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Abstract. We study the extent to which the Hausdorff dimension and the
dimension spectrum of a fractal measure supported on a compact subset of a
Banach space are affected by a typical mapping into a finite-dimensional Eu-
clidean space. Let X be a compact subset of a Banach space B with thickness
exponent τ(X) and Hausdorff dimension dimH(X). Let M be any subspace
of the Borel measurable functions from B to R

m that contains the space of
linear functions and is contained in the space of locally Lipschitz functions.
We prove that for almost every (in the sense of prevalence) function f ∈ M ,
one has dimH(f(X)) > min{m, dimH(X)/(1 + τ(X))}. We also prove an
analogous result for a certain part of the dimension spectra of Borel probabil-
ity measures supported on X. The factor 1/(1 + τ(X)) can be improved to
1/(1+ τ(X)/2) if B is a Hilbert space. Since dimension cannot increase under
a locally Lipschitz function, these theorems become dimension preservation
results when τ(X) = 0. We conjecture that many of the attractors associated
with the evolution equations of mathematical physics have zero thickness. The
sharpness of our results in the case τ(X) 6= 0 is discussed.

1. Introduction

Many infinite-dimensional dynamical systems have been shown to have com-
pact finite-dimensional attractors [3, 4, 24, 27, 28]. Such attractors exist for a
variety of the evolution equations of mathematical physics, including the Navier-
Stokes system, various classes of reaction-diffusion systems, nonlinear dissipative
wave equations, and complex Ginzburg-Landau equations. When an attractor is
measured experimentally, one observes a ‘projection’ of the attractor into finite-
dimensional Euclidean space. This technique of observation via projection leads to
a natural and fundamental question. How accurately does the image of the attrac-
tor reflect the attractor itself? We address this question from a dimension-theoretic
perspective and we consider the following problem. For an attractor of an infinite-
dimensional dynamical system, how is its dimension affected by a typical projection
into a finite-dimensional Euclidean space?

One may define the dimension of an attractor in many different ways. Setting
aside dynamics, the attractor may be viewed as a compact set of points in a metric
space. Viewing the attractor in this light, the dimension of the attractor may be
defined as the box-counting dimension or the Hausdorff dimension of the attracting
set. Measure-dependent notions of attractor dimension take into account the dis-
tribution of points induced by the dynamics and are thought to be more accurately
measured from numerical or experimental data. One often analyzes the ‘natural
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measure,’ the probability measure induced by the statistics of a typical trajectory
that approaches the attractor. A natural measure is not known to exist for arbi-
trary systems, but it does exist for Axiom A attractors and for certain classes of
systems satisfying conditions weaker than uniform hyperbolicity. See [14, 29] for
expository discussions of systems that are known to have natural measures.

The dimension spectrum (Dq spectrum) characterizes the multifractal structure
of an attractor. Given a Borel measure µ with compact support X in some metric
space, for q > 0 and q 6= 1 let

(1.1) Dq(µ) = lim
ǫ→0

log
∫

X

[
µ(B(x, ǫ))

]q−1
dµ(x)

(q − 1) log ǫ
,

provided the limit exists, where B(x, ǫ) is the ball of radius ǫ centered at x. (If
the limit does not exist, define D+

q (µ) and D−
q (µ) to be the lim sup and lim inf,

respectively.) Let

D1(µ) = lim
q→1

Dq(µ),

again provided the limit exists. This spectrum includes the box-counting dimension
(D0), the information dimension (D1), and the correlation dimension (D2). In
particular, when q = 0 the dimension depends only on the support X of µ and
we write D0(X) = D0(µ). See Section 2 for a discussion of this definition and its
relationship to other definitions of Dq in the literature.

The goal of this paper is to extend the following theorems, as much as possible,
to infinite-dimensional Banach spaces. In all of the results in this paper, ‘almost
every’ is in the sense of prevalence, a generalization of ‘Lebesgue almost every’ to
infinite-dimensional spaces. See Section 2 and [10, 11] for details.

Theorem 1.1 ([26]). Let X ⊂ R
n be a compact set. For almost every function

f ∈ C1(Rn,Rm), one has

dimH(f(X)) = min{m, dimH(X)}
where dimH(·) is the Hausdorff dimension.

Theorem 1.2 ([12]). Let µ be a Borel probability measure on R
n with compact

support and let q satisfy 1 < q 6 2. Assume that Dq(µ) exists. Then for almost
every function f ∈ C1(Rn,Rm), Dq(f(µ)) exists and is given by

Dq(f(µ)) = min{m,Dq(µ)}.
For each result, the space C1 can be replaced by any space that contains the

linear functions from R
n to R

m and is contained in the locally Lipschitz functions.
Theorem 1.1 extends to smooth functions a result of Mattila [18] (generalizing ear-
lier results of Marstrand [17] and Kaufmann [16]) that makes the same conclusion
for almost every linear function from R

n into R
m, in the sense of Lebesgue measure

on the space of m-by-n matrices. Strictly speaking, Marstrand, Kaufmann, and
Mattila considered orthogonal projections, but the analogous results for general
linear projections follow immediately. Sauer and Yorke [26] prove Theorem 1.2 for
the correlation dimension (D2) and recover (1.1) by invoking a variational princi-
ple for Hausdorff dimension [5]. Theorem 1.1 and its predecessors follow from a
potential-theoretic characterization of the dimensions involved. Roughly speaking,
the dimension is the largest exponent for which a certain singular integral converges.
Theorem 1.2 follows from a similar characterization of Dq for q > 1 [12].
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The potential-theoretic approach only leads to a dimension preservation result
for Dq if 1 < q 6 2. For 0 6 q < 1 and q > 2, [12] gives examples for which
Dq is not preserved by any linear transformation into R

m. For 0 6 q < 1, the
construction is based on the discovery by Kan [25, 26] of a class of examples for
which the box dimension is not preserved by any C1 function.

When the ambient space is not finite-dimensional, one does not expect a dimen-
sion preservation result analogous to Theorem 1.1 or Theorem 1.2 to hold. We
use the thickness exponent to study the extent to which the dimension spectrum
is affected by projection from a Banach space to R

m. This exponent, defined pre-
cisely in Section 2 and denoted τ(X), measures how well a compact subset X of a
Banach space B can be approximated by finite-dimensional subspaces of B, with
smaller values of the thickness exponent indicating better approximability. In gen-
eral one has τ(X) 6 D+

0 (X), the upper box-counting dimension of X , and equality
is possible. We expect that the thickness exponent can be shown to be significantly
smaller than the box-counting dimension for many attractors of infinite-dimensional
systems. Studying the Hölder regularity of embeddings of infinite-dimensional frac-
tal sets into finite-dimensional spaces, [13] establishes a bound on the amount the
dimension may drop for a typical projection.

Theorem 1.3 ([13]). Let B denote a Banach space. Let X ⊂ B be a compact set
with box-counting dimension d and thickness exponent τ(X). Let m > 2d be an
integer, and let α be a real number with

0 < α <
m− 2d

m(1 + τ(X))
.

Then for almost every (in the sense of prevalence) bounded linear function (or C1

function, or Lipschitz function) f : B → R
m there exists C > 0 such that for all x,

y ∈ X,

(1.2) C|f(x) − f(y)|α > |x− y|.
For such a function f , one has

m− 2d

m(1 + τ(X))
dim(X) 6 dim(f(X)) 6 dim(X)

where dim(X) represents either the box-counting dimension or Hausdorff dimen-
sion.

This theorem generalizes earlier results in [2] and [6].
For a function f satisfying (1.2), the factor by which the dimension may drop is

the product of two terms, (m−2d)/m and 1/(1+τ(X)). The first term depends on
the embedding dimension m and converges to one as m→ ∞ while the second term
depends intrinsically onX via its thickness. We prove that the Hausdorff dimension
is preserved by a typical projection up to a factor of 1/(1+τ(X)). In particular, the
factor (m− 2d)/m has been removed. We now state the main theorem for compact
subsets of Banach spaces. Because of the possibility of dimension drop, the existence
of Dq(µ) does not imply the existence of Dq(f(µ)) for functions f satisfying the
conclusion of the theorem. We therefore formulate the result in terms of the lower
dimension D−

q .

Banach Space Theorem. Let B be a Banach space, and let M be any subspace
of the Borel measurable functions from B to R

m that contains the space of linear
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functions and is contained in the space of locally Lipschitz functions. Let X ⊂ B be
a compact set with thickness exponent τ(X). Let µ be a Borel probability measure
supported on X. For almost every f ∈M , one has

dimH(f(X)) > min

{
m,

dimH(X)

1 + τ(X)

}
,

and, for 1 < q 6 2,

(1.3) D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)

}
.

Notice that for sets with thickness zero, the Banach space theorem is a dimension
preservation result. Every compact set X ⊂ R

n has thickness zero. Thus, the Ba-
nach space theorem generalizes Theorems 1.1 and 1.2. Furthermore, it strengthens
Theorem 1.2, because for a prevalent set of functions, (1.3) holds simultaneously for
all 1 < q 6 2. On the other hand, suppose τ(X) > 0. The Hausdorff dimension of
X may be noncomputable in the sense that for any positive integer m and any sub-
spaceM of the Borel measurable functions from B to R

m, dimH(f(X)) < dimH(X)
for all f ∈M . In other words, the Hausdorff dimension of X cannot be ascertained
from any finite-dimensional representation of X .

The proof of the Banach space theorem uses only the most general information
about the structure of the dual spaceB′. In specific situations, additional knowledge
about the structure of the dual space may yield improved theorems. We show that
this does indeed happen in the Hilbert space setting.

Hilbert Space Theorem. Let H be a Hilbert space, and let M be any subspace
of the Borel measurable functions from H to R

m that contains the space of linear
functions and is contained in the space of locally Lipschitz functions. Let X ⊂ H be
a compact set with thickness exponent τ(X). Let µ be a Borel probability measure
supported on X. For almost every f ∈M , one has

dimH(f(X)) > min

{
m,

dimH(X)

1 + τ(X)/2

}
,

and, for 1 < q 6 2,

(1.4) D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)/2

}
.

As we have mentioned, examples in [12] preclude similar results for 0 6 q < 1 and
q > 2. The case q = 1 is of interest because it corresponds to the commonly used
notion of information dimension, in the following sense. In general, the limit (1.1)
need not exist. However, D−

q (µ) is a nonincreasing function of q and is continuous
for q 6= 1 [1]. From this it follows that (1.3) and (1.4) hold for q = 1 if we define

D−
1 (µ) = lim

q→1+
D−

q (µ).

Next, we consider the sharpness of the Banach and Hilbert space theorems. In
[13], the authors give an example of a compact subset X of Hausdorff dimension d
in ℓp for 1 6 p <∞ such that for all bounded linear functions π : ℓp → R

m,

dimH(π(X)) 6
d

1 + d/q
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where q = p/(p − 1). In these cases, τ(X) = d. Thus, the Hausdorff dimension
parts of the Banach and Hilbert space theorems are sharp, in the sense that there
is no better bound in terms of τ(X) that holds for all such spaces (notice that q = 2
for the separable Hilbert space ℓ2 and q → 1 as p→ ∞).

On the other hand, when p = 1, q is infinite, and the example in [13] does not rule
out the possibility of a dimension preservation result for subsets of ℓ1 of arbitrary
thickness. We demonstrate that such a result is not possible by constructing a
compact subset X of Hausdorff dimension d in ℓ1 such that for all bounded linear
functions π : ℓ1 → R,

dimH(π(X)) 6
d

1 + d/2
.

In light of this example, we are somewhat pessimistic regarding the existence of
infinite-dimensional spaces for which a general dimension preservation theorem
holds. It is thus natural to consider the following fundamental question. Sup-
pose X represents the global attractor of a flow on a function space generated by
an evolution equation. Under what hypotheses on the flow does one have τ(X) = 0?
If one assumes that the flow is sufficiently dissipative and smoothing, then X will
have finite box dimension. We conjecture that similar dynamical hypotheses imply
that τ(X) = 0. Friz and Robinson [7] obtain a result of this type. They prove
that if an attractor is uniformly bounded in the Sobolev space Hs on an appropri-
ate bounded domain in R

m, then its thickness is at most m/s. This result implies
that certain attractors of the Navier-Stokes equations have thickness exponent zero.
Roughly speaking, thickness is inversely proportional to smoothness.

Section 2 reviews prevalence, the dimension spectrum, and the thickness expo-
nent. The main two theorems are presented and proved in Section 3. In Section 4 we
describe the counterexample to the dimension preservation conjecture for subsets
of ℓ1 of arbitrary thickness.

2. Preliminaries

We discuss prevalence, the dimension spectrum, and the thickness exponent.

2.1. Prevalence. Mathematicians often use topological notions of genericity when
formulating theorems in dynamical systems and topology. In topological terms,
‘generic’ refers to an open and dense subset of mappings, or to a countable inter-
section of such sets (a ‘residual’ subset). In finite-dimensional spaces, there exists
considerable discord between the topological notion of genericity and the measure-
theoretic notion of the size of a set (see [10, 21] for examples). Prevalence is intended
to be a better analogue to “probability one” on function spaces where no Lebesgue
or Haar measure exists.

To motivate the definition of prevalence on a Banach space B, consider how the
notion of ‘Lebesgue almost every’ on R

n can be formulated in terms of the same no-
tion on lower-dimensional spaces. Foliate R

n by k-dimensional planes, which by an
appropriate choice of coordinates we think of as translations of R

k ⊂ R
n by elements

of R
n−k. If ‘Lebesgue almost every’ translation of R

k intersects a Borel set S ⊂ R
n

in full k-dimensional Lebesgue measure, then S has full n-dimensional Lebesgue
measure by the Fubini theorem. If R

n is replaced by an infinite-dimensional space
B, we cannot formulate the same condition because the space of translations of a k-
dimensional subspace is infinite-dimensional. However, we can impose the stronger
condition that every translation of the subspace intersects S in a set of full Lebesgue
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measure. A preliminary notion of prevalence is obtained by declaring that a Borel
set S ⊂ B is prevalent if there exists some finite k and some k-dimensional sub-
space V such that every translation of V intersects S in a set of full k-dimensional
Lebesgue measure. In order to ensure that a countable intersection of prevalent
sets is prevalent, we must enlarge the space of measures under consideration be-
yond Lebesgue measure supported on finite-dimensional subspaces.

Definition 2.1. A Borel set S ⊂ B is said to be prevalent if there exists a measure
µ on B such that

(1) 0 < µ(C) <∞ for some compact subset C of B, and
(2) the set S − x has full µ-measure (that is, the complement of S − x has

measure 0) for all x ∈ B.

A non-Borel set that contains a prevalent Borel set is also prevalent.

The measure µ may be a Lebesgue measure on a finite-dimensional subspace of B.
More generally, one may think of µ as describing a family of perturbations in B. In
this sense, S is prevalent if for all x ∈ B, choosing a perturbation at random with
respect to µ and adding it to x yields a point in S with probability one. Prevalent
sets share several of the desirable properties of residual sets. A prevalent subset of
B is dense and the countable intersection of prevalent sets is prevalent. See [10] for
details. One may formulate a notion of prevalence appropriate for spaces without
a linear structure [15]. This notion applies to the space of diffeomorphisms of a
compact smooth manifold.

2.2. The Dimension Spectrum. Let µ be a Borel probability measure on a met-
ric space X . For q > 0 and ǫ > 0 define

Cq(µ, ǫ) =

∫

X

[µ(B(x, ǫ))]q−1 dµ(x)

where B(x, ǫ) is the open ball of radius ǫ centered at x.

Definition 2.2. For q > 0, q 6= 1, the lower and upper q-dimensions of µ are

D−
q (µ) = lim inf

ǫ→0

logCq(µ, ǫ)

(q − 1) log(ǫ)
,

D+
q (µ) = lim sup

ǫ→0

logCq(µ, ǫ)

(q − 1) log(ǫ)
.

If D−
q (µ) = D+

q (µ), their common value is denoted Dq(µ) and is called the q-
dimension of µ.

For a measure µ such that Dq(µ) exists, the function q → Dq(µ) is called the
dimension spectrum of µ. For measures on R

n, one encounters the following alter-
native definition of the dimension spectrum [8, 9, 22]. For ǫ > 0, cover the support
of µ with a grid of cubes with edge length ǫ. Let N(ǫ) be the number of cubes that
intersect the support of µ, and let the measure of these cubes be p1, p2, . . . , pN(ǫ).
Write

D−
q (µ) = lim inf

ǫ→0

∑N(ǫ)
i=1 pq

i

(q − 1) log(ǫ)
,

D+
q (µ) = lim sup

ǫ→0

∑N(ǫ)
i=1 pq

i

(q − 1) log(ǫ)
.
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For q > 0, q 6= 1, these limits are independent of the choice of ǫ-grids, and give the
same values as Definition 2.2. See [23] for a proof of this equivalence for q > 1.
The grid definition of the dimension spectrum is not appropriate for measures on
general metric spaces. We therefore adopt Definition 2.2 as the natural notion in
the general case.

A potential-theoretic definition of the lower q-dimension D−
q (µ) for q > 1 is

introduced in [12]. For s > 0 the s-potential of the measure µ at the point x is
given by

ϕs(µ, x) =

∫

X

|x− y|−s dµ(y).

Definition 2.3. The (s, q)-energy of µ, denoted Is,q(µ), is given by

Is,q(µ) =

∫

X

[ϕs(µ, x)]
q−1 dµ(x) =

∫

X

(∫

X

dµ(y)

|x− y|s
)q−1

dµ(x).

For q = 2, the (s, q)-energy of µ reduces to the more standard notion of the
s-energy of µ, written

Is(µ) =

∫

X

ϕs(µ, x) dµ(x) =

∫

X

∫

X

dµ(x)dµ(y)

|x− y|s .

Sauer and Yorke [26] show that the lower correlation dimension D−
2 (µ) can be

expressed as

(2.1) D−
2 (µ) = sup{s : Is(µ) <∞}.

This characterization of D−
2 (µ) is used to establish the preservation of correla-

tion dimension. The following proposition generalizes (2.1) to the lower-dimension
spectrum for q > 1.

Proposition 2.4 ([12]). If q > 1 and µ is a Borel probability measure, then

D−
q (µ) = sup{s > 0 : Is,q(µ) <∞}.

2.3. The Thickness Exponent. Let B denote a Banach space.

Definition 2.5. The thickness exponent τ(X) of a compact set X ⊂ B is defined as
follows. Let d(X, ǫ) be the minimum dimension of all finite-dimensional subspaces
V ⊂ B such that every point of X lies within ǫ of V ; if no such V exists, then
d(X, ǫ) = ∞. Let

τ(X) = lim sup
ǫ→0

log d(X, ǫ)

log(1/ǫ)
.

There is no general relationship between the thickness exponent and the Haus-
dorff dimension. A definitive statement may be made concerning the box-counting
dimension D0.

Lemma 2.6 ([13]). Let X ⊂ B be a compact set. Then τ(X) 6 D+
0 (X).

3. Main Results

We begin with the main results for general Banach spaces.
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Theorem 3.1. Let B be a Banach space, and let M be any subspace of the Borel
measurable functions from B to R

m that contains the bounded linear functions.
Let X ⊂ B be a compact set with thickness exponent τ(X), and let µ be a Borel
probability measure supported on X. For almost every function f ∈M ,

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)

}

for all q ∈ (1, 2].

Corollary 3.2. Assume in addition that M is contained in the space of locally
Lipschitz functions, that τ(X) = 0, and that Dq(µ) exists (D−

q (µ) = D+
q (µ)) for

all q ∈ (1, 2]. Then for almost every function f ∈ M , Dq(f(µ)) exists and equals
min{m,Dq(µ)} for all q ∈ (1, 2].

Remark 3.3. For r > 1, the space M = Cr(B,Rm) satisfies the hypotheses of
Theorem 3.1 and Corollary 3.2.

The corollary follows immediately from Theorem 3.1 and the fact that for all µ and
all locally Lipschitz f , D+

q (f(µ)) 6 min{m,D+
q (µ)}.

Corollary 3.4. Let B be a Banach space. Let X ⊂ B be a compact set with
thickness exponent τ(X). For almost every function f ∈M ,

(3.1) dimH(f(X)) > min

{
m,

dimH(X)

1 + τ(X)

}
.

Proof. Let M(X) denote the set of Borel probability measures onX . The Hausdorff
dimension of X may be expressed in terms of the lower correlation dimension of
measures supported on X via the variational principle [5]

dimH(X) = sup
µ∈M(X)

D−
2 (µ).

For each i ∈ N, there exists µi ∈ M(X) such that D−
2 (µi) > dimH(X) − 1/i.

Applying Theorem 3.1, there exists a prevalent set Pi ⊂ M of functions such that
for f ∈ Pi,

D−
2 (f(µi)) > min

{
m,

D−
2 (µi)

1 + τ(X)

}
.

The set
⋂∞

i=1 Pi is prevalent. For f ∈ ⋂∞
i=1 Pi, the bound (3.1) follows from the

variational principle. �

Proof of Theorem 3.1. Fix 1 < q 6 2. Let L ⊂ M denote the space of bounded
linear functions from B into R

m. We construct a ‘Banach brick’ Q ⊂ L of pertur-
bations and a probability measure λ on Q. For f ∈M and π ∈ Q, write fπ = f+π.
Utilizing the potential-theoretic description of D−

q (µ) for 1 < q 6 2, we must show
that for any f ∈M , t > 0, and 0 6 s < min{m, t/(1 + τ(X))},
(3.2) It,q(µ) <∞ ⇒ Is,q(fπ(µ)) <∞
for λ-almost every π ∈ Q. The result follows because we can choose t arbitrarily
close to D−

q (µ).

We define the Banach brick Q as follows. For j ∈ N, let dj = d(X, 2−j) and let
Vj ⊂ B be a subspace of dimension dj such that every point of X lies within 2−j

of Vj . Fix σ > τ(X). By Definition 2.5 of τ(X), there exists C1 > 0, depending
only on X and σ, such that dj 6 C12

jσ. Let Sj be the closed unit ball in the
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dual space V ′
j of Vj . There is no natural embedding of V ′

j into B′, but it follows

from the Hahn-Banach theorem that there exists an isometric embedding of V ′
j

into B′. As such, we can think of Sj as a subset of B′. On the other hand, V ′
j

is linearly isomorphic to R
dj , and Sj corresponds to a convex set Uj ⊂ R

dj . The
uniform (Lebesgue) probability measure on Uj induces a measure λj on Sj . Define
the Banach brick Q by

Q =




π = (π1, . . . , πm) : πi =

∞∑

j=1

j−2φij with φij ∈ Sj ∀j




 .

Since each Sj ⊂ B′ is compact, Q ⊂ L is compact. Let λ be the probability measure
on Q that results from choosing the elements φij randomly and independently with
respect to the measures λj on the sets Sj . (While the term “brick” suggests that
Q is the product of compact sets j−2Sj that are all transverse to each other, these
sets may have nontrivial intersection, in which case Q and λ are still well-defined.)

Choose ρ > σ > τ(X). We will show that for 0 6 s < m,

Is(1+ρ),q(µ) <∞ ⇒ Is,q(fπ(µ)) <∞
for λ-almost every π ∈ Q. Since ρ and σ can be arbitrarily close to τ(X), this
implies (3.2). Computing the (s, q)-energy of fπ(µ), we have

Is,q(fπ(µ)) =

∫

Rm

[∫

Rm

dfπ(µ)(v)

|u− v|s
]q−1

dfπ(µ)(u)

=

∫

B

[∫

B

dµ(y)

|fπ(x) − fπ(y)|s
]q−1

dµ(x).

Integrating the energy over Q and using the Fubini/Tonelli theorem and the fact
that 0 < q − 1 6 1, we have

∫

Q

Is,q(fπ(µ)) dλ(π) =

∫

Q

∫

B

[∫

B

dµ(y)

|fπ(x) − fπ(y)|s
]q−1

dµ(x)dλ(π)

=

∫

B

∫

Q

[∫

B

dµ(y)

|fπ(x) − fπ(y)|s
]q−1

dλ(π)dµ(x)

6

∫

B

[∫

Q

∫

B

dµ(y)

|fπ(x) − fπ(y)|s dλ(π)

]q−1

dµ(x)

=

∫

B

[∫

B

(∫

Q

dλ(π)

|fπ(x) − fπ(y)|s
)
dµ(y)

]q−1

dµ(x).

We now estimate the interior integral.

Lemma 3.5 (Perturbation Lemma). If s < m, there exists a constant C2 depending
only on s, σ, and ρ, such that for all x, y ∈ X,

∫

Q

dλ(π)

|fπ(x) − fπ(y)|s 6
C2

min{|x− y|, 1}s(1+ρ)
.

Proof. Set ζ = min{|x− y|, 1}. Choose j ∈ N such that 2− log2 ζ 6 j 6 3− log2 ζ.
There exist points γj(x) and γj(y) in Vj satisfying |x−γj(x)| 6 2−j and |y−γj(y)| 6

2−j. Estimating the distance between γj(x) and γj(y), we have

|γj(x) − γj(y)| > |x− y| − 2−j+1 > |x− y| − ζ

2
>

|x− y|
2

.
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For π ∈ Q, write π = ξj + j−2φj where φj = (φ1j , . . . , φmj) ∈ Sm
j and ξj =

(ξ1j , . . . , ξmj) with

ξij =
∑

k∈N

k 6=j

k−2φik

for each i. We fix ξj and integrate over φj ∈ Sm
j . We have

∫

Sm
j

dλm
j (φj)

|fξj+j−2φj
(x) − fξj+j−2φj

(y)|s

=

∫

Sm
j

dλm
j (φj)

|fξj
(x) − fξj

(y) + j−2φj(x − y)|s

6

∫

Sm
j

dλm
j (φj)

|j−2φj(x− y)|s

= j2s

∫

Sm
j

dλm
j (φj)

|φj(x − y)|s .

Let P ⊂ B′ be the annihilator of x− y. By the Hahn-Banach theorem, there exists
ψ ∈ B′ such that ψ(x− y) = |x− y| and ‖ψ‖B′ = 1. By restricting P and ψ to Vj ,
we may think of them as belonging to V ′

j , and hence also to R
dj . Notice that

|ψ(γj(x) − γj(y))|
|γj(x) − γj(y)|

>
|x− y| − ζ/2

|x− y| + ζ/2
>

|x− y|/2
3|x− y|/2 =

1

3
,

so ‖ψ‖V ′

j
> 1

3 . Let b be such that ‖bψ‖V ′

j
= 1 and set ψ̃ = bψ. By convexity, Sj

contains the cones with base P ∩ Sj and vertices ψ̃ and −ψ̃. Let Cj be the union

of this pair of cones and let λ̃j denote the restriction of λj to Cj . We have

(3.3) j2s

∫

Sm
j

dλm
j (φj)

|φj(x − y)|s 6 j2s




∫
Cm

j

deλm
j (φj)

|φj(x−y)|s

∫
Cm

j

dλ̃m
j (φj)


 .

LetWj be the right side of (3.3). In order to estimateWj , we use the (P, ψ̃) foliation
given by

Cj,i = {Cj,i ∩ (P + αiψ̃) : αi ∈ [−1, 1]}
for each i = 1, . . . ,m.

Lemma 3.6 (Integral Asymptotics). Let m ∈ N and s < m. There exists a
constant K, independent of n ∈ N, such that

(3.4)

∫ 1

0 · · ·
∫ 1

0
(1−α1)n−1···(1−αm)n−1

|α|s dα1 · · · dαm
∫ 1

0
· · ·

∫ 1

0
(1 − α1)n−1 · · · (1 − αm)n−1 dα1 · · · dαm

6 Kns,

where α = (α1, . . . , αm).

Proof. Since e−z > 1 − z for all real z, and the denominator of (3.4) is n−m, the
ratio of integrals in (3.4) is bounded above by

nm

∫ ∞

0

· · ·
∫ ∞

0

exp (−∑m
i=1 αi(n− 1))

|α|s dα1 · · · dαm.
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Setting ui = αi(n− 1), this becomes

nm(n− 1)s−m

∫ ∞

0

· · ·
∫ ∞

0

exp (−∑m
i=1 ui)

|u|s du1 · · ·dum.

Since |u|−s is integrable in a neighborhood of 0 for s < m, the lemma is established.
�

We are now in position to complete the proof of Lemma 3.5. Estimating the

ratio of integrals in Wj using the (P, ψ̃) foliation, it follows from Lemma 3.6 with
n = dj 6 C12

jσ that there exists K, independent of j, such that

Wj 6 j2sK|x− y|−s
(
C12

jσ
)s

6 KCs
1j

2s|x− y|−s
(
2j

)σs

6 KCs
1j

2s|x− y|−s
(
8ζ−1

)σs

6 8σsKCs
1j

2sζ−s(1+σ)

6 8σsKCs
1 (3 − log2 ζ)

2s ζ−s(1+σ).

Thus, since ρ > 0, there exists C2 such that

Wj 6
C2

ζs(1+ρ)
.

We have established that
∫

Sm
j

dλm
j (φj)

|fξj+j−2φj
(x) − fξj+j−2φj

(y)|s 6
C2

ζs(1+ρ)

for all ξj , and hence by integrating over ξj that
∫

Q

dλ(π)

|fπ(x) − fπ(y)|s 6
C2

ζs(1+ρ)
.

The proof of the perturbation lemma is complete. �

Returning to the proof of Theorem 3.1, recall that 0 6 s < min{m, t/(1+τ(X))}
and ρ > σ > τ(X) have been fixed. Applying the perturbation lemma, we have

∫

Q

Is,q(fπ(µ)) dλ(π) 6

∫

B

[∫

B

(∫

Q

dλ(π)

|fπ(x) − fπ(y)|s
)
dµ(y)

]q−1

dµ(x)

6

∫

B

[∫

B

C2

min{|x− y|, 1}s(1+ρ)
dµ(y)

]q−1

dµ(x).

Therefore,

Is(1+ρ),q(µ) <∞ ⇒ Is,q(fπ(µ)) <∞
for λ-almost every π ∈ Q. Since ρ and σ can be arbitrarily close to τ(X), this
implies (3.2) for fixed t. Because we can choose t arbitrarily close to D−

q (µ), there
exists a prevalent set Pq ⊂M such that for f ∈ Pq,

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)

}
.
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Let {qi} be a countable dense subset of (1, 2]. The set
⋂∞

i=1 Pqi
is prevalent. For

f ∈ ⋂∞
i=1 Pqi

, the continuity of D−
q on (1, 2] implies that

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)

}

for all 1 < q 6 2. �

The proof of the perturbation lemma uses only the convexity of Sj . In specific
cases, additional information about the structure of the dual space may lead to an
improved perturbation lemma and hence to an improvement of the factor 1/(1 +
τ(X)). We establish such an improvement for Hilbert spaces.

Theorem 3.7. Let H be a Hilbert space, and let M be any subspace of the Borel
measurable functions from H to R

m that contains the bounded linear functions.
Let X ⊂ H be a compact set with thickness exponent τ(X), and let µ be a Borel
probability measure supported on X. For almost every function f ∈M ,

D−
q (f(µ)) > min

{
m,

D−
q (µ)

1 + τ(X)/2

}

for all q ∈ (1, 2].

Corollary 3.8. Let H be a Hilbert space. Let X ⊂ H be a compact set with
thickness exponent τ(X). For almost every function f ∈M ,

dimH(f(X)) > min

{
m,

dimH(X)

1 + τ(X)/2

}
.

Remark 3.9. For the example from [13] discussed in the introduction, this Haus-
dorff dimension estimate is sharp.

Proof of Theorem 3.7. Let L ⊂ M denote the space of bounded linear functions
from H into R

m. We must show that for any f ∈ M and 0 6 s < min{m, t/(1 +
τ(X)/2)},

It,q(µ) <∞ ⇒ Is,q(fπ(µ)) <∞
for λ-almost every π ∈ Q. The construction of the Hilbert brick Q follows that of
the Banach brick. Notice that each Sj is isometric to a Euclidean ball. The dual
space V ′

j embeds canonically into H ′ = H : an element of V ′
j acts on an element of

H by composition with the orthogonal projection onto Vj . Let ρ > σ > τ(X). We
will show that for 0 6 s < m,

Is(1+ρ),q(µ) <∞ ⇒ Is,q(fπ(µ)) <∞

for λ-almost every π ∈ Q. The proof of this implication follows the argument
given in the proof of Theorem 3.1. We only need to apply the following improved
perturbation lemma. �

Lemma 3.10 (Perturbation Lemma). If s < m, there exists a constant C3, de-
pending only on s, σ, and ρ, such that for all x, y ∈ X,

∫

Q

dλ(π)

|fπ(x) − fπ(y)|s 6
C3

min{|x− y|, 1}s(1+ρ/2)
.
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Proof. Set ζ = min{|x− y|, 1}. Select j as before and note that
∫

Sm
j

dλm
j (φj)

|fξj+j−2φj
(x) − fξj+j−2φj

(y)|s 6 j2s

∫

Sm
j

dλm
j (φj)

|φj(γj(x) − γj(y))|s
.

Lemma 3.11 (Integral Asymptotics). There exists K > 0, independent of n ∈ N,
such that for s < m,

∫ 1

0 · · ·
∫ 1

0
(1−α2

1)
n−1

2 ···(1−α2
m)

n−1
2 dα1···dαm

|α|s∫ 1

0
· · ·

∫ 1

0
(1 − α2

1)
n−1

2 · · · (1 − α2
m)

n−1

2 dα1 · · · dαm

6 Kn
s
2 .

Proof. The proof is similar to that of Lemma 3.6 and is left to the reader. �

Let P be the annihilator of γj(x) − γj(y) in V ′
j . Foliating Sj into leaves parallel

to P and using Lemma 3.11 with n = dj 6 C12
jσ, we have

j2s

∫

Sm
j

dλm
j (φj)

|φj(γj(x) − γj(y))|s

6 Kj2s|γj(x) − γj(y)|−s
(
C12

jσ
)s/2

6 2sKj2s|x− y|−s
(
C12

jσ
)s/2

6 2sKC
s/2
1 j2s|x− y|−s

(
2j

)σs/2

6 2sKC
s/2
1 j2s|x− y|−s

(
8ζ−1

)σs/2

6 2s8σs/2KC
s/2
1 j2sζ−s(1+σ/2)

6 C3ζ
−s(1+ρ/2)

for some C3 > 0. We have established that
∫

Sm
j

dλm
j (φj)

|fξj+j−2φj
(x) − fξj+j−2φj

(y)|s 6
C3

ζs(1+ρ/2)

for all ξj , and hence by integrating over ξj that
∫

Q

dλ(π)

|fπ(x) − fπ(y)|s 6
C3

ζs(1+ρ/2)
.

The proof of the perturbation lemma is complete. �

4. Nonpreservation of Hausdorff Dimension

Theorems 3.1 and 3.7 are sharp in the following sense. Given d > 0, 1 6 p 6 ∞,
and a positive integer m, there is a compact subset X of Hausdorff dimension d in
ℓp such that for all bounded linear functions π : ℓp → R

m,

dimH(π(X)) 6
d

1 + d/q
,

where q = p/(p − 1) [13]. The cases p = ∞ and p = 2 show respectively that
Theorems 3.1 and 3.7 are sharp for bounded linear functions on these particular
Banach spaces. On the other hand, this class of examples does not rule out a
dimension preservation result in ℓ1.
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Here we construct a compact subset X of Hausdorff dimension d in ℓ1 such that
for all bounded linear functions π : ℓ1 → R,

dimH(π(X)) 6
d

1 + d/2
.

Let {ei} be the standard basis of ℓ1, and let λ = 2−1/d. Consider the inductively
constructed sets Xk, defined as follows. Let X0 = {0} and X1 = {±p}, where

p =
1

2
(e1 − e2).

For the next step, construct the two points

p0 =
λ

4
(e3 − e4 + e5 − e6), and

p1 =
λ

4
(e3 + e4 − e5 − e6).

Attach these points to the nodes of X1, forming the set

X2 = {p± p0, −p± p1}.
We now describe the construction of Xk+1 given Xk. Let

αk = 1 +

k−1∑

i=0

22i

.

Define the collection of 2k points
{
pβ1β2···βk

: β1, β2, . . . , βk ∈ {0, 1}
}

by setting

pβ1β2···βk
=

λk

22k

22k
−1∑

i=0

(−1)

h
i

2
γβ1···βk

i

eαk+i,

where γβ1···βk
is the integer in [0, 2k) whose binary representation is β1 · · ·βk; that

is,

γβ1···βk
= β12

k−1 + β22
k−2 + · · · + βk.

Notice that ‖pβ1···βk
‖ℓ1 = λk. Attach these points to the nodes of Xk, forming

Xk+1 =
{
(−1)β1p+ (−1)β2pβ1

+ · · · + (−1)βk+1pβ1···βk
: β1, . . . , βk+1 ∈ {0, 1}

}
.

Figure 1 illustrates the third step in the construction. Let X be the set of all limit
points of

∞⋃

k=0

Xk.

Equivalently,

X =
{
(−1)β1p+ (−1)β2pβ1

+ (−1)β3pβ1β2
+ · · · : β1, β2, β3, . . . ∈ {0, 1}

}
.

Proposition 4.1. For the set X ⊂ ℓ1 constructed above,

dimH(X) = D+
0 (X) =

log 2

log(1/λ)
= d.
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0

−p

p

p + p0 − p00p − p0 − p01

p − p0 + p01 p + p0 + p00

−p + p1 + p10

−p + p1 − p10−p − p1 − p11

−p − p1 + p11

−p + p1−p − p1

p − p0 p + p0

Figure 1. The sets X0, X1, X2, and X3 consist of the nodes of
the binary tree above.

Proof. The set X can be covered by 2k balls of radius λk/(1 − λ) centered at the
points of Xk, so dimH(X) 6 D+

0 (X) 6 d. To show that dimH(X) > d, we apply
Frostman’s lemma [5, 20]. The binary tree X may be identified with the set of
binary strings S =

{
β = β1β2β3 · · · : β1, β2, β3, . . . ∈ {0, 1}

}
. Consider the measure

µ on X induced by the uniform probability measure on S. Since every two points in
X corresponding to different initial strings β1 · · ·βkβk+1 and β1 · · ·βkβ

′
k+1 must lie

at least 2λk apart, the measure of a ball of radius less than λk is at most the measure
of all strings in S starting with a given β1 · · ·βk+1, which is 2−(k+1) = (λk)d/2. By
Frostman’s lemma, dimH(X) > d. �

Proposition 4.2. For every bounded linear map π : ℓ1 → R,

dimH(π(X)) 6
d

1 + d/2
.

Proof. Let s = d/(1 + d/2) = (1/d+ 1/2)−1. Let π ∈ ℓ∞ and assume ‖π‖ℓ∞ = 1.
We will show for each k > 0 that π(X) can be covered by a collection of 2k intervals
Ck = {I0, I1, . . . , I2k−1} such that

lim
k→∞

max
I∈Ck

diam(I) = 0

and
2k−1∑

j=0

diam(Ij)
s
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remains bounded as k → ∞. It then follows that the s-dimensional Hausdorff
measure of π(X) is finite, and therefore that the Hausdorff dimension of π(X) is at
most s, as desired. The proposition is trivially true if s > 1, so assume henceforth
that s < 1. Then by convexity,

2−k
2k−1∑

j=0

diam(Ij)
s 6


2−k

2k−1∑

j=0

diam(Ij)




s

,

so it suffices to show that

2−k
2k−1∑

j=0

diam(Ij) 6 C42
−k/s

= C42
−k/2−k/d

= C42
−k/2λk

for some constant C4 independent of k.
Each interval Ij will be the convex hull of the image under π of the part Pj of X

corresponding to point j in Xk. As in the proof of Proposition 4.1, Pj is contained
in a ball of radius λk/(1 − λ). Thus in effect, we want to show that on average
(over j), π contracts Pj by a factor proportional to 2−k/2. Recall that

Nk =
{
(−1)βk+1pβ1···βk

: β1, . . . , βk+1 ∈ {0, 1}
}

is the set of points used to perturb the 2k points of Xk to form the 2k+1 points of
Xk+1. We seek an asymptotic bound on the quantity

Zk = sup
‖π‖ℓ∞=1

1

2k+1

∑

s∈Nk

|π(s)|
‖s‖ℓ1

= sup
‖π‖ℓ∞=1

1

2k+1

∑

s∈Nk

|π(s)|
λk

.

Lemma 4.3. There exists C5 > 0 such that Zk 6 C52
−k/2.

Proof. For each β1 · · ·βk ∈ {0, 1}k, Nk contains pβ1···βk
and −pβ1···βk

. Define

N+
k =

{
pβ1···βk

: β1, . . . , βk ∈ {0, 1}
}
.

We reindex the elements of N+
k by γβ1···βk

, obtaining N+
k = {pi : i = 0, . . . , 2k −1}.

For each π = (πi) ∈ ℓ∞, there exists a permutation σ such that πσ = (πσ(i)) satisfies
the positivity condition

πσ(pi) > 0

for all i = 0, . . . , 2k − 1. Therefore, we express Zk in terms of N+
k , yielding

Zk = sup
‖π‖ℓ∞=1

1

2k

2k−1∑

i=0

π(pi)

λk
.

Think of the points of N+
k as the rows of a 2k × 22k

matrix. The entry in row i,
column j of this matrix (starting the numbering at i = 0 and j = 0) is

pij =
λk

22k (−1)[
j

2i ]eαk+j .

Let (sij) be the associated matrix of signs, defined by

sij = (−1)[
j

2i ].
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The set of columns of (sij) maps bijectively onto the set of vectors

(4.1)
{(

(−1)ρ1 , . . . , (−1)ρk
)

: ρ1, . . . , ρk ∈ {0, 1}
}
.

We construct an element π∗ ∈ ℓ∞ as follows. For 0 6 j < 22k

, set

π∗
αk+j =

{
1, if

∑2k−1
i=0 pij > 0;

−1, if
∑2k−1

i=0 pij < 0,

and set π∗
l = 0 for l < αk and l > αk + 22k

. Writing

rij = sijeαk+j and ri =

22k
−1∑

j=0

rij ,

we have

Zk =
1

2k

2k−1∑

i=0

π∗(pi)

λk
=

1

2k22k

2k−1∑

i=0

π∗(ri).

Since the columns of (sij) correspond bijectively to (4.1), Zk may be related to the
expected value of a binomially distributed random variable. Let Y be a binomial
random variable such that for 0 6 m 6 2k, the probability that Y = m is given by

(
2k

m

) (
1

2

)2k

.

Summing over m, we have

Zk =
1

2k22k

2k−1∑

i=0

π∗(ri)

=
1

2k22k

2k∑

m=0

(
2k

m

)
|2k − 2m|

=
1

22k

2k∑

m=0

(
2k

m

)
|1 − 2m/2k|

= E[|1 − 2Y/2k|],

where E[·] denotes the expectation. By the central limit theorem, there exists
C5 > 0 such that

E[|1 − 2Y/2k|] 6 C52
−k/2.

The proof of Lemma 4.3 is complete. �

Returning to the proof of Proposition 4.2, we show that for each k > 0, π(X)
can be covered by 2k intervals I0, . . . , I2k−1 such that

2−k
2k−1∑

j=0

diam(Ij) 6 C42
−k/2λk
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for some constant C4 independent of k. Fix k > 0. For each string β1 · · ·βk, the
subtree

Xβ1···βk =
{
(−1)β1p+ (−1)β2pβ1

+ · · · + (−1)βkpβ1···βk−1
+ (−1)βk+1pβ1···βk

+ (−1)βk+2pβ1···βk+1
+ · · · : βk+1, βk+2, . . . ∈ {0, 1}

}

can be covered by an interval Ij = Iγβ1···βk
containing

π
(
(−1)β1p+ (−1)β2pβ1

+ · · · + (−1)βkpβ1···βk−1

)

of length
∞∑

i=1

∑

βk+1···βk+i

∣∣π
(
(−1)βk+ipβ1···βk+i−1

)∣∣ .

Applying Lemma 4.3, we have

2−k
2k−1∑

j=0

diam(Ij) = 2−k
2k−1∑

j=0

∞∑

i=1

∑

βk+1···βk+i

∣∣π
(
(−1)βk+ipβ1···βk+i−1

)∣∣

=

∞∑

i=1

2−k
2k−1∑

j=0

∑

βk+1···βk+i

∣∣π
(
(−1)βk+ipβ1···βk+i−1

)∣∣

6

∞∑

n=0

2n+1λk+n · C5 · 2−(k+n)/2

= 2C5λ
k2−k/2

∞∑

n=0

(√
2λ

)n

.

The assumption that s < 1 implies that λ < 1/
√

2. Setting

C4 = 2C5

∞∑

n=0

(√
2λ

)n

=
2C5

1 −
√

2λ
,

we have

(4.2) 2−k
2k−1∑

j=0

diam(Ij) 6 C42
−k/2λk.

Finally, (4.2) implies that diam(Ij) 6 C42
k(1−1/s) for each j = 0, . . . , 2k − 1. �
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