
ABSTRACT

The general-purpose precise interrupt mechanism, which has long
been used to handle exceptional conditions that occur infre-
quently, is now being used increasingly often to handle conditions
that are neither exceptional nor infrequent. One example is the use
of interrupts to perform memory management—e.g., to handle
translation lookaside buffer (TLB) misses in today’s microproces-
sors. Because the frequency of TLB misses tends to increase with
memory footprint, there is pressure on the precise interrupt mech-
anism to become more lightweight. When modern out-of-order
processors handle interrupts precisely, they typically begin by
flushing the pipeline. Doing so makes the CPU available to exe-
cute handler instructions, but it wastes potentially hundreds of
cycles of execution time. However, if the handler code is small, it
could potentially fit in the reorder buffer along with the user-level
code already there. This essentially in-lines the interrupt-handler
code. One good example of where this would be both possible and
useful is in the TLB-miss handler in a software-managed TLB
implementation. The benefits of doing so are two-fold: (1) the
instructions that would otherwise be flushed from the pipe need
not be re-fetched and re-executed; and (2) any instructions that
are independent of the exceptional instruction can continue to exe-
cute in parallel with the handler code. In effect, doing so provides
us with lockup-free TLBs. We simulate a lockup-free data-TLB
facility on a processor model with a 4-way out-of-order core remi-
niscent of the Alpha 21264. We find that, by using lockup-free
TLBs, one can get the performance of a fully associative TLB with
a lockup-free TLB of one-fourth the size.

1 INTRODUCTION

1.1 The Problem

Precise interrupts in modern processors are both frequent and
expensive and are rapidly becoming even more so [17, 11, 18, 25].
One reason for their rising frequency is that the general interrupt
mechanism, originally designed to handle the occasional excep-
tional condition, is now used increasingly often to support normal
(or, at least, relatively frequent) processing events such as TLB
misses in a software-managed TLB [16, 13, 12] and other mem-
ory-management related tasks [2]. If we look at TLB misses alone,
we find that interrupts are common occurrences. For example,
Anderson, et al. [1] show TLB miss handlers to be among the most
commonly executed OS primitives; Huck and Hays [10] show that
TLB miss handling can account for more than 40% of total run
time; and Rosenblum, et al. [18] show that TLB miss handling can
account for more than 80% of the kernel’s computation time.
Recent studies show that TLB-related precise interrupts occur
once every 100–1000 user instructions on all ranges of code, from
SPEC to databases and engineering workloads [5, 18].

Besides their increasing frequency, interrupts are also becoming
more expensive; this is because of their implementation. Out-of-

order cores typically handle precise interrupts much in the same
vein as register-file update: i.e., at commit time [17, 21, 25, 15].
When an exception is detected, the fact is noted in the instruction’s
reorder buffer entry1. The exception is not usually handled imme-
diately; rather, the processor waits until the instruction in question
is about to commit before handling the exception, because doing
so ensures that exceptions are handled in program order and that
they are not handled speculatively [20]. If the instruction is
already at the head of the ROB when the exception is detected, as
in late memory traps [17], then the hardware can handle the excep-
tion immediately. Exception handling then proceeds through the
following phases:

1. The ROB is flushed; the exceptional PC is saved; the PC is
redirected to the appropriate handler

2. The exception is handled, typically with privileges enabled

3. If appropriate, control is returned to the application via a jump
to the exceptional PC

In this model, there are two primary sources of application-level
performance loss: (1) while the exception is being handled, there
is no user code in the pipe, and thus no user code executes—the
application stalls for the duration of the handler; (2) after the han-
dler returns control to the application, all of the flushed instruc-
tions are re-fetched and re-executed, duplicating work that has
already been done. The fact that there may be many cycles
between the point that the exception is detected and the moment
that the exception is acted upon is covered by (2): as the time it
takes to detect an exception increases, so does the number of
instructions that will be re-fetched and re-executed [17]. Clearly,
the overhead of taking an interrupt in a modern processor core
scales with the size of the reorder buffer, and the current trend is
towards increasingly large ROB sizes [8].

1.2 A Novel Solution

If we look at the two sources of performance loss (user code stalls
during handler; many instructions are fetched and executed twice),
we see that they are both due to the fact that the ROB is flushed at
the time the PC is redirected to the interrupt handler. If we could
avoid flushing the pipeline, we could eliminate both sources of
performance loss. This has been pointed out before, but the sug-
gested solutions have typically been to save the internal state of
the entire pipeline and restore it upon completion of the handler.

In-Line Interrupt Handling for Software-Managed TLBs

Aamer Jaleel and Bruce Jacob

Electrical & Computer Engineering
University of Maryland at College Park

{ajaleel,blj}@eng.umd.edu

1. Exceptional events wreak havoc in pipelined processors with out-of-
order execution; one must ensure that the state of the processor (register
file, caches, main memory) is modified in the sequential instruction
order so that one can easily determine what has finished and what has
not. Such support typically requires a reorder buffer (ROB) or a ROB-
like structure [20, 21]. Following current conventions (e.g. [3, 4, 19, 6]),
we will call all such structures “reorder buffers” even if this terminol-
ogy is not always technically correct.

For example, this is done in the Cyber 200 for virtual-memory
interrupts, and Moudgill & Vassiliadis briefly discuss its overhead
and portability problems [15]. Such a mechanism would be
extremely expensive in modern out-of-order cores, however;
Walker & Cragon briefly discuss an extended shadow registers
implementation that holds the state of every register, both archi-
tected and internal, including pipeline registers, etc. and note that
no ILP machine currently attempts this [25].

We are interested instead in using existing out-of-order hard-
ware to handle interrupts both precisely and inexpensively. Look-
ing at existing implementations, we begin by questioning why the
pipeline is flushed at all—at first glance, it might be to ensure
proper execution with regard to privileges. However, Henry has
discussed an elegant method to allow privileged and non-privi-
leged instructions to co-exist in a pipeline [9]; with a single bit per
ROB entry indicating the privilege level of the instruction, user
instructions could execute in parallel with the handler instructions.

If privilege level is not a problem, what requires the pipe flush?
Only space: user instructions in the ROB cannot commit, as they
are held up by the exceptional instruction at the head. Therefore, if
the handler requires more ROB entries than are free, the machine
would deadlock were the processor core to simply redirect the PC
without flushing the pipe. However, in those cases where the entire
handler could fit in the ROB in addition to the user instructions
that are already there, the processor core could avoid flushing the
ROB and at the same time also avoid such deadlock problems.

Our solution to the interrupt problem, then, is simple: if at the
time of redirecting the PC to the interrupt handler there are enough
unused slots in the ROB, we in-line the interrupt handler code
without flushing the pipeline. If there are not sufficient empty
ROB slots, we handle the interrupt as normal. If the architecture
uses reservation stations in addition to a ROB [7, 26] (an imple-
mentation choice that reduces the number of result-bus drops), we
also have to ensure enough reservation stations for the handler,
otherwise handle interrupts as normal. We call this scheme a non-
speculative in-line interrupt-handling facility because the hard-
ware knows the length of the handler a priori. Speculative in-lin-
ing is also possible, as discussed in our future work section.

Though the mechanism is applicable to all types of interrupts
(with relatively short handlers), we focus on only one interrupt in
this paper—that used by a software-managed TLB to invoke the
first-level TLB-miss handler. We do this for several reasons:

1. As mentioned previously, TLB-miss handlers are invoked very
frequently (once per 100-1000 user instructions)

2. The first-level TLB-miss handlers tend to be short (on the
order of ten instructions) [16, 12]

3. These handlers also tend to have deterministic length (i.e., they
tend to be straight-line code—no branches)

This will give us the flexibility of software-managed TLBs with-
out the performance impact of taking a precise interrupt on every
TLB miss. In effect, this gives us lockup-free TLBs. Note that
hardware-managed TLBs have been non-blocking for some time:
e.g., a TLB-miss in the Pentium-III pipeline does not stall the
pipeline—only the exceptional instruction and its dependents stall
[24]. Our proposed scheme emulates the same behavior when
there is sufficient space in the ROB. The scheme thus enables soft-
ware-managed TLBs to reach the same performance as non-block-
ing hardware-managed TLBs without sacrificing flexibility [11].

1.3 Results

We evaluated the mechanism on a processor model of an out-of-
order core with specs similar to the Alpha 21264 (4-way out-of-

order, 150 physical registers, up to 80 instructions in flight, etc.).
No modifications are required of the instruction-set; this could be
implemented on existing systems transparently—i.e., without hav-
ing to rewrite any of the operating system.

The scheme cuts the TLB-miss overhead by 10–40%; the han-
dler still must be executed, and the PTE load often causes a cache
miss. When applications generate TLB misses frequently, this
reduction in overhead amounts to a substantial performance sav-
ings. We model a lockup-free data-TLB facility; instruction TLBs
do not benefit from the mechanism because, in most architectures,
by the time an instruction-TLB miss is handled, the ROB is
already empty. We find that lockup-free TLBs enable a system to
reach the performance of a traditional fully associative TLB with a
lockup-free TLB of roughly one-fourth the size.

2 BACKGROUND

2.1 Reorder Buffers and Precise Interrupts

Most contemporary pipelines allow instructions to execute out of
program order, thereby taking advantage of idle hardware and fin-
ishing earlier than they otherwise would have—thus increasing
overall performance. To provide precise interrupts in such an envi-
ronment typically requires a reorder buffer (ROB) or a ROB-like
structure [20, 21]. The reorder buffer queues up partially-com-
pleted instructions so that they may be retired in-order, thus pro-
viding the illusion that all instructions are executed in sequential
order—this simplifies the process of handling interrupts precisely.

There have been several influential papers on precise interrupts
and out-of-order execution. In particular, Tomasulo [22] gives a
hardware architecture for resolving inter-instruction dependencies
that occur through the register file, thereby allowing out-of-order
issue to the functional units; Smith & Pleszkun [20] describe sev-
eral mechanisms for handling precise interrupts in pipelines with
in-order issue but out-of-order completion, the reorder buffer
being one of these mechanisms; Sohi & Vajapeyam [21] combine
the previous two concepts into the register update unit (RUU), a
mechanism that supports both out-of-order instruction issue and
precise interrupts (as well as handling branch misspeculations).

2.2 The Persistence of Software-Managed TLBs

It has been known for quite some time that hardware-managed
TLBs outperform software-managed TLBs [11, 16]. Nonetheless,
most modern high-performance architectures use software-man-
aged TLBs (eg. MIPS, Alpha, SPARC, PA-RISC), not hardware-
managed TLBs (eg. IA-32, PowerPC), largely because of the
increased flexibility inherent in the software-managed design [12],
and because redesigning system software for a new architecture is
non-trivial. Simply redesigning an existing architecture to use a
completely different TLB is not a realistic option. A better option
is to determine how to make the existing design more efficient.

2.3 Related Work

Torng & Day discuss an imprecise-interrupt mechanism appropri-
ate for handling interrupts that are transparent to application pro-
gram semantics [23]. The system considers the contents of the
instruction window (i.e., the reorder buffer) part of the machine
state, and so this information is saved when handling an interrupt.
Upon exiting the handler, the instruction window contents are
restored, and the pipeline picks up from where it left off. Though
the scheme could be used for handling TLB-miss interrupts, it is
more likely to be used for higher-overhead interrupts. Frequent
events, like TLB misses, typically invoke low-overhead interrupts

that use registers reserved for the OS, so as to avoid the need to
save or restore any state whatsoever. Saving and restoring the
entire ROB would likely change TLB-refill from a several-dozen-
cycle operation to a several-hundred-cycle operation.

Qiu & Dubois recently presented a mechanism for handling
memory traps that occur late in the instruction lifetime [17]. They
propose a tagged store buffer and prefetch mechanism to hide
some of the latency that occurs when memory traps are caused by
events and structures distant from the CPU (for example, when the
TLB access is performed near to the memory system, rather than
early in the instruction-execution pipeline). Their mechanism is
orthogonal to ours and could be used to increase the performance
of our scheme, for example in multiprocessor systems.

Walker & Cragon [25] and Moudgill & Vassiliadis [15] present
surveys of the area; both discuss alternatives for implementation
of precise interrupts. Walker describes a taxonomy of possibilities,
and Moudgill looks at a number of imprecise mechanisms.

3 NON-SPECULATIVE IN-LINING OF HANDLERS

Figure 1 illustrates the non-speculative in-line interrupt-handling
mechanism. To represent our scheme, we are assuming a 16-entry
reorder buffer, a four-instruction interrupt handler, and the ability
to fetch, enqueue, and retire two instructions at a time. To simplify
the discussion, we assume all instruction state is held in the ROB
entry, as opposed to being spread out across ROB and reservation-
station entries.

In the first state [state (a)], the exceptional instruction has
reached the head of the reorder buffer and is the next instruction to
commit. Because it has caused an exception at some point during
its execution, it is flagged as exceptional (indicated by asterisks).
The hardware responds by checking to see if the handler would fit
into the available space—in this case, there are six empty slots in the
ROB. Assuming the handler is four instructions long, it would fit in
the available space. The hardware turns off user-instruction fetch,
sets the processor mode to INLINE, saves the head and tail piont-
ers into temporary registers and sets the head and tail pointers to
four entries before the current head, as shown in state (b). The pro-
cessor now begins fetching the first two handler instructions.
These have been enqueued into the ROB at the tail pointer as
usual, shown in state (c). In state (d) the last of the handler instruc-
tions have been enqueued, the old tail pointer is restored, the hard-
ware then resumes fetching of user code as shown in state (e).

Eventually when the the last handler instruction has finished exe-
cution and has reached the retire stage, the processor can reset the
flag on the excepted instruction and retry the operation.

Note that, though the handler instructions have been fetched and
enqueued after the exceptional instruction at the head of the ROB,
the handler is nonetheless allowed to affect the state of that excep-
tional instruction (which logically precedes the handler, according
to its relative placement within the ROB). Though this may seem
to imply out-of-order instruction commit, it is current practice in
the design of modern high-performance processors. For example,
the Alpha’s TLB-write instructions modify the TLB state once
they have finished execution and not at instruction-commit time.
In many cases, this does not represent an inconsistency, as the state
modified by such handler instructions is typically transparent to
the application—for example, the TLB contents are merely a hint
for better address translation performance.

There are a few implementation issues concerning non-specula-
tive in-lining of interrupt handlers. They include the following:

1. The hardware knows the handler length. The hardware must
determine whether to handle an interrupt as usual (flush the
reorder buffer) or to in-line the handler code. Therefore the
hardware must have some idea how long the handler code is,
or at least must have an upper limit on how long the code
could be—for example, the hardware can assume that a
handler is 16 instructions long, and a handler that is shorter
than 16 instructions can fail to be in-lined occasionally, even
though there was enough room for it in the ROB.

2. There should be a privilege bit per ROB entry. As mentioned
earlier, handler in-lining allows the coexistence of user and
kernel instructions in the pipeline, each operating at a different
privilege level. The most elegant way to allow this without
creating security holes is to attach a privilege bit to each
instruction, rather than having a single mode bit that applies to
all instructions in the pipe [9].

3. Hardware needs to signal the exceptional instruction when the
handler is finished. For example, a TLB-miss handler must
perform the following functions in addition to refilling the
TLB: (1) undo any TLBMISS exceptions found in the
pipeline; and (2) return those instructions affected to a
previous state so that they re-access the TLB & cache. This
does not need a new instruction, nor does it require existing

Figure 1: Non-Speculative In-lining of handler code. The figure illustrates the in-lining of a 4-instruction handler, assuming that the hardware fetches and
enqueues two instructions at a time. The hardware stops fetching user-level instructions (light grey) and starts fetching handler instructions (dark grey) once the
exceptional instruction, identified by asterisks, reaches the head of the queue. When the processor finishes fetching the handler instructions, it can resume
fetching the user instructions. When the handler instruction updates the TLB, the processor can reset the flag of the excepted instruction and it can reaccess
the TLB.

ROB1

ROB2

ROB3

ROB4

ROB8

ROB9

*** ROB10

ROB11

HEAD

TAIL

ROB12

ROB13

ROB14

ROB15

ROB5

ROB6

ROB0

ROB7

HEAD

TAIL

ROB1

ROB2

ROB3

ROB4

ROB8

ROB9

*** ROB10

ROB11

ROB12

ROB13

ROB14

ROB15

ROB5

ROB6

ROB0

ROB7

ROB1

ROB2

ROB3

ROB4

ROB8

ROB9

*** ROB10

ROB11

ROB12

ROB13

ROB14

ROB15

ROB5

ROB6

ROB0

ROB7

ROB1

ROB2

ROB3

ROB4

ROB8

ROB9

*** ROB10

ROB11

ROB12

ROB13

ROB14

ROB15

ROB5

ROB6

ROB0

ROB7

TAIL

OLD HEAD

OLD TAIL

HEAD

TAIL

OLD HEAD

OLD TAIL

HEAD

HEAD

TAIL

ROB1

ROB2

ROB3

ROB4

ROB8

ROB9

ROB10

ROB11

ROB12

ROB13

ROB14

ROB15

ROB5

ROB6

ROB0

ROB7

(a) (b) (c) (d) (e)

code to be rewritten. The signal can be the update of TLB
state. The reason for resetting all instructions that have missed
the TLB is that several might be attempting to access the same
page—this would happen, for example, if an application
initializing a large array walks into a new page of data that is
not currently mapped in the TLB: every store would cause a
DTLB miss. Once the handler finishes, all these would hit the
TLB upon retry. Note that there is no harm in resetting
instructions that cause TLB misses due to access to different
pages, because these will simply cause another TLB-miss
exception when they access the TLBs on the second try.

4. After loading the handler, the “return from interrupt”
instruction must be killed, and fetching resumes at nextPC,
which is unrelated to exceptionalPC. When returning from an
interrupt handler, the “return from interrupt” instruction is
usually executed which jumps to the exceptional PC, and
disables privileges. However, the processor must NOP this
return from interrupt instruction, and resume fetching at some
completely unrelated location in the instruction stream at some
distance from the exceptional instruction. Therefore, we
require additional logic to ignore the exceptional PC and
instead store the PC of the next-to-fetch instruction at the time
of in-lining the handler code. The logic amounts to a MUX.

5. The hardware might need to know the handler’s register
requirements. If at the time the TLB miss is discovered, there
are user instructions waiting to be decoded and mapped to
physical registers, a deadlock situtation might occur if there
aren’t enough free physical registers available to map the user
instructions. To prevent this, the processor can do one of two
things: (a) handle the interrupt by the traditional method, or (b)
flush all instructions in the fetch and decode stage and set
nextPC (described above) to the earliest instruction in the map
pipeline stage. As mentioned, since most architectures reserve
a handful of registers for handlers to avoid the need to save and
restore user state, the handler will not stall at the mapping
stage. In architectures that do not rovide such registers, the
hardware will need to ensure adequate physical register
availablity before vectoring to the handler code. For our
simulations, we only simulated scheme (a).

6. In-lined handler instructions shouldn’t affect the state of user
registers. Since handler instructions are brought in after the
excepted instruction but commit before the excepted

instruction, we have to make sure that when they commit, they
don’t modify the state of those registers mapped to user
instructions. In the conventional method of register renaming,
an instruction receives the register mapping of the previous
instruction in the pipe. If this scheme is used to map the
handler instructions, then when they commit, they will
wrongly update and release user registers. To fix this, when
mapping the first handler instruction, the handler instruction
should receive a copy of the current committed register file
state rather than the register state of the previous instruction.
Additionally, when a user instruction is being mapped after the
handler is completely fetched, it should copy the register state
from a previous user instruction, whose location can be stored
in a temporary register. The logic here amounts to a MUX.

7. Branch mispredictions in user code should be handled
appropriately. If, while in INLINE mode, a user-level branch
instruction is found to have been mispredicted, the hardware
should overwrite nextPC (described above) with the correct
branch target. The handler instructions within the reorder
buffer are unaffected by the misprediction and won’t be
flushed (even though they came in logically after the branch).

The hardware design is simple, requiring beyond this a status bit
that identifies when the processor is handling interrupts in this
manner. Otherwise, the design of the processor is unmodified.

4 THE PERFORMANCE OF LOCKUP-FREE TLBs

4.1 Simulation Model

We model an out-of-order processor similar to the Alpha 21264. It
has 64K/64K 2-way L1 instruction and data caches, fully associa-
tive 16/32/64/128 entry instruction and data TLBs with an 8KB
page size. It can issue up to four instructions per cycle and can
hold 80 instructions in flight at any time. It has a 72-entry register
file (32 each for integer and floating point instructions, and 8 for
privileged handlers), 4 integer functional units, and 2 floating
point units. The model also provides 82 free renaming-registers,
32 reserved for integer instructions and 32 for floating point
instructions. The model doesn’t have any renaming registers
reserved for privileged handlers as they are a class of integer
instructions. Therefore, the hardware must know the handler’s reg-
ister needs as well as length in instructions. We chose this for two
reasons: (1) the design mirrors that of the 21264; and (2) the per-
formance results would be more conservative than otherwise.

Like the Alpha 21264 and MIPS R10000 [7, 26], our model
uses a reorder buffer as well as reservation stations attached to the
different functional units—in particular, the floating-point and
integer instructions are sent to different execution queues. There-
fore, both ROB space and execution-queue space must be suffi-
cient for the handler to be in-lined, and instruction-issue to the
execution queues stalls for user-level instructions during the han-
dler execution. The page table and TLB-miss handler are modeled
after the MIPS architecture [14, 12] for simplicity.

We model only the data-TLB as lockup-free. Most architectures
(including the 21264) handle I-TLB misses by pushing NOPs into
the ROB, and once the first NOP is at the head of the ROB, the
TLB miss is handled. This would receive no benefit from in-lining
the handler, because the ROB is already empty at this point.

4.2 Results

Our simulations show that the reorder buffer is often only 50%
full, and, when TLB misses occur, there is usually enough room to
in-line the interrupt handler. For example, in the range of TLB

Figure 2: Performance of benchmarks. The figure shows the execution
time (cycles-per-user-instruction) of a perfect TLB, 16/32/64/128-entry
lockup-free TLBs, and 16/32/64/128-entry software-managed TLBs.

RED BLACK JACOBI MATRIX MULT QUICKSORT

Benchmarks

0.00

0.50

1.00

1.50

2.00

2.50
C

yc
le

s
P

er
 I
ns

tr
u
ct

io
n
 (

C
P

I)
Ideal TLB
 16-Entry TLB (Lockup-Free)
 32-Entry TLB
 64-Entry TLB
128-Entry TLB
 16-Entry TLB (Traditional)
 32-Entry TLB
 64-Entry TLB
128-Entry TLB

sizes modeled, roughly 90% of the interrupts in quicksort can ben-
efit from in-lining, and 80% of the interrupts in matrix multiplica-
tion benefit. We find that, out of the instances when the handler
cannot be in-lined, it is usually due to insufficient physical regis-
ters available to map the instructions in the pipeline.

Figure 2 compares the performance of perfect TLBs, traditional
software-managed TLBs, and lockup-free TLBs. It shows the
lockup-free scheme reducing execution time by 5–25% for the
same-size TLB; alternatively, the lockup-free scheme achieves the
same performance as a traditional software-managed TLB with a
TLB one-half to one-eighth the size.

Figure 3 shows the cost per TLB miss for each benchmark. By
in-lining the interrupt handlers, one can reduce the cost of a TLB
miss by 10–40%. This difference represents the cost of flushing
the ROB and then re-fetching and re-executing those instructions
flushed. As expected, this overhead of flushing the pipeline is not
a constant value, but instead it depends on the contents of the ROB
at the time of handling the exception. This is shown in the fact that
there is such a wide difference in the amount of reduction seen in
the per-miss costs.

We also wanted to see if a correlation exists between an applica-
tion’s working-set size (as measured by its TLB miss rate) and the
benefit the application sees from using in-line interrupt handling.
In addition to running the benchmarks “out of the box,” we also
modified the code to obtain different working-set sizes, for exam-
ple by increasing the array sizes and data structure sizes. The
results are shown in Figure 4, which presents a scatter plot of TLB
miss rate to application speedup.

The figure shows a clear correlation between the two: the more
often that the TLB requires management, the more benefit one
sees from handling the interrupt in-line. This is a very encouraging
scenario: the applications that are likely to benefit from in-line
interrupt handling are those that need it the most.

5 CONCLUSIONS & FUTURE WORK

The general-purpose interrupt mechanism, which has long been
used to handle exceptional conditions that occur infrequently, is
being used increasingly often to handle conditions that are neither
exceptional nor infrequent. One example is the increased use of
the interrupt mechanism to perform memory management—to
handle TLB misses in today’s microprocessors. This is putting
pressure on the interrupt mechanism to become more lightweight.

We propose the use of in-line interrupt handling, which enables
such mechanisms as lockup-free TLBs. In such an implementa-
tion, the reorder buffer is not flushed on an interrupt unless there
are so many instructions in the buffer that the handler instructions
would not fit. This allows the user application to continue execut-
ing while an interrupt is being serviced. For a software-managed
TLB miss, this means that only those instructions stall that are
dependent on the instruction that misses the TLB. All other
instructions continue executing, and are only held up at commit
(by the instruction that missed the TLB).

Our simulations show that lockup-free TLBs cut TLB-miss han-
dling overhead by 10–40%, and a system with 32-entry lockup-
free TLBs has the same performance as a system with regular 128-
entry TLBs. This allows software-managed TLBs to reach the
same performance as hardware-managed TLBs, or to reduce the
TLB size (and thus energy consumption) at the same performance
level.

We are currently exploring two additional avenues: first is the
counterpart to the non-speculative in-lining of handler code. It is
possible to begin fetching the handler into the ROB without first
checking to see if there is enough room or resources. This requires
a check for deadlock, and the system responds by handling a tradi-
tional interrupt when deadlock is detected—flush the pipe and
resume at the handler. This allows support for variable-length
TLB-miss handlers, such as the Alpha’s. Second is a speculative
initiation of the handler before the exceptional instruction reaches
the head of the ROB, which can offer higher performance in cases
when the exceptional instruction is not discarded as a result of a
mispredicted branch or preceding exception. This could also be
used to implement lockup-free instruction TLBs.

REFERENCES

[1] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska.
“The interaction of architecture and operating system design.” In
Proc. Fourth Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’91), April 1991, pp.
108–120.

[2] A. W. Appel and K. Li. “Virtual memory primitives for user pro-
grams.” In Proc. Fourth Int’l Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’91), April
1991, pp. 96–107.

[3] B. Case. “AMD unveils first superscalar 29K core.” Microprocessor
Report, vol. 8, no. 14, October 1994.

Figure 3: Cost per TLB miss. This figure illustrates how many cycles
the application spent in TLB misses, on a per-miss basis.

RED BLACK JACOBI MATRIX MULT QUICKSORT

Benchmarks

0.00

20.00

40.00

60.00

80.00

100.00
C

os
ts

 P
e
r

T
L
B

 M
is

s
(C

yc
le

s)

 16-Entry TLB (Lockup-Free)
 32-Entry TLB
 64-Entry TLB
128-Entry TLB
 16-Entry TLB (Traditional)
 32-Entry TLB
 64-Entry TLB
128-Entry TLB

Figure 4: Speedup as a function of working-set size. Working-set
size is represented by TLB miss rate: the number of data-TLB misses per
access.

10-4 10-3 10-2 10-1
TLB miss rate

0

10

20

30

P
er

ce
nt

 S
p

ee
d

U
p

16 entry TLB
32 entry TLB
64 entry TLB
128 entry TLB

RED BLACK
JACOBI
MATRIX MULT
QUICKSORT

SYMBOLS

SHADINGS

[4] B. Case. “x86 has plenty of performance headroom.” Microprocessor
Report, vol. 8, no. 11, August 1994.

[5] Z. Cvetanovic and R. E. Kessler. “Performance analysis of the Alpha
21264-based Compaq ES40 system.” In Proc. 27th Annual Interna-
tional Symposium on Computer Architecture (ISCA’00), Vancouver
BC, June 2000, pp. 192–202.

[6] L. Gwennap. “Intel’s P6 uses decoupled superscalar design.” Micro-
processor Report, vol. 9, no. 2, February 1995.

[7] L. Gwennap. “Digital 21264 sets new standard.” Microprocessor Re-
port, vol. 10, no. 14, October 1996.

[8] D. Henry, B. Kuszmaul, G. Loh, and R. Sami. “Circuits for wide-
window superscalar processors.” In Proc. 27th Annual International
Symposium on Computer Architecture (ISCA’00), Vancouver BC,
June 2000, pp. 236–247.

[9] D. S. Henry. “Adding fast interrupts to superscalar processors.” Tech.
Rep. Memo-366, MIT Computation Structures Group, December
1994.

[10] J. Huck and J. Hays. “Architectural support for translation table man-
agement in large address space machines.” In Proc. 20th Annual In-
ternational Symposium on Computer Architecture (ISCA’93), May
1993, pp. 39–50.

[11] B. L. Jacob and T. N. Mudge. “A look at several memory-manage-
ment units, TLB-refill mechanisms, and page table organizations.” In
Proc. Eighth Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’98), San Jose CA, Oc-
tober 1998, pp. 295–306.

[12] B. L. Jacob and T. N. Mudge. “Virtual memory in contemporary mi-
croprocessors.” IEEE Micro, vol. 18, no. 4, pp. 60–75, July/August
1998.

[13] B. L. Jacob and T. N. Mudge. “Virtual memory: Issues of implemen-
tation.” IEEE Computer, vol. 31, no. 6, pp. 33–43, June 1998.

[14] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice-Hall, En-
glewood Cliffs NJ, 1992.

[15] M. Moudgill and S. Vassiliadis. “Precise interrupts.” IEEE Micro,
vol. 16, no. 1, pp. 58–67, February 1996.

[16] D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, and R. Brown.
“Design tradeoffs for software-managed TLBs.” In Proc. 20th Annual
International Symposium on Computer Architecture (ISCA’93), May
1993.

[17] X. Qiu and M. Dubois. “Tolerating late memory traps in ILP proces-
sors.” In Proc. 26th Annual International Symposium on Computer
Architecture (ISCA’99), Atlanta GA, May 1999, pp. 76–87.

[18] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta.
“The impact of architectural trends on operating system perfor-
mance.” In Proc. 15th ACM Symposium on Operating Systems Prin-
ciples (SOSP’95), December 1995.

[19] M. Slater. “AMD’s K5 designed to outrun Pentium.” Microprocessor
Report, vol. 8, no. 14, October 1994.

[20] J. E. Smith and A. R. Pleszkun. “Implementation of precise interrupts
in pipelined processors.” In Proc. 12th Annual International Sympo-
sium on Computer Architecture (ISCA’85), Boston MA, June 1985,
pp. 36–44.

[21] G. S. Sohi and S. Vajapeyam. “Instruction issue logic for high-perfor-
mance, interruptable pipelined processors.” In Proc. 14th Annual In-
ternational Symposium on Computer Architecture (ISCA’87), June
1987.

[22] R. M. Tomasulo. “An efficient algorithm for exploiting multiple
arithmetic units.” IBM Journal of Research and Development, vol. 11,
no. 1, pp. 25–33, 1967.

[23] H. C. Torng and M. Day. “Interrupt handling for out-of-order execu-
tion processors.” IEEE Transactions on Computers, vol. 42, no. 1, pp.
122–127, January 1993.

[24] M. Upton. Personal communication. 1997.

[25] W. Walker and H. G. Cragon. “Interrupt processing in concurrent
processors.” IEEE Computer, vol. 28, no. 6, June 1995.

[26] K. C. Yeager. “The MIPS R10000 superscalar microprocessor.”
IEEE Micro, vol. 16, no. 2, pp. 28–40, April 1996.

