

1

Synchronous DRAM Architectures, Organizations,
and Alternative Technologies

Prof. Bruce L. Jacob

Electrical & Computer Engineering Dept.
University of Maryland

College Park, MD 20742
http://www.ece.umd.edu/~blj/

December 10, 2002

1 DRAM TECHNOLOGY OVERVIEW

This section describes the structural organization of dynamic ran-
dom-access memories (DRAMs), their operation, and the evolution
of their design over time.

1.1 Basic Organization and Operation of a Conventional
DRAM

DRAM is the “computer memory” that you order through the mail
or purchase at Best Buy or CompUSA. It is what you put more of
into your computer as an upgrade to improve the computer’s perfor-
mance. DRAM appears in personal computers (PCs) in the form
shown in Figure 1—the figure shows a

memory module

, which is a
small computer board (“printed circuit board”) with a handful of
chips attached to it. The eight black rectangles on the pictured mod-
ule contain

DRAM chips

. Each DRAM chip contains one or more

memory

arrays

, rectangular grids of storage cells with each cell
holding one bit of data. Because the arrays are rectangular grids, it is
useful to think of them in terms associated with typical grid-like
structures—a good example of which is a Manhattan-like street lay-
out with avenues running north-south and streets running east-west.
When one wants to specify a rendezvous location in such a city, one
simply designates the intersection of a street and an avenue, and the
location is specified without ambiguity. Memory arrays are orga-
nized just like this, except whereas Manhattan is organized into

streets

 and

avenues

, memory arrays are organized into

rows

 and

col-
umns

. A DRAM chip’s memory array with the rows and columns
indicated is pictured in Figure 2. By identifying the intersection of a
row and a column, a computer’s central processing unit (CPU) can

access an individual storage cell inside a DRAM chip so as to read
or write the data held there. This is accomplished by sending both a

row address

 and a

column address

 to the DRAM.
One way to characterize DRAMs is by the number of memory

arrays inside them. Memory arrays within a memory chip can work
in several different ways: they can act in unison, they can act com-
pletely independently, or they can act in a manner that is somewhere
in between the other two. If the memory arrays are designed to act in
unison, they operate as a unit, and the memory chip typically trans-
mits or receives a number of bits equal to the number or arrays each
time the memory controller accesses the DRAM. For example, in a
simple organization, a x4 DRAM (pronounced “by four”) indicates
that the DRAM has at least four memory arrays and that a column
width is 4 bits (each column read or write transmits 4 bits of data).
Likewise, a x8 DRAM indicates that the DRAM has at least eight
memory arrays and that a column width is 8 bits. Thus, in this x4
DRAM part, four arrays each read one data bit in unison, and the
part sends out four bits of data each time the memory controller
makes a column read request. If, on the other hand, the memory
arrays inside the chip are completely independent, then they are typ-
ically referred to as “banks” and not “arrays.” A memory controller
can initialize

1

 one bank while preparing to read data from another
and even writing data to a third. Note that the two are not mutually
exclusive: a DRAM can contain, for example, eight arrays organized
into two x4 banks. A third mode of operation is the

interleaving

 of
independent banks; I will explain the concept of interleaving more

Figure 1: A Memory Module
A memory module is a computer board (“printed circuit board”) with a handful of DRAM chips and associated circuitry attached to it. The picture is
slightly larger than life-size.

1. To “initialize” a bank is to make it ready for an upcoming read or write
operation by

precharging

 the columns in that bank to a specific voltage
level.

2

fully in a later section on alternatives to dual edge clock technology,
but for the present, using interleaving allows a x4 part to achieve the
data bandwidth of a x8 part—that is, to double the data rate of the
part (or triple, or quadruple, depending on the number of banks
being interleaved). Interleaving multiple memory banks has been a
popular method used to achieve fast memory busses using slow
devices. The technique goes back at least to the mid-1960's [Ander-
son 1967; Thornton 1970].

The term “DRAM” stands for

dynamic random access memory

. It
is characterized as “dynamic” primarily because the values held in
the memory array’s storage cells are represented by small electric
charges that slowly leak out of the circuit over time—thus, the value
held in a storage cell changes over time and is not static but
dynamic. Because the electrical values represented in the storage
cells dissipate over time, the values in the storage cells must be peri-
odically

refreshed

 to ensure valid data.
Figure 3 illustrates the DRAM’s place in a typical PC. An individ-

ual DRAM device typically connects indirectly to the CPU through
the north-bridge chipset. For purposes of this report, the primary
component of the north-bridge chipset of interest is the memory
controller, which serves as a liaison between the CPU and memory.

In the 1980’s and 1990’s, the conventional DRAM interface
started to become a performance bottleneck in high-performance as
well as desktop systems. The improvement in the speed and perfor-
mance of CPUs was significantly outpacing the improvement in
speed and performance of DRAM chips. As a consequence, the
DRAM interface began to evolve, and a number of “revolutionary”
proposals [Przybylski 1996] were made as well. In most cases, what
was considered evolutionary or revolutionary was the proposed

interface

, or the mechanism by which the CPU accesses the DRAM.
The DRAM core (i.e., what is pictured in Figure 2) remains essen-
tially unchanged.

Every DRAM chip is equipped with

pins

 (i.e., very short wires),
each one of which connects the DRAM to one of many possible bus-
ses. Each bus is a group of wires that carry electrical signals; busses
connect the CPU, memory controller, and DRAM chips. Pins are
typically classified by the busses to which they connect; examples of
different types of DRAM pins include address pins, data input and

output pins, one or more clock input pins, and control pins (e.g.,
CAS and RAS input strobes

2

, write-enable, chip-select, etc.).
The busses in a JEDEC-style organization are classified by their

function and organization into data, address, control, and chip-select
busses. There is a relatively wide data bus that transmits data to and
from the DRAMs. This bus, in modern PC systems, is often 64 bits
wide (64 bits equals eight bytes), and it can be much wider in high-
performance systems. There is a dedicated address bus that carries
row and column addresses to the DRAMs and has a width that
grows with the physical storage on a DRAM device (typical widths
today are about fifteen bits). A control bus is comprised of the row
and column strobes, output enable, clock, clock enable, and other
related signals. These signals are similar to the address bus signals in
that they all connect from the memory controller to every DRAM in
the system. Lastly, there is a chip-select network that connects from
the memory controller to every DRAM in a

rank

 (a separately
addressable set of DRAMs). For example, a typical memory module
(often called a “DIMM” for

dual in-line memory module

) can con-
tain two ranks of DRAM devices. Thus, for every DIMM in the sys-
tem there can be two separate chip-select networks, and thus the size
of the chip-select “bus” scales with the maximum amount of physi-
cal memory in the system.

This last bus, the chip-select bus, is essential in a JEDEC-style
memory system, as it enables the intended recipient of a memory
request. A value is asserted on the chip-select bus at the time of a
request (e.g., read or write). The chip-select bus contains a separate
wire for every rank of DRAM in the system. The chip-select signal
thus passes over a wire unique to each small set of DRAMs and
enables or disables the DRAMs in that rank so that they, respec-
tively, either handle the request currently on the bus or ignore the
request currently on the bus. Thus, only the DRAMs to which the

Memory
Array

R
ow

 D
ec

od
er

DRAM

Storage Cell

a transistor

Data In/Out
Buffers

Sense Amps

Column Decoder

a capacitor

Figure 2: Basic Organization of DRAM Internals
The DRAM memory array is a grid of storage cells, where one bit of data is stored at each intersection of a row and a column.

...
 r

o
w

s
...

... columns ...

2. A “strobe” is a signal that indicates to the recipient that another signal—
e.g., data or command—is present and valid. An analogy would be to
hold up one’s hand while talking and lower it while silent. Another per-
son can tell if you are talking (versus mumbling to yourself or talking in
your sleep) by the status of your raised/lowered hand.

3

request is directed handle the request. Even though all DRAMs in
the system are connected to the same address and control busses and
could, in theory, all respond to the same request at the same time, the
chip-select bus prevents this from happening.

Figure 4 focuses attention on the CPU, memory controller, and
DRAM device and illustrates the steps involved in a DRAM request.
The CPU connects to the memory controller through some form of

network or bus system. The memory controller connects to the
DRAM through some (other) form of network or bus system. The
memory controller acts as a liaison between the CPU and DRAM, so
that the CPU does not need to know the details of the DRAM's oper-
ation. The CPU presents requests to the memory controller that the
memory controller then satisfies. The CPU connects to potentially
many memory controllers at once; alternatively, many CPUs could

DRAM
ArrayDRAM

ArrayDRAM
Array

Secondary
Cache

CPU

Figure 3: Typical PC Organization
The DRAM subsystem is one part of a relatively complex whole. This figure illustrates a 2-way multiprocessor, with each processor having its own
dedicated secondary cache. The parts most relevant to this report are shaded in darker grey: the CPU, the memory controller, and the individual
DRAMs.

Secondary
Cache

Memory
Controller

Memory modules

CPU

Graphics
Co-Processor

Primary
Cache

I/O
Controller

Hard
Drive/s

Network
Interface

SCSI
Controller

Backside bus

Frontside bus
DRAM busAGP bus

PCI bus

Other Low-BW
I/O Devices

Keyboard

Mouse

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

SCSI bus
North Bridge

Chipset

South Bridge
Chipset

A

B
C

DRAM

D1

D2

E

CPU Mem
Controller

A: Transaction request sent to Memory Controller
B: Transaction converted to Command Sequences
C: Command/s sent to DRAM
D1: RAS — First command activates row (data driven into sense amps)
D2: CAS — Later command/s send data from sense amps to memory controller
E: Transaction sent back to CPU

Figure 4: System Organization and the Steps Involved in a DRAM Read Operation
The CPU connects to the memory controller through some form of network or bus system, and the memory controller connects to the DRAM through
another, usually different, network or bus system.

4

be connected to the same memory controller. The simplest case, a
uniprocessor system, is illustrated in the figure.

As mentioned, Figure 4 illustrates the steps of a typical DRAM
read operation. The CPU sends a request (comprising a data address
and a

read

 command) over the bus that connects it to the memory
controller. The memory controller is responsible for handling the
RAS and CAS signals that, respectively, instruct the DRAM to

acti-
vate

 or

open

 a row and then to

read

 a column within the activated
row. The row activation and column read for a single DRAM device
are shown in Figure 5.

The first step in handling a read request is for the memory control-
ler to decompose the provided data address into components that
identify the appropriate rank within the memory system, the bank
within that rank

3

, and the row and column inside the identified bank.
The components identifying the row and column are called the

row
address

 and the

column address

. The bank identifier is typically one
or more address bits. The rank number ends up causing a chip-select
signal to be sent out over a single one of the separate chip-select
lines.

Assuming the appropriate bank has been precharged, the second
step is to activate the appropriate row inside the identified rank and
bank, by setting the chip-select signal to activate the set of DRAMs
comprising desired bank, sending the row address and bank identi-
fier over the address bus, and signaling the DRAM’s RAS pin (

row

address strobe

). This tells the DRAM to send an entire row of data
(thousands of bits) into the DRAM’s sense amplifiers (circuits that
detect and amplify the tiny logic signals represented by the electric
charges in the row’s storage cells).

The third step is to read the column bits, a subset of the data
within the row, by setting the chip-select signal to activate the set of
DRAMs comprising the desired bank

4

, sending the column address
and bank identifier over the address bus, and signaling the DRAM’s
CAS pin (

column address strobe

). This causes only a few select bits

5

in the sense amplifiers to be connected to the output drivers, where
they will be driven onto the data bus and eventually will travel back
to the CPU.

Most computer systems have a special signal that acts much like a
heartbeat and is called the

clock

. A clock transmits a continuous sig-
nal with regular intervals of “high” and “low” values. It is usually
illustrated as a square wave or semi-square wave with each period
identical to the next, as shown in Figure 6. The upward portion of the
square wave is called the

positive

or

rising edge

 of the clock, and the
downward portion of the square wave is called the

negative

or

falling
edge

 of the clock. The primary clock in a computer system is called
the system clock or global clock, and it typically resides on the
motherboard (the printed circuit board that contains the CPU and
memory bus). The system clock drives the CPU and memory con-

3. The number of banks within a rank is usually equal to the number of
banks within a single DRAM device. In the case of SDRAM, for exam-
ple, there are two banks in a DRAM device, and so a bank identifier is a
single bit sent over the address bus at the time of a command.

Figure 5: The Multi-Phase DRAM-Access Protocol
The row access drives a DRAM row into the sense amps. The column address drives a subset of the DRAM row onto the bus (e.g., 4 bits).

ROW ADDRESS

COL ADDRESS

DRAM Array/s

Column MUX

Sense Amps

R
o

w
 D

ec
o

d
er

One DRAM Row

One Column

4. This step is necessary for SDRAMs; it is not performed for older, asyn-
chronous DRAMs (it is subsumed by the earlier chip-select accompany-
ing RAS).

5. One bit in a “x1” DRAM, two bits in a “x2” DRAM, four bits in a “x4”
DRAM, etc.

Figure 6: Example Clock Signals
Clocks are typically shown as square waves (bottom) or sort-of square waves (top). They repeat ad infinitum and the repeating shape is called a
clock cycle. The two clocks pictured above have the same frequency—the number of cycles in a given time period.

Positive or Negative or

TIME

One Cycle

...

...
Rising Edges Falling Edges

5

troller and many of the associated peripheral devices directly. If the
clock drives the DRAMs directly, the DRAMs are called

synchro-
nous DRAMs

. If the clock does not drive the DRAMs directly, the
DRAMs are called

asynchronous DRAMs

. In a synchronous
DRAM, operative steps internal to the DRAM happen in time with
one or more edges of this clock. In an asynchronous DRAM, opera-
tive steps internal to the DRAM happen when the memory controller
commands the DRAM to act, and those commands typically happen
in time with one or more edges of the system clock.

1.2 Evolution of DRAM Technology

Since DRAM’s inception, there have been numerous changes to the
design. Figure 7 shows the evolution of the basic DRAM architec-
ture from

clocked

 to

asynchronous

 to

fast page mode

 (FPM) to

extended data-out

 (EDO) to

burst-mode EDO

 (BEDO) to

synchro-
nous

 (SDRAM). The changes have largely been structural in nature,
have been relatively minor in terms of their implementation cost and
have increased DRAM throughput significantly.

Compared to the asynchronous DRAM, FPM simply allows the
row to remain open across multiple CAS commands, requiring very
little additional circuitry. To this, EDO changes the output drivers to
become output latches so that they hold the data valid on the bus for
a longer period of time. To this, BEDO adds an internal counter that
drives the address latch, so that the memory controller need not sup-
ply a new address to the DRAM on every CAS command if the
desired address is simply one-off from the previous CAS command.
Thus, in BEDO, the DRAM’s column-select circuitry is driven from
an internally generated signal, not an externally generated signal: the
source of the control signal is close to the circuitry that it controls in
space and therefore time, and this makes the timing of the circuit’s
activation more precise. Lastly, SDRAM takes this perspective one
step further and drives all internal circuitry (row select, column
select, data read-out) by a clock, as opposed to the RAS and CAS
strobes. The following paragraphs describe this evolution in more
detail.

1.2.1 Clocked DRAM

The earliest DRAMs (1960’s to mid 1970’s, before
standardization) were often clocked [Rhoden 2002, Sussman
2002, Padgett 1974]; DRAM commands were driven by a
periodic clock signal. Figure 7 shows a stylized DRAM in terms
of the memory array, the sense amplifiers, and the column
multiplexer.

1.2.2 Asynchronous DRAM

In the mid-1970’s, DRAMs moved to the asynchronous design
with which most people are familiar. These DRAMs, like the

clocked versions before them, require that every single access go
through all of the steps described above. Even if the CPU wants to
request the same data row that it previously requested, the entire
process (

row activation

 followed by

column read/write

) must be
repeated. Figure 8 illustrates the timing for the asynchronous
DRAM.

1.2.3 Fast Page Mode DRAM (FPM DRAM)

Fast Page Mode is a version of asynchronous DRAM that permits
the selected row to be held constant in the sense amplifiers over
multiple column requests. The data from more than one column in
the row can be accessed by having the memory controller send
several column requests over the bus to the DRAM chip, each
accompanied by a separate CAS pulse instructing the DRAM to
read or write the corresponding column. Fast page mode improves
performance by taking advantage of the fact the CPU in a
computer system is statistically likely to want to access more than
one bit from the same row. Fast page mode, therefore, improves
performance by saving the time it would take to re-activate the
row every time the CPU wants multiple data bits within the same
row. Figure 9 gives the timing for FPM reads.

1.2.4 Extended Data Out DRAM (EDO DRAM)

The next generation of asynchronous DRAM to be produced was
EDO DRAM. Extended Data Out DRAM adds a latch between
the sense amplifiers and the output pins of the DRAM. This latch
allows the data on the output drivers of the DRAM circuit to
remain valid longer into the next clock phase (thus the name
“extended data-out”). By permitting the memory array to begin
precharging sooner, the addition of a latch allowed EDO DRAM
to operate faster than FPM DRAM. EDO enabled the CPU to
access memory at least 10 to 15% faster than with FPM [Kingston
2000, Cuppu et al. 1999, Cuppu et al. 2001]. Figure 10 gives the
timing for an EDO read.

Asynchronous
FPM EDODRAM SDRAMBEDO

Figure 7: Evolution of the DRAM Architecture
Each step along DRAM’s evolution has been incremental. Original designs were clocked; in the mid-1970’s the clock disappeared; fast page mode
(FPM) kept the sense amplifiers active; extended data-out (EDO) added a latch; burst EDO (BEDO) added an internal counter; SDRAM came full
circle by reinstating a clock signal.

Clocked
DRAM

Figure 8: Read Timing for Conventional DRAM

Row
Address

Column
Address

Valid
Dataout

RAS

CAS

Address

DQ

Row
Address

Column
Address

Valid
Dataout

Data Transfer

Column Read

Row Activation

6

1.2.5 Burst-Mode EDO DRAM (BEDO DRAM)

Although Burst EDO DRAM never reached the volume of
production that EDO and SDRAM did, it was positioned to be the
next generation DRAM after EDO [Micron 1995]. Burst EDO
builds on EDO DRAM by adding the concept of “bursting”
contiguous blocks of data from an activated row each time a new
column address is sent to the DRAM chip. The memory controller
toggles the CAS strobe by sending alternating high and low
signals. With each toggle of the CAS strobe, the DRAM chip
sends the next sequential bit of data onto the bus. By eliminating
the need to send successive column addresses over the bus to
drive a burst of data in response to each CPU request, Burst EDO
eliminates a significant amount of timing uncertainty between
successive addresses, thereby increasing the rate at which data
can be read from the DRAM. In practice, BEDO reduced the
minimum cycle time for driving the output bus by roughly 30%
compared to EDO DRAM [Prince 2000], thereby increasing
bandwidth proportionally. Figure 11 gives the timing for a Burst
EDO read.

1.2.6 IBM’s High-Speed Toggle Mode DRAM

IBM’s High-Speed Toggle Mode (“toggle mode”) is a high-speed
DRAM interface designed and fabricated in the late 1980’s and
presented at the International Solid-State Circuits Conference in
February 1990 [Kalter 1990a]. In September 1990, IBM
presented toggle mode to JEDEC as an option for the next-
generation DRAM architecture [minutes of JC-42.3 meeting 55,
Jedec 13674–13676]. Toggle mode transmits data to and from a
DRAM on both edges of a high-speed data strobe rather than
transferring data on a single edge of the strobe. The strobe was
very high speed for its day: Kalter reports a 10ns data cycle
time—an effective 100MHz data rate—in 1990 [Kalter 1990b].
The term “toggle” is probably derived from its implementation: to
obtain twice the normal data rate

6

, one would toggle a signal pin
which would cause the DRAM to toggle back and forth between
two different (interleaved) output buffers, each of which would be
pumping data out at half the speed of the strobe [Kalter 1990b].
As proposed to JEDEC, it offered burst lengths of 4 or 8 bits of
data per memory access.

1.2.7 Synchronous DRAM (SDRAM)

Conventional, FPM, and EDO DRAM are controlled

asynchronously

 by the memory controller; therefore, in theory the
memory latency and data toggle rate can be some fractional
number of CPU clock cycles

7

. More importantly, what makes the
DRAM

asynchronous

 is that the memory controller’s RAS and
CAS signals directly control latches internal to the DRAM, and
those signals can arrive at the DRAM’s pins at any time. An
alternative is to make the DRAM interface

synchronous

 such that
requests can only arrive at regular intervals. This allows the
latches internal to the DRAM to be controlled by an internal clock
signal. The primary benefit of SDRAM, or synchronizing DRAM
operation with the CPU clock, is that it improves the
predictability of event timing—put simply, events such as the
arrival of commands or the driving of output data either happen in
time with the clock, or they do not happen. A timing diagram for
synchronous DRAM is shown in Figure 12. Like BEDO DRAMs,
SDRAMs support the concept of a burst mode; SDRAM devices
have a programmable register that holds a burst length. The
DRAM uses this to determine how many columns to output over
successive cycles—SDRAM may therefore return many bytes
over several cycles per request. One advantage of this is the

Row
Address

Column
Address

Valid
Dataout

Column
Address

Column
Address

Valid
Dataout

Valid
Dataout

RAS

CAS

Address

DQ

Data Transfer

Column Read

Transfer Overlap

Row Activation

Figure 9: FPM Read Timing
Fast page mode allows the DRAM controller to hold a row constant and
receive multiple columns in rapid succession.

Row
Address

Column
Address

Valid
Dataout

RAS

CAS

Address

DQ

Column
Address

Column
Address

Valid
Dataout

Valid
Dataout

Data Transfer

Column Read

Transfer Overlap

Row Activation

Figure 10: EDO Read Timing
The output latch in EDO DRAM allows more overlap between column
access and data transfer than in FPM.

Figure 11: Burst EDO Read Timing
By driving the column-address latch from an internal counter rather than an
external signal, the minimum cycle time for driving the output bus was
reduced by roughly 30% over EDO.

Row
Address

Column
Address

RAS

CAS

Address

DQ

Data Transfer

Column Read

Transfer Overlap

Row Activation

Valid
Data

Valid
Data

Valid
Data

Valid
Data

6. The term “normal” implies the data cycling at half the data-strobe rate.

7. In practice, this is not the case, as the memory controller and DRAM
subsystem are driven by the system clock, which typically has a period
that is an integral multiple of the CPU’s clock.

Address

DQ

Clock

Row
Addr

Col
Addr

Valid
Data

Valid
Data

Valid
Data

Valid
Data

RAS

CAS

Data Transfer

Column Read

Transfer Overlap

Row Activation

Figure 12: SDR SDRAM Read Operation Clock Diagram (CAS-2)

7

elimination of the timing signals (i.e., toggling CAS) for each
successive burst, which reduces the command bandwidth used.
The underlying architecture of the SDRAM core is the same as in
a conventional DRAM.

1.3 Contemporary DRAM Architectures

Since the appearance of SDRAM in the mid-1990’s, there has been a
large profusion of novel DRAM architectures proposed in an appar-
ent attempt by DRAM manufacturers to make DRAM less of a com-
modity [Dipert 2000]. One reason for the profusion of competing
designs is that we have apparently run out of the same sort of “free”
ideas that drove earlier DRAM evolution. Since Burst EDO, there
has been no architecture proposed that provides a 30% performance
advantage at near-zero cost; all proposals have been relatively
expensive. As Dipert suggests, there is no clear heads-above-the-rest
winer yet because many schemes seem to lie along a linear relation-
ship between additional cost of implementation and realized perfor-
mance gain. Over time, the market will most likely decide the
winner; those DRAM proposals that provide sub-linear performance
gains relative to their implementation cost will be relegated to zero
or near-zero market share.

1.3.1 Double Data Rate SDRAM (DDR SDRAM)

Double data rate (DDR) SDRAM is the modern equivalent of
IBM’s High-Speed Toggle Mode. DDR doubles the data
bandwidth available from single data rate SDRAM by
transferring data at both edges of the clock (i.e., both the rising
edge and the falling edge), much like toggle mode’s dual-edged
clocking scheme. DDR DRAM are very similar to single data rate
SDRAM in all other characteristics. They use the same signalling
technology, the same interface specification, and the same pinouts
on the DIMM carriers. However, DDR-DRAM’s internal
transfers from and to the DRAM array respectively read and write
twice the number of bits as SDRAM. Figure 15 gives a timing
diagram for a CAS-2 read operation.

1.3.2 Rambus DRAM (RDRAM, Concurrent RDRAM, and
Direct RDRAM)

Rambus DRAM (RDRAM) is very different from traditional
main memory. It uses a bus that is significantly narrower than the
traditional bus, and, at least in its initial incarnation, it does not
use dedicated address, control, data, and chip-select portions of
the bus—instead, the bus is fully multiplexed, which means that
address, control, data, and chip-select information all travel over

the same set of electrical wires but at different times. The bus is
one byte wide, runs at 250 Mhz, and transfers data on both clock
edges to achieve a theoretical peak bandwidth of 500 Mbytes/s.
Transactions occur on the bus using a split request/response
protocol. Because the bus is multiplexed between address and
data, only one transaction may use the bus during any 4 clock
cycle period, referred to as an

octcycle

. The protocol uses packet
transactions; first an address/control packet is driven, then the
data. Different transactions can require different numbers of
octcycles, depending on the transaction type, location of the data
within the device, number of devices on the channel, etc.

Because of the bus’s design—being a single bus and not
comprised of separate segments dedicated to separate functions—
only one transaction can use the bus during any given cycle; this
limits the bus’s potential

concurrency

, its ability to do multiple
things simultaneously. Due to this limitation, the original
RDRAM design was not considered well suited to the PC main-
memory market [Przybylski 1996], and the interface was
redesigned in the mid-1990’s to support more concurrency.
Specifically, with the introduction of “Concurrent RDRAM,” the
bus was divided into separate address, command, and data
segments reminiscent of a JEDEC-style DRAM organization. The
data segment of the bus remained one byte wide, and to this was
added a one-bit address segment and a one-bit control segment.
By having three separate, dedicated segments of the bus, one
could perform potentially three separate, simultaneous actions on
the bus. This divided & dedicated arrangement simplified
transaction scheduling and increased performance over RDRAM
accordingly. Figure 14 gives a timing diagram for a read
transaction.

One of the few limitations to the “Concurrent” design was that the
data bus sometimes carried a brief packet of address information,
because the one-bit address bit was too narrow. This limitation has
been removed in Rambus’s latest DRAMs. The divided
arrangement introduced in Concurrent RDRAM has been carried
over into the most recent incarnation of RDRAM, called “Direct
RDRAM,” which increases the width of the data segment to two
bytes, the width of the address segment to five bits, and the width
of the control segment to three bits. These segments remain
separate and dedicated—similar to a JEDEC-style organization—
and the control and address segments are wide enough that the
data segment of the bus never needs to carry anything but data,
thereby increasing data throughput on the channel. Bus operating
speeds have also changed over the years, and latest designs are
roughly double the original speeds (500MHz bus frequency).
Each half-row buffer in Direct RDRAM is shared between
adjacent banks, which implies that adjacent banks cannot be
active simultaneously. This organization has the result of
increasing the row-buffer miss rate as compared to having one

Figure 13: DDR SDRAM Read Timing (CAS-2)
DDR SDRAMs use both a clock and a source-synchronous data strobe
(DQS) to achieve high data rates. DQS is used by the DRAM to sample
incoming write data; it is typically ignored by the memory controller on
DRAM reads.

Address

DQ

Clock

Row
Addr

Col
Addr

Valid
Data

Valid
Data

Valid
Data

Valid
Data

RAS

CAS

Data Transfer

Column Read

Transfer Overlap

Row Activation

DQS (DQ Strobe) Figure 14: Concurrent RDRAM Read Operation
Rambus DRAMs transfer on both edges of a fast clock and use a 1-byte
data bus multiplexed between data and addresses.

Data - DQ

Command

Address Col

Dout Dout Dout

Col Col

Read
Strobe

Read
Term

ACTV/
READ

Bank/
Row

4 cycles

Data Transfer

Column Read

Transfer Overlap

Row Activation

Dout

(1 bit)

(1 bit)

(8 or 9 bits)

8

open row per bank, but it reduces the cost by reducing the die area
occupied by the row buffers, compared to 16 full row buffers.
Figure 15 gives a timing diagram for a read operation.

1.3.3 Virtual Channel Memory (VCDRAM)

Virtual Channel adds a substantial SRAM cache to the DRAM
that is used to buffer large blocks of data (called

segments

) that
might be needed in the future. The SRAM segment cache is
managed explicitly by the memory controller. The design adds a
new step in the DRAM access protocol: a row activate operation
moves a page of data into the sense amps; “prefetch” and
“restore” operations (data-read and data-write, respectively) move
data between the sense amps and the SRAM segment cache one
segment at a time; and column read or write operations move a
column of data between the segment cache and the output buffers.
The extra step adds latency to read and write operations, unless all
of the data required by the application fits in the SRAM segment
cache.

1.3.4 Enhanced SDRAM (ESDRAM)

Like EDO DRAM, ESDRAM adds an SRAM latch to the DRAM
core, but whereas EDO added the latch after the column mux,
ESDRAM adds it

before

 the column mux. Therefore the latch is
as wide as a DRAM page. Though expensive, the scheme allows
for better overlap of activity: for instance, it allows row precharge
to begin immediately without having to close out the row (it is
still active in the SRAM latch). In addition, the scheme allows a
write-around mechanism whereby an incoming write can proceed
without the need to close out the currently active row. Such a
feature is useful for writeback caches, where the data being
written at any given time is not likely to be in the same row as data
that is currently being read from the DRAM. Therefore, handling
such a write delays future reads to the same row. In ESDRAM,
future reads to the same row are not delayed.

1.3.5 MoSys 1T-SRAM

MoSys, i.e. Monolithic System Technology, has created a “1-
transistor SRAM” (which is not really possible, but it makes for a
catchy name). Their design wraps an SRAM interface around an
extremely fast DRAM core to create an SRAM-compatible part
that approaches the storage and power consumption
characteristics of a DRAM while simultaneously approaching the
access-time characteristics of an SRAM. The fast DRAM core is
made up of a very large number of independent banks: decreasing
the size of a bank makes its access time faster, but increasing the
number of banks complicates the control circuitry (and therefore
cost) and decreases the part’s effective density. No other DRAM
manufacturer has gone to the same extremes as MoSys to create a
fast core, and thus the MoSys DRAM is the lowest-latency

DRAM in existence. However, its density is low enough that
OEMs have not yet used it in desktop systems in any significant
volume. Its niche is high-speed embedded systems and game
systems (e.g. Nintendo GameCube).

1.3.6 Reduced Latency DRAM (RLDRAM)

RLDRAM is a fast DRAM core that has no DIMM specification:
it must be used in a direct-to-memory-controller environment
(e.g. inhabiting a dedicated space on the motherboard). Its
manufacturers suggest its use as an extremely large off-chip
cache, probably at a lower spot in the memory hierarchy than any
SRAM cache. Interfacing directly to the chip, as opposed to
through a DIMM, decreases the potential for clock skew, thus the
part’s high speed interface.

1.3.7 Fast Cycle DRAM (FCRAM)

Fujitsu’s FCRAM achieves a low-latency data access by
segmenting the data array into sub-arrays, only one of which is
driven during a row activate. This is similar to decreasing the size
of an array, thus its effect on access time. The subset of the data
array is specified by adding more bits to the row address, and
therefore the mechanism is essentially putting part of the column
address into the row activation (e.g. moving part of the column-
select function into row activation). As opposed to RLDRAM, the
part does have a DIMM specification, and it has the highest
DIMM bandwidth available, in the DRAM parts surveyed.

The evolutionary changes made to the DRAM interface up to and
including Burst EDO have been relatively inexpensive to implement,
while the improvement in performance was significant: FPM was
essentially free compared to the conventional design (required only a
protocol change), EDO simply added a latch, BEDO added a
counter and multiplexer. Each of these evolutionary changes added
only a small amount of logic, yet each improved upon its predeces-
sor by as much as 30% in terms of system performance [Cuppu et al.
1999, Cuppu et al. 2001]. Though SDRAM represented a more sig-
nificant cost in implementation and offered no performance
improvement over Burst EDO at the same clock speeds

8

, the use of a
strobe synchronized with the command and data signals (in this
case, the strobe is the global clock signal) would allow the SDRAM
protocol to be extended to higher switching speeds and thus higher
data rates more easily than the earlier asynchronous DRAM inter-
faces such as fast page mode and EDO. Note that this benefit applies
to any interface with a similar strobe signal, whether the interface is
synchronous or asynchronous, and therefore an asynchronous burst-
mode DRAM with this type of strobe could have scaled to higher
switching speeds just as easily as SDRAM [Lee 2002, Rhoden 2002,
Karabotsos 2002, Baker 2002, Macri 2002]—witness the February
1990 presentation of a working 100MHz asynchronous burst-mode
part from IBM, which used a dedicated pin to transfer the source-
synchronous data strobe [Kalter 1990a/b].

Latter day advanced DRAM designs have abounded, largely
because of the opportunity to appeal to markets asking for high per-
formance [Dipert 2000] and because engineers have evidently run
out of design ideas that echo those of the early-on evolution—that is,
design ideas that are relatively inexpensive to implement and yet
yield tremendous performance advantages. The DRAM industry
tends to favor building the simplest design that achieves the desired
benefits [Lee 2002, DuPreez 2002, Rhoden 2002]; currently, the
dominant DRAM in the high-performance design arena is DDR.

Figure 15: Direct Rambus Read Clock Diagram
Direct Rambus DRAMs transfer on both edges of a fast clock and use a 2-
byte data bus dedicated to handling data only.

DATA

COL

ROW

RD1

DO0 DO1 DO2

RD2 RD3

PRE

Four cycles

DO3

RD0

ACT1 ACT2

(18 bits)

(3 bits)

(5 bits)

8. By some estimates, Burst EDO actually had higher performance than
SDRAM [Williams 2001].

9

1.4 Comparison of Recent DRAMs

In the table above, some salient characteristics of a selection of
today’s DRAM architectures are presented, ordered by peak band-
width coming off the DIMM (which, for high-performance server
systems, is the most significant figure of merit). The “best” three
DRAM architectures for each category are highlighted in bold type.
Note that in the category of peak bandwidth per-chip there is a tie for
third place. Note also that some DRAMs are not typically found in
DIMM configurations and therefore have the same per-DIMM band-
width as their per-chip bandwidth.

2 SALIENT FEATURES OF JEDEC’S SDRAM
TECHNOLOGY

JEDEC SDRAMs use the traditional DRAM-system organization,
described earlier and illustrated in Figure 16. There are four different
busses, each classified by its function—a “memory bus” in this orga-
nization is actually comprised of separate (1) data, (2) address, (3)
control, and (4) chip-select busses. Each of these busses is dedicated
to handle only its designated function, except in a few instances—
for example, when control information is sent over an otherwise
unused address-bus wire. (1) The data bus is relatively wide: in mod-
ern PC systems, it is 64 bits wide, and it can be much wider in high-
performance systems. (2) The width of the address bus grows with
the number of bits stored in an individual DRAM device; typical
address busses today are about 15 bits wide. (3) A control bus is
comprised of the row and column strobes, output enable, clock,
clock enable, and other similar signals that connect from the mem-

ory controller to every DRAM in the system. (4) Lastly, there is a
chip-select network that uses one unique wire per DRAM rank in the
system and thus scales with the maximum amount of physical mem-
ory in the system. Chip-select is used to enable ranks of DRAMs
and thereby allow them to read commands off the bus and read/write
data off/onto the bus.

The primary difference between SDRAMs and earlier asynchro-
nous DRAMs is the presence in the system of a clock signal against
which all actions (command and data transmissions) are timed.
Whereas asynchronous DRAMs use the RAS and CAS signals as
strobes—that is, the strobes directly cause the DRAM to sample
addresses and/or data off the bus—SDRAMs instead use the clock
as a strobe, and the RAS and CAS signals are simply commands that
are themselves sampled off the bus in time with the clock strobe.
The reason for timing transmissions with a regular (i.e., periodic)
free-running clock instead of the less regular RAS and CAS strobes
was to achieve higher dates more easily: when a regular strobe is
used to time transmissions, timing uncertainties can be reduced, and
therefore data rates can be increased.

Note that any regular timing signal could be used to achieve
higher data rates in this way; a free-running clock is not necessary
[Lee 2002, Rhoden 2002, Karabotsos 2002, Baker 2002, Macri
2002]. In DDR SDRAMs, the clock is all but ignored in the data-
transfer portion of write requests: the DRAM samples the incoming
data with respect to not the clock but instead a separate, regular sig-
nal known as DQS [Lee 2002, Rhoden 2002, Macri 2002, Karabot-
sos 2002, Baker 2002]. The implication is that a free-running clock
could be dispensed with entirely, and the result would be something
very close to IBM’s toggle-mode.

DRAM Type Data Bus
Speed

Bus Width
(per chip)

Peak BW
(per Chip)

Peak BW
(per DIMM)a

Latency
(tRAC)

1T-SRAM 200 32 800 MB/s 800 MB/s 10 ns

PC133 SDRAM 133 16 266 MB/s 1.1 GB/s 30 ns

VCDRAM 133 16 266 MB/s 1.1 GB/s 45 ns

ESDRAM 166 16 332 MB/s 1.3 GB/s 24 ns

DRDRAM 533 * 2 16 2.1 GB/s 2.1 GB/s 40 ns

RLDRAM 300 * 2 32 2.4 GB/s 2.4 GB/s 25 ns

DDR 333 166 * 2 16 666 MB/s 2.7 GB/s 33 ns

FCRAM 200 * 2 16 800 MB/s 3.2 GB/s 22 ns

a. Data for DRAMs that are typically not found in DIMM organizations are italicized.

Figure 16: JEDEC-Style Memory Bus Organization
The figure shows a system of a memory controller and two memory modules with a 16-bit data bus and an 8-bit address and command bus.

DRAM

DRAM

DRAM

DRAM
DIMM1

Memory
Controller

Address/Command Busses

Data Bus

Chip Select1

DRAM

DRAM

DRAM

DRAM
DIMM2

Address/Command Busses

Data Bus

Chip Select2

10

2.1 Single Data Rate SDRAM

Single data rate SDRAM use a single-edged clock to synchronize all
information—that is, all transmissions on the various busses (con-
trol, address, data) begin in time with one edge of the system clock
(as so happens, the rising edge). Because the transmissions on the
various busses are ideally valid from one clock edge to the next,
those signals are very likely to be valid during the other edge of the
clock (the falling edge); consequently, that edge of the clock can be
used to sample those signals.

SDRAMs have several features that were not present in earlier
DRAM architectures: a burst length that is programmable and a
CAS latency that is programmable.

2.1.1 Programmable Burst Length
Like BEDO DRAMs, SDRAMs use the concept of bursting data to
improve bandwidth. Instead of using successive toggling of the CAS
signal to burst out data, however, SDRAM chips only require CAS
to be signalled once and, in response, transmit or receive in time
with the toggling of the clock the number of bits indicated by a value
held in a programmable mode register. Once an SDRAM receives a
row address and a column address, it will burst the number of col-
umns that correspond to the burst length value stored in the register.
If the mode register is programmed for a burst length of four, for
example, then the DRAM will automatically burst four columns of
contiguous data onto the bus. This eliminates the need to toggle the
CAS strobe to derive a burst of data in response to a CPU request.
Consequently, the potential parallelism in the memory system
increases (i.e., it improves) due to the reduced use of the command
bus—the memory controller can issue other requests to other banks
during those cycles that it otherwise would have been toggling CAS.

2.1.2 Programmable CAS Latency
The mode register also stores the CAS latency of an SDRAM chip.
Latency is a measure of delay. CAS latency, as the name implies,
refers to the number of clock cycles it takes for the SDRAM to
return the data once it receives a CAS command. The ability to set
the CAS latency to a desired value allows parts of different genera-
tions and fabricated in different process technologies (which would
all otherwise have different performance characteristics) to behave
identically. Thus, mixed-performance parts can easily be used in the
same system and can even be integrated onto the same memory
module.

2.2 Double Data Rate SDRAM

DDR SDRAM have several features that were not present in single
data rate SDRAM architectures: dual-edged clocking and an on-chip
delay-locked loop (DLL).

2.2.1 Dual-Edged Clocking
Double data rate SDRAMs, like regular SDRAMs, use a single-
edged clock to synchronize control and address transmissions, but
for data transmissions DDR DRAMs use a dual-edged clock—that
is, some data bits are transmitted on the data bus in time with the ris-
ing edge of the system clock, and other bits are transmitted on the
data bus in time with the falling edge of the system clock.

Figure 17 illustrates the difference, showing timing for two differ-
ent clock arrangements. The top design is a more traditional arrange-
ment wherein data is transferred only on the rising edge of the clock;
the bottom uses a data rate that is twice the speed of the top design,
and data is transferred on both the rising and falling edges of the
clock. Such an arrangement was well known to engineers at the
time. IBM had built DRAMs using this feature in the late 1980’s and
presented their results in the International Solid State Circuits Con-
vention in February of 1990 [Kalter 1990a]. Reportedly, Digital
Equipment Corp. had been experimenting with similar schemes in
the late 1980’s and early 1990’s [Lee 2002, minutes of JC-42.3
meeting 58 Jedec 13958].

In a system that uses a single-edged clock to transfer data, there
are two clock edges for every data “eye;” the data eye is framed on
both ends by a clock edge, and a third clock edge is found some-
where in the middle of the data transmission (cf. Figure 17(a)).
Thus, the clock signal can be used directly to perform two actions: to
drive data onto the bus and to read data off the bus. Note that in a
single-edged clocking scheme data is transmitted once per clock
cycle.

By contrast, in a dual-edged clocking scheme, data is transmitted
twice per clock cycle. This halves the number of clock edges avail-
able to drive data onto the bus and/or read data off the bus (cf. Figure
17(b)). The bottom diagram shows a clock running at the same rate
as data transmission. Note that there is only one clock edge for every
data “eye.” The clock edges in a dual-edged scheme are either
“edge-aligned” with the data or “center-aligned” with the data—this
means that the clock can either drive the data onto the bus, or it can
read the data off the bus, but it cannot do both, as it can in a single-
edged scheme. In the figure, the clock is edge-aligned with the data.

Figure 17: Running the Bus Clock at the Data Rate
The top diagram (a) illustrates a single-edged clocking scheme wherein the clock is twice the frequency of data transmission. The bottom diagram (b)
illustrates a dual-edged clocking scheme in which the data transmission rate is equal to the clock frequency.

TIME

(a) Single-Edged Clocking

(b) Dual-Edged Clocking

One Clock Cycle

CLK

DATA

CLK

DATA

Data “eye”

11

The dual-edged clocking scheme by definition has fewer clock
edges per data transmission that can be used to synchronize or per-
form functions. This means that some other mechanism must be
introduced to get accurate timing for both driving data and sampling
data—i.e., to compensate for the fact that there are fewer clock
edges, a dual-edged signalling scheme needs an additional mecha-
nism beyond the clock. For example, DDR SDRAM specifies along
with the system clock a center-aligned data strobe that is provided
by the memory controller on DRAM writes that the DRAM uses
directly to sample incoming data. On DRAM reads, the data strobe
is edge-aligned with the data and system clock; the memory control-
ler is responsible for providing its own mechanism for generating a
center-aligned edge. The strobe is called “DQS.”

2.2.2 On-Chip Delay-Locked Loop
In DDR SDRAM, the on-chip DLL synchronizes the DRAM’s out-
going data and DQS (data strobe) signals with the memory control-
ler’s global clock [JEDEC Standard 21-C, Section 3.11.6.6]. The
DLL synchronizes those signals involved in DRAM reads, not those
involved in DRAM writes; in the latter case, the DQS signal accom-
panying data sent from the memory controller on DRAM writes is
synchronized with that data by the memory controller and is used by
the DRAM directly to sample the data [Lee 2002, Rhoden 2002,
Karabotsos 2002, Baker 2002, Macri 2002]. The DLL circuit in a
DDR DRAM thus ensures that data is transmitted by the DRAM in
synchronization with the memory controller’s clock signal so that
the data arrives at the memory controller at expected times. The
memory controller typically has two internal clocks, one in synch
with the global clock, and another that is delayed 90° and used to
sample data incoming from the DRAM. Because the DQS is in-
phase with the data for read operations (unlike write operations),
DQS cannot be used by the memory controller to sample the data
directly. Instead, it is only used to ensure that the DRAM’s outgoing
DQS signal (and therefore data signals as well) are correctly aligned
with the memory controller’s clocks. The memory controller’s 90°
delayed clock is used to sample the incoming data, which is possible
because the DRAM’s DLL guarantees minimal skew between the
global clock and outgoing read data. The following paragraphs pro-
vide a bit of background to explain the presence of this circuit in
DDR SDRAMs:

Because DRAMs are usually external to the CPU, DRAM design-
ers must be aware of the issues involved in propagating signals
between chips. In chip-to-chip communications, the main limiting
factor in building high-speed interfaces is the variability in the
amount of time it takes a signal to propagate to its destination (usu-
ally referred to as the uncertainty of the signal’s timing). The total
uncertainty in a system is often the sum of the uncertainty in its con-
stituent parts: e.g., each driver, each delay line, each logic block in a
critical path adds a fixed amount of uncertainty to the total. This
additive effect makes it very difficult to build high-speed interfaces
for even small systems, because even very small fixed uncertainties
that seem insignificant at low clock speeds become significant as the
clock speed increases.

There exist numerous methods to decrease the uncertainty in a
system, including sending a strobe signal along with the data (e.g.,
the DQS signal in DDR SDRAM or the clock signal in a source-syn-
chronous interface), adding a phase-locked loop (PLL) or delay-
locked loop (DLL) to the system, or matching the path lengths of
signal traces so that the signals all arrive at the destination at (about)
the same time. Many of the methods are complementary, that is,
their effect upon reducing uncertainty is cumulative. Building sys-
tems that communicate at high frequencies is all about engineering
methods to reduce uncertainty in the system.

The function of a PLL or DLL, in general, is to synchronize two
periodic signals so that a certain fixed amount of phase-shift or
apparent delay exists between them. The two are similar, and the

terms are often used interchangeably. A DLL uses variable-delay cir-
cuitry to delay an existing periodic signal so that it is in synch with
another signal; a PLL uses an oscillator to create a new periodic sig-
nal that is in synch with another signal. When a PLL/DLL is added
to a communication interface, the result is a “closed-loop” system,
which can, for example, measure and cancel the bulk of the uncer-
tainty in both the transmitter and receiver circuits and align the
incoming data strobe with the incoming data (see for example [Dally
& Poulton 1998]).

Figure 18 shows how the DLL is used in DDR SDRAM, and it
shows the effect that the DLL has upon the timing of the part. The
net effect is to delay the output of the part (note that the output burst
of the bottom configuration is shifted to the right, compared to the
output burst of the top configuration). This delay is chosen to be suf-
ficient to bring into alignment the output of the part with the system
clock.

3 RAMBUS TECHNOLOGY

This section discusses Rambus’s technology as described in their
1990 patent application number 07/510,898 (the ’898 application)
and describes how some of the technologies mentioned would be
used in a Rambus-style memory organization as compared to a
JEDEC-style memory organization.

3.1 Rambus’s ’898 Patent Application

This section describes Rambus’s memory-system technology as
elaborated in their ’898 application; the section does not discuss
later implementations of their technology such as Concurrent
RDRAM and Direct RDRAM.

The most novel aspect of the Rambus memory organization, the
aspect most likely to attract the reader’s attention, and the aspect to
which Rambus draws the most attention in the document, is the
physical bus organization and operation: the bus’s organization and
protocol are more reminiscent of a computer network than a tradi-
tional memory bus. When the word “revolutionary” is used to
describe the Rambus architecture, this is the aspect to which it
applies.9

Figure 19 illustrates the “new bus” that Rambus describes in the
’898 application. It juxtaposes Rambus’s bus with a more traditional
DRAM bus and thereby illustrates that these bus architectures are
substantially different. As described earlier, the traditional memory
bus is organized into four dedicated busses: (1) the data bus, (2) the
address bus, (3) the command bus, and (4) the chip-select bus. In
contrast, all of the information for the operation of the DRAM is car-
ried over a single bus in Rambus’s architecture; moreover, there is no
separate chip-select network. In the specification, Rambus describes
a narrow bus architecture over which command, address, and data
information travel using a proprietary packetized protocol. There are
no dedicated busses in the Rambus architecture described in the ’898
application: in the Rambus bus organization, all addresses, com-
mands, data, and chip-select information are sent on the same bus
lines. This is why the organization is called “multiplexed.” At differ-
ent points in time, the same physical lines carry dissimilar classes of
information.

Another novel aspect of the Rambus organization is its width: in
Rambus’s architecture, all of the information for the operation of the
DRAM is carried over a very narrow bus. Whereas the bus in a tradi-

9. There is also significant discussion (and illustration) in the patent appli-
cation describing Rambus’s unorthodox/revolutionary proposed packag-
ing technology, in which a DRAM’s pins are all on one edge of the chip
and in which the chips are inserted directly into a backplane-type
arrangement individually, as opposed to being integrated onto a memory
module.

12

tional system can use more than ninety (90) bus lines10, the Rambus
organization uses “substantially fewer bus lines than the number of
bits in a single address.” Given that a single physical address in the
early 1990’s was twenty to thirty (20–30) bits wide, this indicates a
very narrow bus, indeed. In the Rambus specification, the example
system uses a total of nine (9) lines to carry all necessary informa-
tion, including addresses, commands, chip-select information, and
data. Because the bus is narrower than a single data address, it takes
many bus cycles to transmit a single command from a bus master
(i.e., memory controller) to a DRAM device. The information is
transmitted over an uninterrupted sequence of bus cycles and must
obey a specified format in terms of both time and wire assignments.
This is why the Rambus protocol is called “packetized,” and it stands
in contrast to a JEDEC-style organization in which the command
and address busses are wide enough to transmit all address and com-
mand information in a single bus cycle11.

As mentioned, the bus’s protocol is also unusual and resembles a
computer network more than a traditional memory bus. In an Inter-

net-style computer network, for example, every packet contains the
address of the recipient; a packet placed on the network is seen by
every machine on the subnet, and every machine must look at the
packet, decode the packet, and decide if the packet is destined for the
machine itself or for some other machine. This requires every
machine to have such decoding logic on board. In the Rambus mem-
ory organization, there is no chip-select network, and so there must
be some other means to identify the recipient of a request packet. As
in the computer network, a Rambus request packet contains (either
explicitly or implicitly) the identity of the intended recipient, and
every DRAM in the system has a unique identification number (each
DRAM knows its own identity). As in the computer network, every
DRAM must initially assume that a packet placed on the bus may be
destined for it; every DRAM must receive and decode every packet
placed on the bus, so that each DRAM can decide whether the
packet is for the DRAM itself or for some other device on the bus.
Not only does each DRAM require this level of “intelligence” to
decode packets and decide if a particular packet is intended for it,

DRAM
Array

CKEXT

DQEXT

This represents a delay D of the clock signal

Data

from clock input pad to data output drivers
D

Additional delay
through DQ drivers

READ

Ideally, these two edges
would be aligned

DRAM
Array

DQEXT

This represents a delay D of the clock signal

Data

from clock input pad to data output drivers

Delay

Phase
Comp

F
il

te
r

The Phase Comparison, Loop Filter, and
Variable Delay components constitute a DLL

CKINT

CKEXT

CKINT

The DLL delays the internal clock (CKINT) so thatDelayDLL + D

D

Additional delay
through DQ drivers

READ

These two edges
are now more closely aligned

CK Buffers

CK Buffers

DelayDLL

the total delay equals one full clock cycle, and thus
CKINT is now in sync with CKEXT … thus, DQEXT is
also (roughly) in sync with CKEXT

Delay introduced by DLL

CKEXT

CKINT

CMD

DQEXT

CKEXT

CKINT

CMD

DQEXT

Figure 18: The Use of the DLL in DDR SDRAMs
The top figure illustrates the behavior of a DDR SDRAM without a DLL: due to the inherent delays through clock receiver, multi-stage amplifiers, on-chip wires,
output pads & bonding wires, output drivers, and other effects, the data output (as it appears from the perspective of the bus) occurs slightly delayed with respect
to the system clock. The bottom figure illustrates the effect of adding the DLL: the DLL delays the incoming clock signal so that the output of the part is more
closely aligned with the system clock. Note that this introduces extra latency into the behavior of the part.

13

but ultimately the implication is that each DRAM is in some sense
an autonomous device—the DRAM is not “controlled;” rather,
“requests” are made of it.

This last point illustrates another sense in which Rambus is a
“revolutionary” architecture. Traditional DRAMs were simply mari-
onettes. The Rambus architecture casts the DRAM as a semi-intelli-
gent device capable of making decisions (e.g., determining whether
a requested address is within range), which represents an unortho-
dox way of thinking in the early 1990’s.

3.1.1 Low-Skew Clock Using Variable Delay Circuits
The clocking scheme of the Rambus system is designed to synchro-
nize the internal clocks of the DRAM devices with a non-existent,
ideal clock source, achieving low skew. Figure 20 illustrates the
scheme. The memory controller sends out a global clock signal that
is either turned around or reflected back, and each DRAM as well as
the memory controller has two clock inputs, CLK1 and CLK2—the
first being the “early” clock signal and the second being the “late”
clock signal.

Because the signal paths between each DRAM have non-zero
length, the global clock signal arrives at a slightly different time to
each DRAM. The illustration shows this with small clock figures at
each point representing the absolute time (as would be measured by
the memory controller) that the clock pulse arrives at each point.
This is one component contributing to clock skew, and clock skew
traditionally causes problems for high-speed interfaces. However, if
the clock path is symmetric—i.e., if each side of the clock’s trace is
path-length matched so that the distance to the turnaround point is

10. In a PC system, the data bus is 64 bits; the address bus can be 16 bits;
there can be ten or more control lines, as the number of chip-select lines
scales with the number of memory modules in the system.

11.A “bus cycle” is the period during which a bus transaction takes place,
which may correspond to one clock cycle, or more than one clock cycle,
or less than one clock cycle.

Figure 19: Memory-Bus Organizations
The figure compares the organizations of a traditional memory bus and a Rambus-style organization. Figure (a) shows a system of a memory controller and
two memory modules, with a 16-bit data bus and an 8-bit address and command bus. Figure (b) shows the Rambus organization with a bus master and 7
DRAM slave devices.

DRAM

DRAM

DRAM

DRAM
DIMM1

Memory
Controller

Address/Command Busses

Data Bus

Chip Select1

DRAM

DRAM

DRAM

DRAM
DIMM2

Address/Command Busses

Data Bus

Chip Select2

DRAM

Bus
Master

DRAM DRAM DRAM DRAM DRAM DRAM

(a) Traditional Memory-Bus Organization: A “Wide-Bus” Architecture

(b) Rambus Memory-Bus Organization: A “Narrow-Bus” Architecture

Figure 20: Rambus Clock Synchronization
The clock design in Rambus’s 1990 patent application routes two clock signals into each DRAM device, and the path-lengths of the clock signals are matched
so that the delay average of the two signals represents the time as seen by the midpoint or clock turnaround point.

DRAM DRAM DRAM DRAM
BUS

MASTER

OUTBOUND

CLOCK

INBOUND

CLOCK

CLK1

CLK2

CLK1

CLK2

CLK1

CLK2

CLK1

CLK2

“LATE” CLOCK SIGNAL

“EARLY” CLOCK SIGNAL

14

equal from both CLK1 and CLK2 inputs—then the combination of
the two clocks (CLK1 and CLK2) can be used to synthesize, at each
device, a local clock edge that is in synch with an imaginary clock at
the turnaround point. In the illustration, the memory controller sends
a clock edge at 12:00 noon. That edge arrives at the first DRAM at
12:03; it arrives at the next DRAM at 12:06; the next at 12:09; and
so on. It arrives at the turnaround point at 12:15 and begins to work
its way back to the DRAM devices’ CLK2 inputs, finally arriving at
the memory controller at 12:30. If at each point the device is able to
find the average of the two clock arrival times (e.g., at the DRAM
closest to the memory controller, find the average between 12:03 and
12:27), then each device is able to synthesize a clock that is synchro-
nized with an ideal clock at the turnaround point; each device,
including the memory controller, can synthesize a clock edge at
12:15, and so all devices can be “in synch” with an ideal clock gen-
erating an edge at 12:15. Note that, even though the figure shows the
DRAMs evenly spaced with respect to one another, this is not neces-
sary; all that is required is for the path length from CLK1 to the turn-
around point to be equal to the path length from CLK2 to the
turnaround point, for each device.

Rambus’s specification includes on-chip variable-delay circuits
(very similar to traditional delay-locked loops, or DLLs) to perform
this clock-signal averaging. In other words, Rambus’s on-chip
“DLL” takes an “early” version and a “late” version of the same
clock signal and finds the midpoint of the two signals. Provided that

the wires making up the U-shaped clock on the motherboard (or
wherever the wires are placed) are symmetric, this allows every
DRAM in the system to have a clock signal that is synchronized
with those of all other DRAMs.

3.1.2 Variable Request Latency
Rambus’s 1990 patent application defines a mechanism that allows
the memory controller to specify how long the DRAM should wait
before handling a request. There are two parts to the description
found in the specification. First, on each DRAM there is a set of reg-
isters, called access-time registers, that hold delay values. The
DRAM uses these delay values to wait the indicated number of
cycles before placing the requested data onto (or reading the associ-
ated data from) the system bus. The second part of the description is
that the DRAM request packet specifies which of these registers to
use for a delay value in responding to that particular request.

The patent application does not delve into the uses of this feature
at all; the mechanism is presented simply, without justification or
application. My (educated) guess is that the mechanism is absolutely
essential to the successful operation of the design—having a vari-
able request latency is not an afterthought or flight of whimsy. With-
out variable request latencies, the support of variable burst lengths,
and indeed the support of any burst length other than one equal to
the length of a request packet or one smaller than the request latency,
cannot function even tolerably well. Figure 21 illustrates. The figure

REQUEST1

Figure 21: The Importance of Variable Request Latencies in Rambus Organization
Scheduling odd-sized request-response pairs on a multiplexed bus can be difficult to the point of yielding unacceptable performance.

REQUEST1 RESPONSE1

TIME

REQUEST1 RESPONSE1

REQUEST2 RESPONSE2

REQUEST3 RESPONSE3LATENCY3

LATENCY2

LATENCY1

REQUEST2 RESPONSE2

LATENCY

LATENCY

The soonest REQUEST2 can be satisfied
in a fixed-latency system with long latency

(the response begins after
RESPONSE1 finishes)

REQUEST1 RESPONSE1
LATENCY

The soonest REQUEST2 can be satisfied in a fixed-latency system
where the latency is shorter than the response packet

REQUEST2 RESPONSE2
LATENCY

RESPONSE1
LATENCY

REQUEST2 RESPONSE2
LATENCY

REQUEST3
LATENCY

The soonest REQUEST2 can be satisfied
in a fixed-latency system with symmetric request timing

The soonest REQUEST3 can start

The soonest REQUEST3 can start

The pipelining of requests becomes more efficient
and easier to schedule in a variable-latency system,REQUEST1 RESPONSE1

LATENCY1

REQUEST2 RESPONSE2
LATENCY2

whether the response packets are long relative to the latency …

… or the response packets are short relative to the latency.

(a)

(b)

(c)

(e)

(d)

REQUEST1
LATENCY

15

shows what happens when a multiplexed, split transaction bus has
back-to-back requests: if the request shapes are symmetric (e.g., the
request and response packets are the same length, and the latency is
slightly longer), or if the latency is long relative to the request and
response packet lengths, then it is possible to pipeline requests and
achieve good throughput—though neither scenario is optimal in bus
efficiency. If the request packet and transaction latency are both
short relative to the data transfer (a more optimal arrangement), later
requests must be delayed until earlier requests finish, negating the
value of having a split transaction bus in the first palce (cf. Figure
21(a)). This is the most likely arrangement: long data bursts are
desirable, particularly if the target application is video processing or
something similar; the potential problem is that these long data
bursts necessarily generate asymmetric request-response shapes
because the request packet should be as short as possible, dictated by
the information in a request. If the DRAM supports variable request
latencies, then the memory controller can pipeline requests, even
those that have asymmetric shapes, and thus achieve good through-
put despite the shape of the request.

3.1.3 Variable Block Size
Rambus’s 1990 patent application defines a mechanism that allows
the memory controller to specify how much data should be trans-
ferred for a read or write request. The request packet that the mem-
ory controller sends to the DRAM device specifies the data length in
the request packet’s BlockSize field. Possible data-length values
range from 0 bytes to 1024 bytes (1 kilobyte). The amount of data
that the DRAM sends out on the bus, therefore, is programmed at
every transaction.

Like variable request latency, the variable-blocksize feature is
necessitated by the design of the bus. To dynamically change the
transaction length from request to request would likely have seemed
novel to an engineer in the early 1990’s. The unique features of
Rambus’s bus—its narrow width, multiplexed nature, and packet
request protocol—pose unique scheduling demands on the bus. Vari-
able blocksize is used to cope with the unique scheduling
demands—it enables the use of Rambus’s memory in many different
engineering settings, and it helps to ensure that Rambus’s bus is
fully-utilized.

3.1.4 Running the Clock at the Data Rate
The design specifies a clock rate that can be half what one would
normally expect in a simple, non-interleaved memory system. Fig-
ure 17 illustrates, showing timing for two different clock arrange-
ments. The top design is a more traditional arrangement; the bottom
uses a clock that is half the speed of the top design. The document,
on page 48, lines 6-17, reads as follows:

Clock distribution problems can be further reduced by using a bus
clock and device clock rate equal to the bus cycle data rate divided
by two, that is, the bus clock period is twice the bus cycle period.
Thus a 500 MHz bus preferably uses a 250 MHz clock rate. This
reduction in frequency provides two benefits. First it makes all
signals on the bus have the same worst case data rates - data on a
500 MHz bus can only change every 2 ns. Second, clocking at
half the bus cycle data rate makes the labeling of the odd and even
bus cycles trivial, for example, by defining even cycles to be those
when the internal device clock is 0 and odd cycles when the
internal device clock is 1.

As the inventors claim, the primary reason for doing so is to reduce
the number of clock transitions per second to be equal to the maxi-
mum number of data transitions per second. This becomes important
as clock speeds increase, which is presumably why IBM’s toggle
mode uses the same technique. The second reason given is to sim-
plify the decision of which edge to use to activate which receiver or
driver (the labeling of “even/odd” cycles). Figure 10 in the specifica-
tion illustrates the interleaved physical arrangement required to
implement the clock-halving scheme: the two edges of the clock
activate different input receivers at different times and cause differ-
ent output data to be multiplexed to the output drivers at different
times.

Note that halving the clock complicates receiving data at the
DRAM end, because no clock edge exists during the “eye” of the
data (this is noted in the figure), and therefore the DRAM does not
know when to sample the incoming data—that is, assuming no addi-
tional help. This additional help would most likely be in the form of
a PLL or DLL circuit to accurately delay the clock edge so that it
would be 90° out of phase with the data and thus could be used to
sample the data. Such a circuit would add complexity to the DRAM
and would consequently add cost in terms of manufacturing, testing,
and power consumption.

3.2 Use of Technologies in Rambus DRAM and JEDEC
SDRAM

The following paragraphs compare briefly, for each of four technol-
ogies, how the technology is used in a JEDEC-style DRAM system
and how it is used in a Rambus-style memory system as described in
the ’898 application.

3.2.1 Programmable CAS Latency
JEDEC’s programmable CAS latency is used to allow each system
vendor to optimize the performance of its systems. It is programmed
at system initialization and, according to industry designers, it is
never set again while the machine is running [Lee 2002, Baker 2002,

Figure 22: Running the Bus Clock at the Data Rate
Slowing down the clock so that it runs at the same speed as the data makes the clock easier to handle, but it reduces the number of clock edges available to
do work: clock edges exist to drive the output circuitry, but no clock edge exists during the “eye” of the data to samepl the data.

16

Kellogg 2002, Macri 2002, Ryan 2002, Rhoden 2002, Sussman
2002]. By contrast, with Rambus’ variable request latency, the
latency is programmed every time the CPU sends a new request to
the DRAM, but the specification also leaves open the possibility that
each access register could store two or more values held for each
transaction type. Rambus’s system has the potential (and I would
argue the need) to change the latency at a request granularity—i.e.,
each request could specify a different latency than the previous
request, and the specification has room for many different latency
values to be programmed. Whereas the feature is a convenience in
the JEDEC organization, it is a necessity in a Rambus organization.

3.2.2 Programmable Burst Length
JEDEC’s programmable burst length is used to allow each system
vendor to optimize the performance of its systems. It is programmed
at system initialization and, according to industry designers, never
set again while the machine is running [Lee 2002, Baker 2002,
Kellogg 2002, Rhoden 2002, Sussman 2002]. By contrast, with
Rambus’ variable block size, the block size is programmed every
time the CPU sends a new request to the DRAM. Whereas a
JEDEC-style memory system can function efficiently if every col-
umn of data that is read out of or written into the DRAM is accom-
panied by a CAS signal, a Rambus-style memory system could not
(as the command would occupy the same bus as the data, limiting
data to less than half of the available bus cycles). Whereas the fea-
ture is a convenience in the JEDEC organization, it is a necessity in a
Rambus organization.

3.2.3 Dual-Edged Clocking
Both JEDEC-style DRAMs and Rambus-style DRAMs use a clock-
ing scheme that goes back at least to IBM’s high-speed toggle-mode
DRAMs, in which on-chip interleaving allows one to toggle back
and forth between two buffers (e.g., on the rising and falling edges
of a strobe signal) to achieve a data rate that is twice that possible by
a single buffer alone. Both JEDEC-style DRAMs and Rambus-style
DRAMs transfer data on both edges of a timing signal. In JEDEC-
style DRAMs, the timing signal is an internal clock generated from
the system clock and the DQS data strobe—a source-synchronous
strobe that accompanies the data sent and is quiescent when there is
no data on the bus. The data is edge-aligned with the system clock.
In Rambus-style DRAMs, the timing signal is a synthesized internal
clock signal in synch with no other clock source in the system and
generated from two different phases of the U-shaped global clock
(described above). The U-shaped clock is not source-synchronous
and remains free running whether there is data on the bus or not. As
opposed to the DDR clocking scheme, in the Rambus scheme the
data is not aligned with either phase of the system clock at all—it is
neither edge-aligned nor center-aligned. Furthermore, a different
phase relationship exists between each Rambus DRAM’s output
data and the global clock’s early and late signals, whereas DDR
DRAMs strive to maintain the same phase relationship between
each DRAM’s output data and the system clock.

3.2.4 On-Chip PLL/DLL
JEDEC uses an on-chip DLL in their DDR SDRAMs to ensure that
data being driven onto the data bus is aligned with the global clock
signal. The DLL does this by delaying the DRAM’s response to a
read request just long enough that the data is driven at the same time
the DRAM sees the next clock edge. Rambus uses an on-chip vari-
able delay circuit to ensure that every DRAM in the system as well
as the memory controller has a synchronized clock (i.e., they all
believe that it is precisely 12:00 at the same time). The delay circuit
does this by finding the midpoint in time between an “early” version
and a “late” version (i.e., two different phases) of the same clock sig-
nal and thereby creates a synthesized internal clock signal in synch
with no other clock in the system. This is a process that is signifi-

cantly more complicated than a simple delay-locked loop, and thus
Rambus’s variable delay circuit is more complex than a simple DLL.

4 ALTERNATIVE TECHNOLOGIES

A large number of alternative technologies could achieve the same
result as the technologies described; many of these alternatives are
simply applications of long understood techniques to solving partic-
ular problems. This section discusses a sample of those mechanisms;
it is not intended to be exhaustive but rather to be illustrative.

4.1 Programmable CAS Latency

The primary benefit of programmable CAS latency is flexibility: its
presence in a DRAM allows a fast part to emulate the behavior of a
slow part, which would enable an OEM or end consumer to inter-
mingle parts from different generations (with different speeds) in the
same system or intermingle same-generation parts from different
manufacturers (which might have slightly different performance
capabilities due to slight variations in process technologies) in the
same DIMM [Lee 2002, Baker 2002, Kellogg 2002, Macri 2002,
Ryan 2002, Rhoden 2002, Sussman 2002]. To illustrate, if a DRAM
manufacturer has a part with a minimum 20ns CAS readout, the part
could conceivably work as a CAS-2, 100MHz part (20ns requires 2
cycles at 100MHz), a CAS-3, 150MHz part (20ns requires 3 cycles
at 150MHz), or a CAS-4, 200MHz part (20ns requires 4 cycles at
200MHz). Note that the part would never be able to make CAS-2
latencies at the higher bus speeds or CAS-3 at the highest bus speed
(CAS-2 requires 13.33ns at 150MHz and 10ns at 200MHz; CAS-3
requires 15ns at 200MHz).

Alternatives that would have been available to the JEDEC com-
munity in the early to mid 1990’s and would have been considered
technically sound include the following:

• Use fixed-CAS-latency parts.

• Explicitly identify the CAS latency in the read or write
command.

• Program CAS latency by blowing fuses on the DRAM.

• Scale CAS latency with clock frequency.

• Use an existing pin or a new, dedicated pin to identify the
latency via two or more different voltage levels asserted by the
memory controller.

• Stay with asynchronous DRAM (e.g., burst or toggle-mode
EDO).

4.1.1 Use Fixed CAS Latency
JEDEC actually did consider using a fixed CAS latency instead of a
programmable CAS latency or in addition to a programmable CAS
latency. Fixing the CAS latency would simply mean that each indi-
vidual SDRAM would operate with a single, predetermined latency.
In response to a read request, the SDRAM would always output data
after the predetermined number of clock cycles. There are two
options that fall under fixing CAS latency: one option would be to
define that all JEDEC-compliant DRAMs have the same latency
(e.g., 2 cycles). Another option would be to define that each DRAM
part would support one fixed latency (e.g., either 2 or 3 or 4), but dif-
ferent DRAMs would be allowed to have different latencies.
Although using fixed latency would have reduced flexibility, it
would have simplified testing considerably [Lee 2002], as only one
mode of operation would need to be tested instead of two or more,
and it would have simplified design slightly, as slightly less logic
would be required on the chip. In a JEDEC-style bus organization,
where the command, address, and data busses are all separate, the
scheduling of requests is simplified if all requests have the same

17

latency. Thus, memory controllers typically set the CAS latency at
initialization and never change it again while the machine is pow-
ered on; i.e., current systems use a de facto fixed CAS latency while
the machine is running [Lee 2002, Baker 2002, Kellogg 2002, Macri
2002, Ryan 2002, Rhoden 2002, Sussman 2002]. Therefore, man-
dating a fixed latency at the DRAM level would have no discernible
effect on system performance.

4.1.2 Explicitly Identify CAS Latency in the Command
One option would be to design the DRAM command set so that each
column read command explicitly encodes the desired CAS latency.
Instead of initializing the DRAM to use a latency of 2 or 3 cycles,
and then presenting generic CAS commands, each of which would
implicitly use a latency of 2 or 3 cycles, respectively, a memory con-
troller could present commands to the SDRAM that would explicitly
specify a desired latency. For example, the memory controller would
use “CAS-2” read commands if it desired a latency of two, and it
would use “CAS-3” read commands if it desired a latency of three.

Such a re-definition of the command set could be accomplished in
different ways. One or more additional pins and bus lines could be
added to carry the latency commands, or existing pins and bus lines
could be used to carry the latency commands without the addition of
new pins. There are several pins whose connections with the mem-
ory controller make up the “command bus” in a JEDEC-style
DRAM system. These pins include RE (row enable, i.e., RAS), CE
(column enable, i.e., CAS), W (write enable), CKE (clock enable),
and DQM (DQ mask). Each plays a dedicated function—the CE pin
is not toggled for row activations, the RE pin is not toggled for col-
umn reads or writes, the CKE pin is used primarily to put the
DRAM to sleep, etc. Thus, the five pins are used to support a com-
mand set that contains less than 32 unique commands. A redefinition
of the command set could detach these dedicated functions from the
pins and instead homogenize the pins, turning them into a set of
command pins that, taken together, can specify exactly 32 different
commands, including DQ Mask, Clock Disable, Row Enable, Bank
Precharge, Column Write, etc. This would make room for read com-
mands that specify the desired CAS latency directly, e.g., Column
Read with Latency 2, Column Read with Latency 3, etc. This would
have the negative side-effect of limiting the simultaneous issuing of
independent commands that is possible with the current command
set (e.g., setting DQ Mask during the same cycle as issuing a column
write), and if these special instances of simultaneous commands
were viewed as truly valuable, one could solve the problem with
additional pins.

4.1.3 Program CAS Latency Using Fuses
The CAS latency value could also be determined by the use of on-
chip fuses. Modern DRAMs have numerous fuses on them that,
when blown, enable redundant circuits, so that at test time a DRAM
manufacturer can, for example, disable memory arrays that contain
fabrication errors and in their place enable redundant arrays that are
error-free; a typical DRAM has thousands of such fuses [O’Donnell
2002]. One could add one or more similar fuses that set different
CAS latencies. This would enable a DRAM manufacturer to sell
what are essentially fixed-latency parts, but because they could be
programmed at the last possible moment, the DRAM manufacturer
would not need separate stocks for parts with different latencies: one
part would satisfy for multiple latencies, as the DRAM manufacturer
could set the fuses appropriately right before shipping the parts. The
manufacturer could also sell the parts with fuses intact to OEMs and
embedded-systems manufacturers, who would likely have the tech-
nical savvy necessary to set the fuses properly, and who might want
the ability to program the latency according to their own needs. This
level of flexibility would be almost on par with the current level of
flexibility, since in most systems the CAS latency is set once at sys-
tem initialization and never set again [Lee 2002, Baker 2002,

Kellogg 2002, Macri 2002, Ryan 2002, Rhoden 2002, Sussman
2002].

4.1.4 Scale CAS Latency with Clock Frequency
One option is for the DRAM to know the bus speed and deliver the
fastest CAS latency available for that bus speed. The programming
of the DRAM could be either explicit, in which case the memory
controller tells the DRAM the bus speed using a command at system
initialization, or implicit, in which case the DRAM senses the timing
of the clock on the bus and “learns” the bus speed on its own. To
return to the earlier example, if a DRAM part had an internal CAS
readout latency of 20ns, it could deliver CAS-2 in a 100MHz/10ns
bus environment, CAS-3 in a 133MHz/7.5ns bus environment, and
CAS-4 in a 200MHz/5ns bus environment. This would satisfy most
DRAM consumers, because OEMs and end-users usually want the
fastest latency possible. However, without an additional mechanism
in either the DRAM or memory controller, the scheme would not
allow parts with different internal CAS readout latencies to be mixed
within the same system. Disallowing mixed-latency systems would
not cause undue confusion in the marketplace, because asynchro-
nous parts in the 1980’s and 1990’s were sold as “70ns DRAMs” or
“60ns DRAMs,” etc.; the speed rating was explicit, so both OEMs
and end-users were already accustomed to matching speed ratings in
their systems. However, if support for mixed-latency systems was
desired, one could always design the memory controller so that it
determines at initialization the latency of each DIMM in its system12

and accounts for any latency differences between DIMMs in its
scheduling decisions.

4.1.5 Identify CAS Latency Through Pin Voltage Levels
An alternative to programming the CAS latency using a specific
command is for the memory controller to specify a latency on a pin
using one of several voltage levels, each level representing a differ-
ent latency. The pin could be an existing pin (RAS or CAS) or could
be an additional pin. Any of these approaches would have the same
performance effect as the present mechanism. An additional pin
would increase packaging costs and testing costs, but only slightly
[Lee 2002, Macri 2002]. Note that, if the RAS pin is used to identify
the CAS latency, this solution works well in concert with a similar
alternative solution for implementing programmable burst length
(see details below). Note also that JEDEC considered programming
CAS latency and/or burst length through pin signals very early on
[minutes of JC-42.3 meeting 60 (Attachment K) Jedec 14250,
(Attachment L) Jedec 14254].

4.1.6 Use Asynchronous DRAM
Another alternative to programmable CAS latency is to use asyn-
chronous parts instead of synchronous parts. In December 1991,
JEDEC was facing the following choice: to continue to improve
asynchronous memory design to meet the desired performance tar-
gets or develop synchronous memory standards. JEDEC could have
chosen one or several available improvements to the existing asyn-
chronous DRAM standards as an alternative. It could have devel-
oped burst EDO DRAM or toggle mode DRAM, which is a type of
asynchronous memory with source-synchronous clocking. The
advantage of an asynchronous design over a synchronous design is
that it enables a smaller die area and, at least in the case of burst-
mode EDO, potentially higher performance at the same bus speeds.
Because the rising edge of CAS drives the data out onto the bus, this
allows faster parts to emulate slower ones by increasing the CAS
pulse delay.

12.One would probably not want to create a DIMM out of DRAM parts
with different fixed CAS latencies.

18

4.2 Programmable Burst Length

In JEDEC-style DRAM systems, the ability to set the burst length to
different values is a convenience for system designers that can result
in better system performance. There are numerous subtle interac-
tions between the chosen parameters of a DRAM system (such as
request latency, burst length, bus organization, bus speed, and bus
width), and these interactions can cause the resulting performance of
that system to vary significantly, even for small changes in those
parameters [Cuppu & Jacob 2001]. The ability for a system designer
to fine-tune the burst length of the DRAMs affords the designer
more flexibility in finding the optimal combination of parameters for
his system and the expected workload for that system. In most sys-
tems the burst length is set once at system initialization and never set
again [Lee 2002, Baker 2002, Kellogg 2002, Rhoden 2002, Sussman
2002].

Alternatives that would have been available to the JEDEC com-
munity in the early to mid 1990’s and would have been considered
technically sound include the following:

• Use a short fixed burst length.

• Explicitly identify the burst length in the read or write
command.

• Program burst length by blowing fuses on the DRAM.

• Use a long fixed burst length coupled with the burst-terminate
command.

• Use a burst-EDO style protocol where each CAS pulse toggles
out a single column of data.

• Use an existing pin or a new, dedicated pin to identify a burst
length via multiple voltage levels.

4.2.1 Use Fixed (Short) Burst Length
Fixing the burst length would simply mean that each individual
SDRAM would operate with a single, predetermined burst length. In
response to a read or write command, the SDRAM would always
respond by driving/sampling the predetermined number of columns
onto/off the bus. There are two options that fall under fixing burst
length: one option would be to define that all JEDEC-compliant
DRAMs have the same burst length (e.g., 4 columns). Another
option would be to define that each DRAM part would support one
fixed burst length (e.g., either 2 or 4 or 8), but different DRAMs
would be allowed to have different burst lengths. Using fixed burst
length would have simplified testing considerably, as only one mode
of operation would need to be tested instead of two or more, and it
would have simplified design slightly, as slightly less logic would be
required on the chip.

Because of their design, PC systems do not access data from
DRAMs a single byte at a time or even eight bytes at a time; typi-
cally, the minimum amount of data read from or written to the
DRAM system is 32 or 64 bytes13. Thus, in PC systems, the burst
length of each SDRAM is typically set at initialization to a value of
bits that allows the system to send or receive 32 or 64 bytes of data
every time the CPU accesses the memory. Consequently, the PC
world would be able to tolerate a fixed burst length in the DRAM
specification. Moreover, there is evidence that most JEDEC mem-
bers could have been satisfied with a fixed burst length of four.

4.2.2 Explicitly Identify Burst Length in the Command
One option would be to design the DRAM command set so that each
column read or column write command explicitly encodes the
desired burst length. Instead of initializing the DRAM to use a burst
length of 4 or 8, and then presenting generic CAS commands, each
of which would implicitly use a burst length of 4 or 8, respectively, a
memory controller could present commands that would explicitly
use a specified burst length. For example, the memory controller
would use “BL-4” read and write commands if it desired a burst
length of four, and it would use “BL-8” read and write commands if
it desired a burst length of eight.

Such a re-definition of the command set could be accomplished in
different ways. One or more additional pins and bus lines could be
added to carry the burst-length commands, or existing pins and bus
lines could be used to carry the burst-length commands without the
addition of new pins. There are several pins whose connections with
the memory controller make up the “command bus” in a JEDEC-
style DRAM system. These pins include RE (row enable, i.e., RAS),
CE (column enable, i.e., CAS), W (write enable), CKE (clock
enable), and DQM (DQ mask), and each plays a dedicated func-
tion—the CE pin is not toggled for row activations, the RE pin is not
toggled for column reads or writes, the CKE pin is used primarily to
put the DRAM to sleep, etc. Thus, the five pins are used to support a
command set that contains less than 32 unique commands. A redefi-
nition of the command set could detach these dedicated functions
from the pins and instead homogenize the pins, turning them into a
set of command pins that, taken together, can specify exactly 32 dif-
ferent commands, including DQ Mask, Clock Disable, Row Enable,
Bank Precharge, Column Write, etc. This would make room for read
and write commands that specify the desired burst length directly,
e.g., Column Read with Burst Length 4, Column Write with Burst
Length 4, Column Read with Burst Length 8, etc. This would have
the negative side-effect of limiting the simultaneous issuing of inde-
pendent commands that is possible with the current command set
(e.g., setting DQ Mask during the same cycle as issuing a column
write), and if these special instances of simultaneous commands
were viewed as truly valuable, one could solve the problem with
additional pins.

4.2.3 Program Burst Length Using Fuses
Modern DRAMs have numerous fuses on them that, when blown,
enable redundant circuits, so that at test time a DRAM manufacturer
can, for example, disable memory arrays that contain fabrication
errors and in their place enable redundant arrays that are error-free; a
typical DRAM has thousands of such fuses [O’Donnell 2002]. One
could add one or more similar fuses that set different burst lengths.
This would enable a DRAM manufacturer to sell what are essen-
tially fixed-burst-length parts, but because they could be pro-
grammed at the last possible moment, the DRAM manufacturer
would not need separate stocks for parts with different burst lengths:
one part would satisfy for multiple values. The manufacturer could
also sell the parts with fuses intact to OEMs and embedded-systems
manufacturers, who would likely have the technical savvy necessary
to set the fuses properly, and who might want the ability to program
the burst length according to their own needs. This level of flexibility
would be almost on par with the current level of flexibility, since in
most systems the burst length is set once at system initialization and
never set again [Lee 2002, Baker 2002, Kellogg 2002, Rhoden 2002,
Sussman 2002].

4.2.4 Use Burst-Terminate Command
One can use a fixed burst length where the length is some number
large enough to satisfy developers of systems that prefer large
chunks of data and use the burst terminate command, also called
burst stop, to halt data read out of the DRAM or signal the end of
data written to the DRAM. The advantage of the scheme is that the

13.This corresponds to the size of the PC’s cache block. A processor cache
is a small, fast memory typically on the CPU. The purpose of a cache is
to amortize the high cost of memory access over many bytes and to
(hopefully) fetch data from the memory system before it is even needed,
thus saving a costly memory access in the near future.

19

burst stop command is already part of the specification [JEDEC
1993], and bursts must also be interruptible by additional commands
such as reads and writes. Therefore, an efficient pipeline of multiple
column reads is already possible by simply sending multiple read
commands spaced as closely as the desired burst length dictates
(e.g., every four cycles to achieve a burst-length of four, even if the
nominal burst length is longer). Each successive request would
implicitly terminate the request immediately preceding it, and only
the last burst in the pipeline would need to be terminated explicitly.
The disadvantage of the scheme is that it would increase pressure
slightly on the command bus: during a burst terminate command the
memory controller would not be able to control any other bank on
the same command bus. If the increase was determined to be signifi-
cant, it could be alleviated by redesigning the memory controller to
support multiple control busses (which is already supported by
memory controllers).

4.2.5 Toggle Data-Out Using CAS
JEDEC could have adopted the burst-EDO style of bursting data,
with each successive column read-out driven by toggling the CAS
pin or holding it at a low voltage until the desired number of col-
umns has been read out (e.g., holding it low for four cycles to read
out four columns of data). This would require some modification to
the specification, enabling the DRAM to distinguish between a CAS
accompanied by a new column address and a CAS signifying a
serial read-out based on the most recent column address received.
There are numerous possibilities for solving this, including the fol-
lowing:

• Re-define the command set to have two different CAS
commands: one for a new address, the other signifying a
sequential read-out based on the most recent column address
received.

• Add a pin to the command bus (which is usually thought of as
comprising signals such as RAS, CAS, WE, and CKE) that is
dedicated for the sequential read-out version of CAS. This
would be similar to IBM’s implementation of high-speed
toggle mode, where the data strobe signal uses a different pin
than the CAS signal [Kalter 1990a/b].

• Modify the DRAM to detect when the address bus has valid
data, versus high impedance, and use this to identify when the
CAS toggle represents a new column address.

The advantage of the second and third schemes, as compared to
the first, is that they both allow the memory controller to control
other DRAM banks simultaneously while the first bank is involved
in data transfer.

Note that this alternative is just as valid for synchronous DRAMs
as for asynchronous DRAMs.

4.2.6 Identify Burst Length Through Pin Voltage Levels
As in programmable CAS latency, it is possible to identify to the
DRAM the desired burst length using one of several different volt-
age levels on a pin. That pin can be a new, dedicated pin, or the pin
could be the RAS or CAS pins. In particular, using the CAS pin to
identify burst length would complement the use of the RAS pin to
identify CAS latency: at row select, the DRAM would be notified of
the desired CAS latency, which would give the chip ample time
(several cycles) to prepare internal buffers for CAS read-out, and
then at column-select, the DRAM would be notified of the desired
number of columns to transfer. Note that JEDEC considered pro-
gramming CAS latency and/or burst length through pin signals very
early on [minutes of
JC-42.3 meeting 60 (Attachment K) Jedec 14250, (Attachment L)
Jedec 14254].

4.3 Dual-Edged Clocking

The advantage of using dual-edged clocking in a JEDEC-style
DRAM bus organization is that it increases DRAM bandwidth with-
out having to drive the clock any faster and without a commensurate
increase in the clock signal’s energy consumption. Alternatives that
would have been available to the JEDEC community in the early to
mid 1990’s and would have been considered technically sound
include the following:

• Use two or more interleaved memory banks on-chip and assign
a different clock signal to each bank (e.g., use two or more out-
of-phase clocks).

• Keep each DRAM single data rate and interleave banks on the
module (DIMM).

• Increase the number of pins per DRAM.

• Increase the number of pins per module.

• Double the clock frequency.

• Use simultaneous bidirectional I/O drivers.

• Use asynchronous toggle mode.

4.3.1 Interleave On-Chip Banks
As mentioned earlier, interleaving multiple memory banks has been
a popular method used to achieve high bandwidth memory busses
using low-bandwidth devices. The technique goes back at least to
the mid-1960’s, where it was used in two of the highest performance
(and, as it turns out, best documented) computers of the day: the
IBM System/360 Model 91 [Anderson 1967] and Seymour Cray’s
Control Data 6600 [Thornton 1970]. In an interleaved memory sys-
tem, the data bus uses a frequency that is faster than any one DRAM
bank can support; the control circuitry toggles back and forth
between multiple banks to achieve this data rate. For example, if a
DRAM bank can produce a new chunk of data every 10ns, one can
toggle back and forth between two banks to produce a new chunk
every 5ns, or round-robin between four banks to produce a new
chunk every 2.5ns, thereby effectively doubling or quadrupling the
data rate achievable by any one bank. An alternative to using dual-
edged clocking (e.g., to double or triple or even quadruple the mem-
ory bandwidth of SDRAM without using both edges of the clock to
send/receive data) is to specify two, three, or four independent banks
per DRAM (respectively) and assign each bank its own clock signal.
The memory controller would send one request to the DRAM, and
that request would be handed off to each bank in synch with the
clock assigned to that bank. Thus each bank would receive its
request slightly advanced or delayed with respect to the other banks.
There are two ways to create the different clock signals:

• The different clock signals driving each of the different banks
could be generated by the memory controller (or any entity
outside the DRAM). Thus, if there were two interleaved banks,
the memory controller would send two clock signals; if there
were four interleaved banks, the memory controller would send
four clock signals; and so on.

• The DRAM could receive one clock signal and delay and
distribute it internally to the various banks on its own. Thus, if
there were two interleaved banks, the DRAM would split the
incoming clock signal two ways, delaying the second a half-
phase; if there were four interleaved banks, the DRAM would
split the incoming clock signal four ways, delaying the second
clock one-quarter of a phase, delaying the third clock one-half
of a phase, and delaying the last clock three quarters of a phase;
and so on.

20

The first implementation would require extra DRAM pins (one CK
pin for each bank); the latter would require on-DRAM clock genera-
tion and synchronization logic.

4.3.2 Interleave Banks on the Module
Instead of increasing the bandwidth of individual DRAMs, an argu-
ment could be made that the only place it matters is at the DIMM
level. Therefore, one could take SDRAM parts and create a DDR
DIMM specification where on-module circuitry takes a single
incoming clock and interleaves two or more banks of DRAM—
transparently, as far as the memory controller is concerned. Ken-
tron’s success [Kentron 2002] shows that this is certainly within our
limits, even at very high data rates: they currently take DDR parts
and interleave them transparently at the module level to achieve qua-
druple data rate DIMMs (see the website www.quadbandmem-
ory.com for details).

4.3.3 Increase DRAM Data Width
To achieve higher bandwidth per DRAM, the trend in recent years
has been not only to increase DRAM speed but also increase the
number of data-out pins: x32 parts are now common. Every increase
from x4 to x8 to x16 and so on doubles the DRAM’s data rate. Dou-
bling the data rate by doubling the data width of existing parts
requires very little engineering know-how. It only requires the addi-
tion of more pins and doubling the width of the data bus to each indi-
vidual DRAM. Note that the number of data pins has increased from
x1 parts in late 1980’s to x32 parts today [Przybylski 1996], while
over the same time period the data rate has increased from 16MHz
to the 166MHz clocks found in DDR-333 SDRAM today. JEDEC,
therefore, could have simply put their weight more firmly behind
this trend and increased bandwidth by increasing pin-out. The
advantage of this approach is that it combines very well with the pre-
vious alternative—interleaving multiple banks at the module level—
because doubling the data width of a DRAM decreases the number
of DRAM parts needed to achieve the DIMM data width, effectively
doubling the number of independent banks one can put on the
DIMM. If the DRAM pin-out increases, then fewer DRAMs would
be needed per DIMM to create the 64-bit data bus standard in PC-
compatible systems. This would leave extra room on the DIMM for
more DRAMs that could make up extra banks to implement an inter-
leaved system.

4.3.4 Increase Module Data Width
As mentioned earlier, one could argue that the DIMM bandwidth is
more important than the bandwidth of an individual DRAM. There-
fore, one could simply increase the data width of the memory bus
(the number of wires between the DIMMs and the memory control-
ler) to increase bandwidth, without having to increase the clock
speed of the individual DRAMs at all.

4.3.5 Double the Clock Frequency
An alternative to using a dual-edged clock is to use single-edged
clock and simply speed up the clock. There are several advantages of
an single-edged clocking scheme over a dual-edged clocking
scheme (cf. Figure 17). One advantage illustrated in the figure is the
existence of more clock edges to be used to drive data onto the bus
and sample data off the bus. Another advantage is that the clock need
not be as symmetric as it is in a dual-edged clocking scheme: a sin-
gle-edged clock’s duty cycle need not be 50%, as it needs to be for a
dual-edged clock, and the rise and fall times (i.e., slew rates) need
not match, as they need to for a dual-edged clock. Consequently, one
can achieve the same speed clock in a single-edged scheme with
much less effort than in a dual-edged clocking scheme. The disad-
vantage of this alternative is that it requires more engineering effort
than simply widening the memory bus or increasing the number of
data pins on a DRAM.

For perspective, increasing clock speed in a JEDEC DRAM
requires less effort than in a Rambus DRAM because the speeds are
much less aggressive. If the clock is currently being driven so fast
that it looks like a sinusoidal or saw-tooth waveform, it cannot be
driven any faster without lowering the voltage swing. If the clock
has headroom—if there are long periods where it is “flat” and not
rising or falling—then it can be driven faster. JEDEC-style bus orga-
nizations are more conservative than Rambus-style bus organiza-
tions in their clock speeds, so they have more clock headroom.
Therefore, using a single-edge clocking scheme and speeding up the
clock is more realistic an alternative for JEDEC DRAMs than for
Rambus DRAMs.

4.3.6 Use Simultaneous Bidirectional I/O
Running the data at the same rate as the clock doubles a DRAM’s
bandwidth over previous, single-edged clock designs without an
increase in the number of data pins. An alternative is to use simulta-
neous bidirectional I/O, in which it is possible to conduct a read
from the DRAM and a write to the DRAM at exactly the same
time—that is, both data values (the read data and the write data) are
on the bus simultaneously, which is an effective doubling of the
available bandwidth, and it does not require additional data pins.
Such a scheme would require structural changes at the DRAM side
to accommodate reading and writing simultaneously, and those
changes would most likely resemble the ESDRAM design by
Enhanced Memory Systems [ESDRAM 1998], which has been pro-
posed for DDR II [Davis et al. 2000]. ESDRAM places a buffer after
the sense amps that holds an entire DRAM row for reading and
allows concurrent writes to the DRAM array—once the read data is
in the buffer the sense amplifiers are no longer needed.

4.3.7 Use (Asynchronous) Toggle Mode
An alternative to double data rate is to use asynchronous DRAMs
with toggle mode. As mentioned, researchers using toggle mode in
the late 1980’s in a laboratory setting had already achieved the same
data rates in an asynchronous DRAM as would later be achieved in
PC100 SDRAM. Toggle mode was evidently a competitive alterna-
tive at the time to synchronous DRAM. Presumably, this would
require one or more additional pins on the DRAM package: for
example, in IBM’s implementation, the data was clocked out of the
DRAM by a dedicated toggle pin separate from CAS [Kalter
1990a/b].

4.4 On-Chip PLL/DLL

DDR SDRAMs use an on-chip delay locked loop (DLL) circuit to
ensure that the DRAM transmits its data and DQS signal to the
memory controller as closely as possible to the next appropriate
edge of the system clock. Its use is specified because the clock rates
in DDR are high enough to warrant relatively strong methods for
reducing the effects of dynamic changes in timing skew. Alternatives
that would have been available to the JEDEC community in the
early to mid 1990’s and would have been considered technically
sound include the following:

• Achieve high bandwidth using more DRAM pins or module
pins, not clock frequency.

• Use a Vernier method to measure & account for dynamic
changes in skew.

• Put the DLL on the memory controller.

• Use off-chip (on-module) DLLs.

• Use asynchronous DRAM, for example toggle mode or Burst
EDO.

21

4.4.1 Go Wider, Not Faster
As the previous section indicates, there are numerous ways to
achieve higher bandwidth at the DRAM, DIMM, or memory-system
level, and many of the methods that achieve higher bandwidth are
easier to implement than increasing clock speed. The use of a DLL
is dictated only by the desired increase in clock speed; therefore one
can forgo the use of an on-chip DLL by increasing DRAM or
DIMM data width.

4.4.2 Vernier Mechanism
There are two main components to the uncertainty of signal propa-
gation time: the first is a static component that is due to differences
in process technologies, process variations, electrical loading of an
unknown number of memory modules, etc. The second is a dynamic
component that is typically due to temperature or voltage fluctua-
tions. Some fluctuations change too fast to be handled effectively,
but most of the fluctuations in voltage and temperature change over
a relatively long time period: most fluctuations in voltage are associ-
ated with the 60Hz AC power cycle, which is a relatively long time-
span, and most temperature fluctuations occur on the order of milli-
seconds or longer [Lee 2002, Macri 2002]. In many DDR systems,
the static component is corrected by using a Vernier mechanism in
the memory controller at system initialization—it is essentially a
trial-and-error method in which the upper and lower limits of timing
failure are found and the midpoint is used for signal transmission
(analogous to setting the tracking on one’s VCR by going forward
and backward to the points of noise and then leaving the tracking set
somewhere in between) [Lee 2002]. The dynamic component is then
corrected by the on-chip DLL.

An alternative to the on-chip DLL is to perform recalibration of
the Vernier correction often enough to account for the slower
changes in voltage and temperature, as opposed to performing the
timing correction only once at system initialization. Assuming that
the most significant voltage fluctuations are associated with the
60Hz AC power supply and that most of the temperature fluctuations
occur on the order of milliseconds or longer [Lee 2002, Macri
2002], recalibration would be needed roughly once or twice every
millisecond. This would not likely impose a huge burden on perfor-
mance; note that at present every row in a typical DRAM system
must be refreshed once every 60ms, and the refresh cost (which
amounts to refreshing a new row every couple dozen microseconds)
only imposes a few percent overhead on the system [Cuppu et al
1999, Cuppu et al. 2001].

Note that JEDEC members suggest that the existing on-chip DLL
will be insufficient at future speeds, and that a Vernier mechanism
will be inevitable [Lee 2002, Macri 2002, Kellogg 2002].

4.4.3 Move the DLL onto the Memory Controller
Because the DLL is only used on the DRAM to synchronize outgo-
ing data and DQS signals with the global clock for the benefit of the
memory controller [Lee 2002, Rhoden 2002, Karabotsos 2002,
Baker 2002, Macri 2002], it is possible to move that functionality
onto the memory controller itself. The memory controller could
maintain two clocks: the first, for example, could be synchronized
with the global clock, and the second could be delayed 90°. The
incoming DQS and data signals could be given a variable delay, the
amount of delay controlled by a DLL/PLL on the memory controller
so that the DQS signal would be in phase with the delayed clock.
This arrangement could align the incoming data so that the eye
would be centered on the global clock signal, which could be used to
sample the data. The weakness of this scheme is that, as clock
speeds increase to very high rates, the timing differences between
different DIMMs would become significant. Therefore, each DIMM
in the system would require a different phase shift between the
memory controller’s two clocks, which would imply that the mem-

ory controller would need to maintain a separate timing structure for
each DIMM14.

4.4.4 Move the DLL onto the DIMM
One alternative is to place the DLL on the DDR module instead of
the DDR device itself. Sun has used this alternative for many years
[Becker 2002, O’Donnell 2002, Prein 2002, Walker 2002]; more-
over, it is similar in nature to the off-chip driver mechanism used by
IBM in their high-speed toggle mode DRAM [Kalter 1990a/b]. As
mentioned previously, the only function of the DLL on the DDR
SDRAM is to synchronize the outgoing DQS and data signals with
the global clock. This can be accomplished just as easily on the
module, especially if the module is buffered or registered (which
simply means that the module has local storage to hold the com-
mands and addresses that are destined for the module’s DRAMs).
Note that it is presently common practice for engineers to disable
DDR’s on-chip DLL to achieve higher performance—the on-chip
DLL is a convenience, not a necessity [Rhoden 2002, Kellogg 2002,
Macri 2002]. A module-level DLL is perfectly workable; even if the
data exiting the DRAM is completely out of synch with the global
clock, the module can use its DLL to delay the clock/s, commands,
and addresses so that the output of the DRAMs is in synch with the
global clock—this might come at the expense of an extra CAS-
latency cycle. A similar alternative was considered by JEDEC (cf.
JC-42.3 meeting 78, March 20, 1996; JC-42.3 interim meeting, Jan-
uary 31, 1996; JC-42.5 meeting 21, September 15, 1994; JC-42.5
meeting 18, March 8, 1994).

5 REFERENCES

D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo. “The IBM System/360
Model 91: Machine philosophy and instruction-handling.” IBM Jour-
nal of Research and Development, vol. 11, no. 1, pp. 8–24, January
1967.

V. Cuppu and B. Jacob. “Concurrency, latency, or system overhead: Which
has the largest impact on uniprocessor DRAM-system performance?”
In Proc. 28th International Symposium on Computer Architecture (IS-
CA'01). Goteborg Sweden, June 2001.

V. Cuppu, B. Jacob, B. Davis, and T. Mudge. “A performance comparison of
contemporary DRAM architectures.” In Proc. 26th Annual Internation-
al Symposium on Computer Architecture (ISCA’99), Atlanta GA, May
1999, pp. 222–233.

V. Cuppu, B. Jacob, B. Davis, and T. Mudge. “High performance DRAMs in
workstation environments.” IEEE Transactions on Computers, vol. 50,
no. 11, pp. 1133–1153. November 2001. (TC Special Issue on High-
Performance Memory Systems)

W. Dally and J. Poulton. Digital Systems Engineering. Cambridge University
Press, Cambridge UK, 1998.

B. Davis, T. Mudge, and B. Jacob. “The New DRAM Interfaces: SDRAM,
RDRAM and Variants.” In High Performance Computing, M. Valero,
K. Joe, M. Kitsuregawa, and H. Tanaka, Editors, Vol. 1940 of Lecture
Notes In Computer Science, pp. 26-31. Springer Publishing, Tokyo, Ja-
pan, 2000.

B. Dipert. “The slammin, jammin, DRAM scramble.” EDN, vol. 2000, no. 2,
pp. 68–82, January 2000.

ESDRAM. Enhanced SDRAM 1M x 16. Enhanced Memory Systems, Inc.,
http://www.edram.com/products/datasheets/16M_esdram0298a.pdf,
1998.

H. Kalter, J. Barth, J. Dilorenzo, C. Drake, J. Fifield, W. Hovis, G. Kelley, S.
Lewis, J. Nickel, C. Stapper, and J. Yankosky, “A 50 ns 16 Mb DRAM

14.Most DLLs/PLLs require many cycles to lock onto a signal and create
the correct phase shift. Forcing the memory controller to wait many
cycles before switching from reading from one DIMM to reading from
another would be an unsatisfactory situation. In general, DLLs respond
faster than PLLs [Pricer 2002].

22

with a 10 ns data rate.” In 37th IEEE International Solid-State Circuits
Conference (ISSCC), pp. 232–233. February 1990a. San Francisco CA.

H.L. Kalter, C.H. Stapper, J.E. Barth, Jr., J. DiLorenzo, C.E. Drake, J.A.
Fifield, G.A. Kelley, Jr., S.C. Lewis, W.B. van der Hoeven, J.A. Yan-
kosky. “ A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip
ECC.” IEEE Journal of Solid-State Circuits, vol. 25, no. 5 , pp. 1118–
1128, October 1990b.

C. W. Padgett and F. L. Newman. Memory Clocking System. United States
Patent number 3,943,496. Submitted on September 9, 1974.

B. Prince. High Performance Memories. John Wiley and Sons, West Sussex,
England, 2000.

S. Przybylski. New DRAM Technologies: A Comprehensive Analysis of the
New Architectures. MicroDesign Resources, Sebastopol CA, 1996.

Rambus. 16/18Mbit & 64/72Mbit Concurrent RDRAM Data Sheet. Rambus,
http://www.rambus.com/docs/Cnctds.pdf, 1998.

Rambus. Direct RDRAM 64/72-Mbit Data Sheet. Rambus, http://www.ram-
bus.com/docs/64dDDS.pdf, 1998.

Rambus. Direct RDRAM 256/288-Mbit Data Sheet. Rambus, ht-
tp://www.rambus.com/developer/downloads/rdram.256s.0060-
1.1.book.pdf, 2000.

J. E. Thornton. Design of a Computer: The Control Data 6600. Scott, Fores-
man and Co., Glenview IL, 1970.

5.1 Persons Interviewed

Jacob Baker

Henry Becker

Jan DuPreez

Bob Goodman

Chris Karabotsos

Mark Kellogg

Terry Lee

Joe Macri

Art O'Donnell

Frank Prein

David Pricer

Kevin Ryan

Desi Rhoden

Howard Sussman

Alan Walker

