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Practice Set C: Problems 1-3

1.
(a)
radiation = inline(vectorize('10000/(4*pi*((x - x0)^2 + (y - y0)^2 + 1))'), 'x', 'y', 'x0', 'y0')  

radiation =

     Inline function:

     radiation(x,y,x0,y0) = 10000./(4.*pi.*((x - x0).^2 + (y - y0).^2 + 1))  

x = zeros(1, 5); y = zeros(1, 5);  

for j = 1:5 


x(j) = 50*rand; 


y(j) = 50*rand; 

end  

[X, Y] = meshgrid(0:0.1:50, 0:0.1:50);  

contourf(X, Y, radiation(X, Y, x(1), y(1)) + radiation(X, Y, x(2), y(2)) + radiation(X, Y, x(3), y(3)) + radiation(X, Y, x(4), y(4)) + radiation(X, Y, x(5), y(5)), 20); colormap('gray') 
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 It is not so clear from the picture where to hide, although it looks like the Captain has a pretty good chance of surviving a small number of shots.  But 100 shots may be enough to find him. Intuition says he ought to stay close to the boundary.

(b)
Below is a series of commands that place Picard at the center of the arena, fires the death ray 100 times, and then determines the health of Picard.  It uses the following function file lifeordeath, which computes the fate of the Captain after a single shot.

function r = lifeordeath(x1, y1, x0, y0)

%This file computes the number of illumatons.

%that arrive at the point (x1, y1), assuming the death,

%ray strikes 1 meter above the point (x0, y0).

%If that number exceeds 50,a "1" is returned in the 

%variable "r"; otherwise a "0" is returned for "r".

dosage = 10000/(4*pi*((x1 - x0)^2 + (y1 - y0)^2 + 1));

if dosage>50

    r = 1;

else

    r = 0;

end
Here is the series of commands to test the Captain's survival possibilities:

x0 = 25; y0 = 25; h = 0;

for n = 1:100


x1 = 50*rand;

y1 = 50*rand;

r = lifeordeath(x1, y1, x0, y0);

h = h + r;

end

if h>0


disp('The Captain is dead!')

else


disp('Picard lives!')

end   

The Captain is dead!  

In fact if you run this sequence of commands multiple times, you will see the Captain die far more often than he lives.

(c)
So let's do a Monte Carlo simulation to see what his odds are:

x0 = 25; y0 = 25; c = 0;

for k = 1:100


h = 0;

for n = 1:100

x1 = 50*rand;

y1 = 50*rand;

r = lifeordeath(x1, y1, x0, y0);

h = h + r;

end

if h>0


c = c;

else


c = c + 1;

end

end

disp(strcat('The chances of Picard surviving are = ', num2str(c/100)))  

The chances of Picard surviving are =0.12  

We ran this a few times and saw survival chances ranging from 9% to 16%.

(d)

x0 = 37.5; y0 = 25; c = 0;

for k = 1:100


h = 0;

for n = 1:100

x1 = 50*rand;

y1 = 50*rand;

r = lifeordeath(x1, y1, x0, y0);

h = h + r;

end

if h>0


c = c;

else


c = c + 1;  

end

end

disp(strcat('The chances of Picard surviving are = ', num2str(c/100)))   

The chances of Picard surviving are =0.16  

This time the numbers were between 10 and 18%.  Let's keep moving him toward the periphery.

(e)

x0 = 50; y0 = 25; c = 0;

for k = 1:100


h = 0;

for n = 1:100

x1 = 50*rand;

y1 = 50*rand;

r = lifeordeath(x1, y1, x0, y0);

h = h + r;

end

if h>0


c = c;

else


c = c + 1;  

end

end

disp(strcat('The chances of Picard surviving are = ', num2str(c/100)))  

The chances of Picard surviving are =0.45  

The numbers now hover between 36 and 47% upon multiple runnings of this scenario; so finally, suppose he cowers in the corner.

x0 = 50; y0 = 50; c = 0;

for k = 1:100


h = 0;

for n = 1:100

x1 = 50*rand;

y1 = 50*rand;

r = lifeordeath(x1, y1, x0, y0);

h = h + r;

end

if h>0


c = c;

else


c = c + 1;  

end

end

disp(strcat('The chances of Picard surviving are = ', num2str(c/100))) 

The chances of Picard surviving are =0.64  

We saw numbers between 56 and 64%.  

They say a brave man dies but a single time, but a coward dies a thousand deaths.  But the person who said that probably never encountered a Cardassian.  Long live Picard!

2.

(a)
Consider the status of the account on the last day of each month.  At the end of the first month, the account has M + M(J = M(1 + J) dollars.  Then at the end of the second month the account contains [M(1 + J)](1 + J) = M(1 + J)2 dollars.  Similarly, at the end of n months, the account will clearly hold M(1 + J)n dollars.  So our formula is

T = M(1 + J)n .

(b)
Now we take M = 0 and S dollars deposited monthly.  At the end of the first month the account has S + S(J = S(1 + J) dollars.  S dollars are added to that sum the next day, and then at the end of the second month the account contains [S(1 + J) + S](1 + J) = S[(1 + J)2 + (1 + J)] dollars.  Similarly, at the end of n months, the account will hold    

S[(1 + J)n + ( + (1 + J)]

dollars.  We recognize the geometric series—with the leading term missing, so the amount T in the account after n months will equal

T = S[((1 + J)n+1 ( 1)/((1 + J) –  1) – 1] = S[((1 + J)n+1 – 1)/J – 1].

(c)
By combining the two models it is clear that in an account with an initial balance M and monthly deposits S, the amount of money T after n months is given by

T = M(1 + J)n  +  S[((1 + J)n+1 – 1)/J – 1].

(d)
We are asked to solve the equation

(1 + J)n  = 2

with the values J = 0.05/12 and J = .1/12.

months = solve('(1 + (0.05)/12)^n = 2')  

years = months/12  
months =

166.70165674865177999568182581405

years =

13.891804729054314999640152151171  

months = solve('(1 + (0.1)/12)^n = 2')  

years = months/12  

months =

83.523755900375880189555262964714

years =

6.9603129916979900157962719137262  

If you double the interest rate, you halve the time to achieve the goal.

(e)
solve('1000000 = S*((((1 + (0.08/12))^(35*12 + 1) - 1)/(0.08/12)) - 1)')  

ans =

433.05508895308253849797798306477  

You need to deposit $433.06 every month.

(f)
solve('1000000 = 300*((((1 + (0.08/12))^(n + 1) - 1)/(0.08/12)) - 1)')  

ans =

472.38046393034711345013989217261  

ans/12  

ans =

39.365038660862259454178324347717  

You have to work nearly 5 more years.

(g)
First, taking the whole bundle at once, after 20 years the $65,000 left after taxes generates

format bank; option1 = 65000*(1 + (.05/12))^(12*20)  

option1 =

     176321.62  

The stash grows to about $176,322.  The second option yields

S = .8*(100000/240)  

S =

        333.33  

option2 = S*((1/(.05/12))*(((1 + (.05/12))^241) - 1) - 1)  

option2 =

     137582.10  

You only accumulate $137,582 this way.  Taking the lump sum up front is clearly the better strategy.

(h)
rates = [.13, .15, -.03, .05, .10, .13, .15, -.03, .05];  

clear T

for k = 0:4


T = 50000;

for j = 1:5 


T = T*(1 + rates(k + j));

end

disp([k + 1,T])

end  

          1.00      72794.74

          2.00      72794.74

          3.00      72794.74

          4.00      72794.74

          5.00      72794.74  

The results are all the same, you wind up with $72,795 regardless of where you enter in the cycle, because the product (1(j(5 (1 + rates(j)) is independent of the order in which you place the factors.  If you put the 50K in a bank account paying 8%, you get

50000*(1.08)^5  

ans =

      73466.40  

that is $73,466—better than the market.  The market's volatility hurts you compared to the bank's stability.  But of course that assumes you can find a bank that will pay 8%.  Now let's see what happens with no stash, but an annual investment instead.  The analysis is more subtle here.  Set S = 10,000.  At the end of one year, the account contains S(1 + r1); then at the end of the second year (S(1 + r1) + S)(1 + r2), where we have written rj for rates(j).  So at the end of 5 years, the amount in the account will be the product of S and the number

(j(1 (1 + rj) + (j(2 (1 + rj) + (j(3 (1 + rj) + (j(4 (1 + rj) + (1 + r5).

If you enter at a different year in the business cycle the terms get cycled appropriately.  So now we can compute

format short  

clear T TT  

for k = 0:4


T = ones(1, 5);

for j = 1:5 


TT = 1;

for l = j:5



TT = TT*(1 + rates(k + l));


end


T(j) = TT;

end

disp([k + 1,sum(T)])

end  

    1.0000    6.1196

    2.0000    6.4000

    3.0000    6.8358

    4.0000    6.1885

    5.0000    6.0192  

Multiplying each of these by $10,000 gives the portfolio amounts for the five scenarios.   Note all are less than what one obtains by investing the original $50,000 all at once—not surprising.  But in this model it matters where you enter the business cycle.  It's clearly best to start your investment program when a recession is in force and end in a boom.  Incidentally, the bank model yields in this case

(1/.08)*(((1.08)^6) - 1) - 1  

ans =

    6.3359  

which is better than some investment models and worse than others.
3.

(a)

First we define an expression that computes whether Tony gets a hit or not during a single at bat, based on a random number chosen between 0 and 1.  If the random number is less than or equal to 0.339, Tony is credited with a hit, whereas if the number exceeds 0.339, he is retired by the opposition.  

Here is an M-file, called atbat.m, which computes the outcome of a single at bat:

%This file simulates a single at bat.

%The variable r contains a "1" if Tony gets a hit,

%that is, if rand <= 0.339; and it contains a "0"

%if Tony fails to hit safely, that is, if rand > 0.339.

s = rand;

if s <= 0.339

    r = 1;

else

    r = 0;

end

We can simulate a year in Tony's career by evaluating the script M-file atbat 500 times.  The following program does exactly that, then it computes his average by adding up the number of hits and dividing by the number of at bats, that is 500.  We build in a variable that allows for a varying number of at bats in a year, although we shall only use 500.

function y = yearbattingaverage(n)

%This function file computes Tony's batting average for

%a single year, by simulating n at bats, adding up the 

%number of hits, and then dividing by n.

X = zeros(1, n);

for i = 1:n

    atbat;

    X(i) = r;

end

y = sum(X)/n;  

yearbattingaverage(500)  

ans =

    0.3200  

(b)
Now let's write a function M-file that simulates a 20-year career.  As with the number of at bats in a year, we'll allow for a varying length career.

function y = career(n,k)

%This function file computes the batting average for each 

%year in a k-year career, asuming n at bats in each year.  %Then it lists the maximum, minimum and lifetime average.

Y = zeros(1, k);

for j = 1:k

    
Y(j) = yearbattingaverage(n);

end

disp(strcat('Best avg: ', num2str(max(Y))))

disp(strcat('Worst average: ', num2str(min(Y))))

disp(strcat('Lifetime avg: ', num2str(sum(Y)/k)))
career(500, 20)  

Best avg:0.396

Worst average:0.29

Lifetime avg:0.341  

(c)

Now we run the simulation four more times:

career(500, 20)  

Best avg:0.372

Worst average:0.292

Lifetime avg:0.3342  

career(500, 20)  

Best avg:0.39

Worst average:0.29

Lifetime avg:0.345  

career(500, 20)  

Best avg:0.378

Worst average:0.312

Lifetime avg:0.3428  

career(500, 20)  

Best avg:0.406

Worst average:0.324

Lifetime avg:0.3473  

(d)
The average for the five different 20-year careers is:

(.344 + .340 + .338 + .343 + .331)/5  

ans =

    0.3392  

How about that!

If we ran the simulation 100 times and took the average it would likely be very close to .339.

