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Budget Constraint
• Recall our 2-group SI model with type a and b

interventions:

dS1/dt = −p11S1I1 − p12S1I2 − a1S1

dI1/dt = p11S1I1 + p12S1I2 − (a1 + b1)I1

dS2/dt = −p21S2I1 − p22S2I2 − a2S2

dI2/dt = p21S2I1 + p22S1I2 − (a2 + b2)I2.

• The impact M(a1,a2,b1,b2) (fraction of the inital
at-risk population saved from infection by the
intervention) is an increasing function of each
parameter a1,a2,b1,b2.

• We now consider the problem of maximizing M
subject to a “budget” constraint
K (a1,a2,b1,b2) ≤ Kmax where K (a1,a2,b1,b2) is the
cost of achieving parameters a1,a2,b1,b2.



Linear Budget Functions
• The simplest class of cost functions are linear

functions
K (a1,a2,b1,b2) = ca1a1 + ca2a2 + cb1b1 + cb2b2 + K0

where the c’s are positive constants representing
“marginal” costs.

• To simplify further, let’s assume ca1 = ca2 and
cb1 = cb2 and let c = ca1/cb1 = ca2/cb2.

• Let’s normalize (choose units of cost) so that
cb1 = cb2 = 1 and choose K0 = 0 (a nonzero K0 can
be subtracted from the constraint, with Kmax adjusted
accordingly).

• The main flaw in a linear cost function is that it
doesn’t have the “diminishing returns” observed in
real life.



Constrained Optimization
• We are considering a constrained optimization

problem; in addition to the constraint
K (a1,a2,b1,b2) ≤ Kmax we have a1,a2,b1,b2 ≥ 0.
These inequalities describe a 4-dimensional simplex
over which we want to maximize the impact M.

• Since M is an increasing function of the parameters
a1, a2, b1, and b2, the maximum impact will occur
when the entire budget is used:
K (a1,a2,b1,b2) = Kmax. This equality allows one
parameter to be determined from the other three,
reducing the domain to a 3-dimensional simplex – a
tetrahedron.

• The maximum of M often occurs when one or more
of the parameters is zero, meaning that the maximum
occurs on one of the faces, edges, or vertices of the
tetrahedron.



Optimization Strategy
• Iterative, “guess-and-perturb” optimization algorithms

are problematic for constrained optimization because
the allowed perturbations depend on whether one is
inside the constriant domain or on its boundary, and
where on the boundary.

• A simpler approach, feasible with a few parameters,
is to search the entire domain to a certain resolution
– choose a closely-spaced grid and search over the
grid points in the domain.

• For best results, you should try to sample all parts of
the boundary of the domain. For the tetrahedron
described on the previous slide, a normal
(rectangular) grid will sample the faces and edges
that are aligned with the coordinate axes, but you
may need to choose additional points to sample the
diagonal face and edges.


