the main memory system. For 
DIMMs that are not made using DRAM parts, we use NVDIMM, which is 
capable of simulating DIMMs made from a wide variety of technologies. This 
is possible because most nonvolatile technologies share many common features 
and differ in only a few parameters. For instance, both flash and Phase Change 
Memory (PCM) feature asymmetric reads and writes. To allow for these 
differences, NVDIMM has a wide variety of options that can be used to shape 
the behavior of the system. Some technology-specific options include access 
latencies, device interface widths, address mapping policies, and wear leveling 
policies. For example, in flash a dynamic mapping scheme is used so that dirty 
pages can be set aside to be erased during idle cycles by a garbage collection 
process, enabling faster modifications of existing data. This scheme was chosen 
because the erase time for flash is prohibitively long even for basic storage 
applications. Early architectures for PCM, on the other hand, have been 
designed with a simpler static mapping scheme that does not require a garbage 
collection process because its erase is considerably faster than flash’s. 

In addition, other options have been included in NVDIMM to enable 
investigations into the effects of organization, scheduling, and timing. A 
good example of such a study is to determine how many devices of a given 
type can be included on a DIMM before the host interface channel (such 
as DDR3 or SATA) is saturated. By enabling both device and architecture 
level investigations, NVDIMM allows our memory hierarchy simulation 
infrastructure to study different methods for integrating nonvolatile memory 
into a computer system.
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Nonvolatile Memory Integration
There are two primary ways to integrate nonvolatile memory into a computer 
system below the cache level, as illustrated in Figure 3. The first method is 
the traditional storage route, which uses the same software and hardware 
abstractions and protocols as hard disk drives. The second method is to tie 
the nonvolatile memory directly into the memory controller. Our memory 
hierarchy simulation infrastructure is designed in such a way that you can 
utilize a common set of modules to simulate both integration methods, which 
enables the ability to make fair comparisons between the two.
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Figure 3: System design for SSD (top) and hybrid memory (bottom)
(Source: University of Maryland, 2013)

In both disk-like and memory-like integration methods, since the nonvolatile 
memory typically has long latencies, a faster memory such as DRAM or SRAM 
is utilized as a buffer or cache. We provide the HybridSim module to simulate 
this aspect of the system. HybridSim uses NVDIMM as its backing store and 
DRAMSim2 as its cache. HybridSim’s features enable the study of a variety 
of cache replacement policies, prefetching policies, and hardware/software co-
design (for example, having the memory controller and operating system work 
together to manage nonvolatile memory). 

When HybridSim is simulating a memory-like integration method for 
nonvolatile memory, also known as a hybrid main memory, it interacts with 
the memory controller of the base MARSS system to capture addresses and 
bypass its simpler memory model. HybridSim then performs its caching 
functions and sends requests to DRAMSim2 or NVDIMM to implement 
requests. When the requests complete, HybridSim sends callbacks to the 
MARSS memory controller to indicate that a request is done and allow the 
processor to make progress at the appropriate clock cycle.
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When HybridSim is simulating a disk-like integration method, it receives 
disk requests from MARSS and then later raises an I/O interrupt to indicate a 
request is complete. This works exactly like a modern solid state drive. We also 
provide an additional module called PCI_SSD to simulate the host interface for 
a modern SATA or PCIe SSD and to allow the user to configure various options 
including the number of lanes, half or full duplexing, an optional two-level 
interface (such as Intel Direct Media Interface to SATA), frequency, and protocol 
overhead. Our SSD simulation also ties in with our DRAMSim2 main memory 
simulation to perform direct memory access operations to DRAM before or 
after a disk request occurs. This process of disk simulation is also compatible 
with simulators for conventional hard disk drives like DiskSim[5] and HDD 
simulation could be achieved by simply modifying the PCI_SSD module.

Simulation Variability and Warm-Up
Full system simulation introduces some additional sources of complexity 
and nondeterminism that can lead to inaccurate results if they are not dealt 
with properly. In particular, just as in a real system, the OS introduces 
nondeterminism into the simulation as a result of timing variation (for 
example, interrupt arrival time) from run to run. This problem can be reduced 
by utilizing checkpoints of the system state, which MARSS enables using the 
QEMU snapshot mechanism. Another source of complexity is how to properly 
warm up the caches and other state (such as NVDIMM’s address mapping) 
for novel memory hierarchy architectures. We provide a generic mechanism 
for warm-up utilizing state files that can be saved during a warm-up period 
or generated by scripts and then restored at the beginning of the region of 
interest. An example of this warm-up process can be seen in Figure 4.

Baseline Configuration
The baseline configuration for the following experiments is a quad-core, out-of-
order system, with cache organization similar to the Intel® Core™ i7. The cache 
experiments below use this processor with a modified LLC to incorporate new 
memory technologies. The cache experiments also utilized the baseline DRAM 
main memory configuration. These baseline configurations are shown in Table 1.

Processor 4-core, issue width = 4, 2 GHz

L1I (private) 128 KB, 8-way, 64-B block size

L1D (private) 128 KB, 8-way, 64-B block size

L2 (private) 2 MB, 8-way, 64-B block size

L3 (shared) (if present) 8 MB, 16-way, 64-B block size

DRAM (if used as cache) 512 MB, 64-way, 4-KB page size

DRAM (if used as main memory) 1 GB, DDR3-1333

Nonvolatile main memory 8 GB, 4-KB page size, PCIe 3.0 16 Lane equivalent bandwidth

Table 1: Baseline Configuration
(Source: University of Maryland, 2013)
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The DRAM examples also utilize the baseline processor and cache shown in 
Table 1. 

For the hybrid and SSD experiments, an 8-GB NVM is considered, with a 
512-MB DRAM cache in front of it. The nonvolatile DIMM organization 
has 1 channel, 64 dies per channel, 2 planes per die, 4,096 blocks per plane, 
64 pages per block, and each page is 4 KB. All transfers between the NVM 
and the DRAM occur at the page granularity. The timing parameters for 
the nonvolatile memory are based on MLC flash numbers.[6] The DRAM 
cache, also in the form of a DIMM, is organized as 1 channel, 1 rank per 
channel, 8 banks per rank, 8,192 rows per bank, and 1,024 columns per row. 
All transfers between the DRAM and the L2 cache occur at the L2 cache 
line granularity (64 B). DRAM timing parameters are based on a Micron 
datasheet.[7] All devices are 8 bits wide. 

For these experiments we use the GUPS benchmark and a random access 
micro-benchmark called mmap developed by our lab as well as selected 
benchmarks from the NAS benchmark suite, the SPEC benchmark suite, 
and the PARSEC benchmark suite.[8][9][10][11] These benchmarks were selected 
because they have a large working set size and are memory intensive.

Experiments
The following experiments demonstrate examples of the wide variety of studies 
that can be performed using the various modules of our environment. For the 
processor cache, we present energy and execution time data for last-level caches 
constructed using different memory technologies for a several benchmarks. To 
demonstrate the capabilities of the DRAM system portion of the simulator, 
we have included power and instructions-per-cycle data for similar sets of 
several benchmarks. Finally, we exhibit the features of the nonvolatile memory 
portions of our environment with data showing the effects of additional 
bandwidth, prefetching, working set size, and memory system traffic volume on 
system performance. Table 1 contains the baseline configuration details that are 
common to all of the experiments.

Caches
As a case study, we compare the LLC energy consumption and system 
performance when using SRAM, STT-RAM, and eDRAM. The LLC is a 
32-nm, 32-MB, 16-way write-back cache that is partitioned into 16 banks 
and uses 64-byte blocks. It is also pipelined and sequentially accessed.

Figure 5 illustrates the normalized energy breakdown of LLCs based on SRAM, 
STT-RAM, and eDRAM. We include the results for “regular” implementations 
(without power-optimization) and “low power” implementations. For instance, 
“regular” SRAM uses high performance transistors to implement the entire 
cache without power gating; “regular” STT-RAM uses storage-class STT-RAM 
technology, which has a long retention time but requires high write energy; 
and “regular” eDRAM uses the conventional periodic refresh method. On 

“…we compare the LLC energy 
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the other hand, low power SRAM uses dead line prediction[18], power gating, 
and low leakage CMOS for the memory cells[19] to reduce leakage power; low 
power STT-RAM uses device optimization techniques to reduce write energy 
by sacrificing data-retention time[17]; and low power eDRAM uses dead line 
prediction to reduce the number of refresh operations. The impact of different 
memory technologies and implementations on system performance is shown in 
Figure 6.
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Figure 5: Normalized LLC energy breakdown with respect to various memory 
technologies. The results are normalized to regular SRAM (not shown). Note 
that regular SRAM dissipates 5x more power on average
(Source: University of Maryland, 2013)
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DRAM
As an interesting case study of a DRAM-based main memory system, we 
show the impact of refresh when device size is increased from small 1-Gb to 
future big 32-Gb chips. We simulated few SPEC2006 benchmarks in region 
of interest (RoI) for 1 billion instructions, assuming both with and without 
refresh enabled. Figure 7 presents the energy contribution separated for each 
type of operation, that is: read and write, activate and pre-charge, background 
and refresh operations. The Y-axis representing energy is normalized to the 
corresponding 1-Gb device values for each benchmark. The background and 
refresh energy portion increases for higher density devices, because of the 
greater number of peripheral circuitry and cells to be refreshed as device size 
increases. Since with DRAM density, the number rows also increases, this 
leads to more frequent refresh commands to be scheduled, and therefore leads 
to a degradation of the memory performance and latency. Figure 8 shows the 
percentage degradation of system performance (IPC) and the average latency 
increase due to refresh operations as the size of DRAM devices vary.
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Figure 7: Energy contributions separated for each operation type normalized to the 1-Gb DRAM device size. Refresh 
and background energy consumption increases when DRAM density gets higher
(Source: University of Maryland, 2013)
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(Source: University of Maryland, 2013)
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Nonvolatile Memory
An important type of study for future memory systems is to understand how 
the system reacts to changing the working set size and volume of accesses. This 
is especially important in hybrid main memory systems because nonvolatile 
memory latencies can be significantly slower than traditional SRAM and 
DRAM. The Giga-Updates Per Second (GUPS) implementation from Sandia 
National Laboratories is an ideal benchmark to study such access patterns since 
it takes the working set size and number of accesses as parameters, unlike many 
other benchmarks that assume a constant pattern for memory accesses. GUPS 
creates a large table and then performs a series of updates on pseudorandom 
locations within that table. In this experiment we chose table sizes of 256 MB, 
512 MB and 1 GB. The DRAM cache in our test system was 512 MB. Our 
choice of table sizes allows us to see the effect on system performance when the 
table fits in the DRAM cache easily, when the table is approximately the same 
size as the DRAM cache to cause some swapping between the DRAM cache and 
the nonvolatile backing store, and when the table is two times the size of the 
DRAM cache to cause a significant number of DRAM cache misses. We also 
vary the number of updates from 1000 to 5000 in increments of 1000 to show 
the effect of different volumes of memory traffic on system performance. Finally, 
we included data for systems that incorporate the nonvolatile memory as both 
a hybrid memory and as a traditional SSD. From the results in Figure 9, we can 
see that for the SSD configuration as the table grows larger than the 512 MB 
DRAM and more accesses must go to the slower flash swap space, system 
performance suffers as would be expected. However, for the hybrid memory 
version, performance is not dependent on the table size. This is because Linux 
sees the 8 GB backing store as the main memory address space and allocates the 
entire table inside this space. Initially, this table is not present in the DRAM 
cache because it has been accessed yet. When the table size is twice the size of the 
DRAM, the performance of the Hybrid implementation becomes much better 
than the SSD implementation. This is because the SSD has more overhead for 
its accesses to the swap space than the Hybrid has for its accesses to the flash.
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Figure 9: Execution time of GUPS when table size and number of updates are 
varied (smaller is better)
(Source: University of Maryland, 2013)

“…the SSD has more overhead for 

its accesses to the swap space than the 

Hybrid has for its accesses to the flash.”
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Optimizing the performance of the nonvolatile backing store is another 
important area of study for future memory systems. One area of potential 
performance gain is the interface of the nonvolatile devices used to create 
the backing store. To show the effect of improving the bandwidth provided 
by these interfaces, we utilize an in-house micro-benchmark called MMAP. 
MMAP works by first defining a large memory mapped file that is opened 
with the mmap() system call in Linux and then it accesses this file randomly. 
This benchmark is well suited to bandwidth studies because it is single 
threaded and therefore provides a clear picture of the effect of a minor change 
without much noise from other system threads. Additionally, since MMAP 
is designed to force misses to the DRAM cache as often as possible, which 
causes only one 64-byte access within each 4-KB page, it maximally stresses 
the host interface and device channels in the backing store. This is a worst-case 
scenario for the memory system because it generates a large volume of random 
accesses that are not fully utilized by the cache. This is the reason for the low 
observed IPC. For this experiment, we vary the clock rate of the interface of 
a device (the amount of time it takes to transmit 8 bits of data) from 0.05 ns 
to 10 ns. In addition, we also utilize a basic sequential prefetching algorithm 
to generate more accesses and place greater pressure on the devices. We vary 
the number of additional pages that are prefetched by our algorithm from 4 to 
8 to 16. As was the case in the previous example, we also include data for 
both a hybrid-style integration of the nonvolatile memory and an SSD-style 
integration. In Figure 10, we can see that both faster device interfaces and 
larger prefetching windows help to improve the system performance. We do 
not use the prefetching in HybridSim for the SSD version of the experiment 
because prefetching is performed by the operating system for disk accesses. It is 
also important to note that there is less nondeterminism in these results than in 
the previous example because this example is single threaded, which eliminates 
nondeterminism introduced by the OS scheduler when it has to schedule 
multiple threads. There is still some minor nondeterminism in this experiment’s 
results, but that is what one would expect from a real system.
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Figure 10: Performance of MMAP with varying bandwidth and prefetching window size
(Source: University of Maryland, 2013)

“Optimizing the performance of the 

nonvolatile backing store is another 

important area of study for future 

memory systems.”
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Conclusion
In this work, we have introduced a complete memory hierarchy simulation 
environment that is capable of accurately simulating the processor cache, 
the DRAM main memory system, and nonvolatile memory, whether it is 
implemented as a hybrid memory or as an SSD. We have shown the utility of 
this infrastructure for solving future memory hierarchy design problems by 
presenting example experiments that demonstrated multiple last-level cache 
cell technologies, DRAM refresh schemes, and nonvolatile memory integration 
methods.
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