Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 1

## **CS-590.26, Spring 2014**

# High Speed Memory Systems: Architecture and Performance Analysis

#### Introduction

#### Credit where credit is due:

Slides contain original artwork (© Jacob, Wang 2005)



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 2

#### Stuff that will\* be covered in this class:

- DRAM Device Architecture
- Memory System Organization
- System Controller
- DRAM Access Protocol
- Performance Analysis
- Reliability (Error detection/correction)
- Signalling (Data transport/reception)
- New System Architecture (HMC, etc.)
- Non Volatile RAM (Flash)
- A lot of other stuff...



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 3

# Stuff you need to know in order to understand the stuff that will be covered in this class:

- Computer Architecture
- Computer Organization
- Basic Circuit-Design Concepts
- Caches (buffering)
- Pipelines (buffering & forwarding)
- Scheduling (queueing, out-of-order, etc.)
- Concurrency & Parallelism
- CPU Design in particular, Control
- HW/SW Performance Analysis
- Hopefully not a lot of other stuff...



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 4

#### Stuff that will\* be covered in this class:

- DRAM Device Architecture
- Memory System Organization
- System Controller
- DRAM Access Protocol
- Performance Analysis
- Reliability (Error detection/correction)
- Signalling (Data transport/reception)
- New System Architecture (HMC, etc.)
- Non Volatile RAM (Flash)
- A lot of other stuff...



\* to be read as "can" (list covers full semester)

Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Maryland ECE Dept.

SLIDE 5

#### **DRAM Device Architecture I**











Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 6

#### **DRAM Device Architecture II**



Today, DRAMs have multiple banks internally



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 7

#### **Memory System Organization**



Channel?
Rank?
Bank?
Row?
Column?





Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 8

## **System Controller**



Heavy demand placed on memory system
Heavier still in SMP/SMT/CMP system
System Controller == System traffic cop



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 9

#### **DRAM Access Protocol**







Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 10

# **Memory Request Overview**



<sup>\*\*</sup> Steps not required for some processor/system controllers. protocol dependant.

**Progression of a Memory Read Transaction Request Through Memory System** 



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 11

## "Memory Latency"



A: Transaction request may be delayed in Queue

B: Transaction request sent to Memory Controller

C: Transaction converted to Command Sequences (may be queued)

D: Command/s Sent to DRAM

 $E_1$ : Requires only a **CAS** or

E<sub>2</sub>: Requires **RAS** + **CAS** or

E<sub>3</sub>. Requires **PRE + RAS + CAS** 

F: Data is staged at controller

G: Transaction sent back to CPU

"DRAM Latency" = A + B + C + D + E + F + G



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 12

UNIVERSITY OF MARYLAND

# **Performance Analysis**



t<sub>RC</sub> = 60ns, burst of eight, 8B wide channel

Memory Systems Architecture and Performance Analysis

Spring 2005

ENEE 759H Lecture 1.fm

Bruce Jacob David Wang

University of Maryland ECE Dept.

SLIDE 11

# UNIVERSITY OF MARYLAND

## Reliability





**ECC Syndrome** 

Bit position 11 is rotten

 $R = \{ 011010011110 \}$ One bit error. Can we  $R = \{ 011010011100 \}$ detect and correct? **Recompute check bits**  $R_{0001} = R_{0011} \oplus R_{0101} \oplus R_{0111} \oplus R_{1001} \oplus R_{1001} = 1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 1$  $\mathbf{R}_{0010} = \mathbf{R}_{0011} \oplus \mathbf{R}_{0110} \oplus \mathbf{R}_{0111} \oplus \mathbf{R}_{1010} \oplus \mathbf{R}_{1011} = 1 \oplus 0 \oplus 0 \oplus 1 \oplus 0 = 0$  $R_{0100} = R_{0101} \oplus R_{0110} \oplus R_{0111} \oplus R_{1100}$ = 1(<del>+</del>) 0(<del>+</del>) 1(<del>+</del>) 0  $R_{1000} = R_{1001} \oplus R_{1010} \oplus R_{1011} \oplus R_{1100}$ = 1(<del>+</del>) 1(<del>+</del>) 0(<del>+</del>) 0 = 0XOR old check bits against new check bits  $R_{0001}$  $R_{1000}$  $R_{0100}$  $R_{0010}$ Old New

Syndrome != 0000

Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 14

# Signalling

#### The Digital Fantasy



Pretend that the world looks like this

But...



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 15



## **DRAM Interface: Signals**



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 16

## **Interface: Signal Propagation**



#### **Ideal Transmission Line**

 $\sim 0.66c = 20 \text{ cm/ns}$ 

PC Board + Module Connectors + Varying Electrical Loads

= Rather non-Ideal Transmission Line



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 17

# Interface: Clocking Issues





What Kind of Clocking System?



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 18

## **Path Length Differential**







Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 19

#### **Future Trends I**

|                                        | 2004           | 2007           | 2010           | 2013           | 2016           |
|----------------------------------------|----------------|----------------|----------------|----------------|----------------|
| Semi Generation (nm)                   | 90             | 65             | 45             | 32             | 22             |
| CPU MHz                                | 3990           | 6740           | 12000          | 19000          | 29000          |
| MLogicTransistors/cm^2                 | 77.2           | 154.3          | 309            | 617            | 1235           |
| High Perf chip pin count               | 2263           | 3012           | 4009           | 5335           | 7100           |
| High Performance chip cost (cents/pin) | 1.88           | 1.61           | 1.68           | 1.44           | 1.22           |
| Memory pin cost (cents/pin)            | 0.34 -<br>1.39 | 0.27 -<br>0.84 | 0.22 -<br>0.34 | 0.19 -<br>0.39 | 0.19 -<br>0.33 |
| Memory pin count                       | 48-160         | 48-160         | 62-208         | 81-270         | 105-351        |

Trend: Free Transistors & Costly Interconnects



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 20

# UNIVERSITY OF MARYLAND

#### **Future Trends II**



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 21

#### Research Areas: Topology



#### **Unidirectional Topology:**

- Write Packets sent on Command Bus
- Pins used for Command/Address/Data
- Further Increase of Logic on DRAM chips



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 22

## **Memory Commands?**



Instead of A[] = 0; Do "write 0"



Move Data inside of DRAM or between DRAMs.

Why do STREAMadd in CPU?

A[] = B[] + C[]

Active Pages \*(Chong et. al. ISCA '98)



Spring 2014

CS-590.26 Lecture 1

Bruce Jacob David Wang

University of Crete

SLIDE 23

- Grading
- Projects
- Textbook

