
1

Plowing with Precedence
A Variant of the Windy Postman Problem
April 22, 2012 – POMS 2012

Benjamin Dussault, Bruce Golden, Chris Gröer, and Edward Wasil

2

Overview

 Background

‣ The Chinese Postman Problem and the Windy Postman Problem

‣ The Levitating Plow Problem

 Literature Review

 Introduction

 Problem Statement

 Problem Formulation

 Solution Methodology

 Results

 Conclusions

3

Background
Chinese Postman Problem (CPP)

 Consider a graph G={V,A} where

‣ V={vi}

‣ A={(vi,vj) | vi, vj ∈ V, i<j}

‣ cij = Cost of traversing arc (vi,vj)

‣ cij = cji

 Goal: Construct a least-cost cycle that visits all arcs in

A at least once

4

Background
Windy Postman Problem (WPP)

 A variant of the Chinese Postman Problem

 The graph is Windy, i.e., it is harder to traverse in one

direction on an arc as opposed to the other

 Goal: Construct a least-cost cycle that visits all arcs in

A at least once

 Key Difference: Costs are not symmetric

5

Background
Levitating Plow Problem (LPP)

 Motivates Plowing with Precedence and is used in our solution

methodology

 A variant of the Windy Postman Problem that incorporates four

costs:

‣ The cost of plowing uphill and downhill

‣ The cost of deadheading uphill and downhill

 The plow can deadhead at any time

‣ When considering a street that is not plowed, the plow has the

option to deadhead the street

‣ Requires levitation over the snow (coming soon to a plow near

you)

6

Background
Methodology for the CPP, WPP and LPP

 Key observation: If a graph is Eulerian, then an

optimal cycle can be produced by Fleury’s Algorithm

 Therefore, it is sufficient to convert the instance graph

to an Eulerian graph in an optimal way

 Possible methods

‣ Integer programming

‣ Add least-cost paths between odd-degree nodes

7

Background
LPP - IP Formulation

 Adapt IP formulation from the Windy Postman Problem

 Essential variables:

‣ xij = the number of times (i,j) is plowed

‣ yij = the number of times (i,j) is deadheaded

 Essential constraints:

‣ Plow each street twice

‣ Degree matching for each node

 While the LPP is NP-hard, the IP is easily solved by

commercial solvers

8

Literature Review

 Arc Routing is well studied. There are many survey articles:

‣ Assad and Golden (1995)

‣ Eiselt et al. (1995a, 1995b)

‣ Dror (2000)

 Perrier et al. (2006, 2007) provide a four-part survey of winter road

maintenance covering:

‣ System Design

‣ Models and Algorithms

‣ Vehicle Routing and Depot Location

‣ Vehicle Routing and Fleet Sizing

9

Introduction

 Variant of the Levitating Plow Problem

‣ Levitating plows are not real

‣ If a plow encounters an unplowed street, it must

plow it

 Therefore, the option of deadhead traversal is only

available after a street is plowed

 Introduces the concept of precedence: the potential

choices and associated costs of traversing a street

depends on the preceding tour

10

Introduction

 The concept of precedence requires a fundamentally

different solution methodology than those used in

WPP literature

 An Eulerian graph yields many Eulerian cycles

‣ Equivalent in WPP

‣ Not equivalent in Plowing with Precedence

11

Introduction

Original Instance Induced Eulerian

Graph

Deadhead costs = 1

2

10

2

2 2

2

12

Introduction

 Many Eulerian cycles:

‣ {1,4,3,1,3,2,1}

- Plow arc (3,1) before

(1,3)

- Cost = 19

‣ {1,3,2,1,4,3,1}

- Plow arc (1,3) before

(3,1)

- Cost = 11

13

Problem Statement

 Consider a graph G={V,A} where

‣ V={vi}

‣ A={(vi,vj) | vi, vj ∈ V}

‣ cij
+ = Cost of plowing arc (vi,vj)

‣ cij
- = Cost of deadheading arc (vi,vj)

‣ cij
+ >> cji

+ >> cij
- ≥ cji

-

 Goal: To construct a least-cost cycle that visits all streets in A at least

twice (once for each side of the street) and begins and ends at a depot

(required to incorporate precedence)

‣ Plowing each street once (as in the previous example) is easily handled

‣ Plowing each street an arbitrary number of times is easily handled

14

Problem Statement

 Undirected arcs allow plowing against the flow of

traffic

‣ Practically, streets are closed for plowing

 Good solutions will attempt to plow downhill on both

sides of the street

 Allows for the possibility of:

‣ Plowing downhill

‣ Then deadheading uphill

‣ Then plowing downhill

15

Problem Formulation

 Requires an index t to incorporate precedence

 Essential elements:

‣ xijt = 1 if plow (i,j) at time t, 0 otherwise

‣ yijt =1 if deadhead (i,j) at time t, 0 otherwise

‣ φijt =1 if (i,j) is first plowed at time t, 0 otherwise

 Essential constraints:

‣ Eulerian cycle continuity (arc entering node i at time t requires arc

leaving node i at time t+1)

‣ Forbid deadhead on (i,j) until (i,j) or (j,i) is plowed

 Large number of variables and constraints (~8000 and 19000

respectively, for an instance with 10 arcs and 7 nodes)

16

Solution Methodology
Overview

 Construct a “solution framework” using the solution to

Levitating Postman Problem

‣ Solution to IP gives a number of traversals for each

arc

‣ Solution serves as a lower bound

 Use solution framework to construct initial solution using

Fleury’s Algorithm

 Perform local search on a solution

‣ Reinitialize and repeat local search

 Prune a solution to obtain the final solution

17

Solution Methodology
Solution Framework

 Circles on graph indicate

elevation

 It is possible that no cycle

will yield the objective

function of the solution

framework

 Let the cost of (0,1) be 10

and the cost of (1,0) be 2

 Let the deadhead cost be 1

10

2

18

Solution Methodology
Solution Framework

10

2

 Solution framework seeks

to plow downhill twice

 Plowing uphill is

unavoidable, hence the

solution framework

forbiding it is infeasible

 Solution framework has

objective value of 6

 Optimal cycle (0,1,0) has

cost 12 Solution Framework

19

Solution Methodology
Initial Solution

 A cycle can be produced by the solution framework

using Fleury’s Algorithm

 This cycle is guaranteed to traverse (and hence plow)

each street twice

 Not guaranteed to have a cost that is the same as the

lower bound of the solution framework (previous

example)

 Seek to improve a cycle using a local search heuristic

20

Solution Methodology
Local Search

 We explore the set of all Eulerian cycles that obey the

solution framework

 Search nearby cycles to find a better one

 Requires:

‣ Definition of neighborhood - define nearby

‣ Fitness function - gives the quality of a cycle

- In our case, the fitness is the cost of the cycle

21

Solution Methodology
Local Search

 Solution Fitness:

if arc has been plowed twice

→ then don’t plow

else if arc hasn’t been plowed at all

→ then plow

else if going downhill

→ then plow

else if cycle isn’t going downhill later

→ then plow

else don’t plow

For each arc, decide to plow based on the following:

22

Solution Methodology
Local Search

 All Eulerian cycles can be decomposed into sub-

cycles

 Definition of neighborhood around a solution s, N(s):

the set of all cycles that can be obtained by a

combination of the following moves

‣ Sub-cycles in the cycle are permuted

‣ Sub-cycles in the cycle are reversed

Plowing with Precedence
Solution Methodology - Local Search

{1,2,3,1,2,3,4,1,3,4,1}

{1,2,3,4,1,3,4,1,2,3,1}

{1,2,3,4,1,3,4,1,3,2,1}

24

Solution Methodology
Local Search

 The number of

permutations is large: n!

for n cycles

 To limit the size of the

neighborhood, if n>4, we

limit the set of

permutations to 4!+n for

linear growth

 Most intersections have

four or fewer cycles

25

Solution Methodology
Reinitialization

 Local search is deterministic and depends on the

initial solution

 We reinitialize to produce new initial solutions for local

search

 This is done by permuting cycles around different

nodes randomly a large number of times

 The best solution produced in 15 runs of local search

and reinitialization is retained

26

Solution Methodology
Pruning

 It is possible that a cycle

will have sub-cycles that

have only deadhead

moves

 These cycles can be

pruned to obtain a lower-

cost cycle that still plows

each street twice

 Pruning is done at the end

of local search plus

reinitialization phase

27

Solution Methodology
Lower Bounds

 Linear Program (LP) relaxation

‣ Difficult to solve in a reasonable amount of time

‣ Removed some constraints to speed up the LP

‣ Obtained bounds are very tight

 LPP in solution framework

‣ Does not incorporate precedence at all

‣ Outperforms the LP relaxation

28

Computational Results

 We test our algorithm on 45 modified Windy Rural Postman

Problems given in Corberan et al. (2007)

‣ Remove Rural concept

‣ Existing costs are interpreted as plowing costs

‣ Randomly generate deadhead costs

 Instances are characterized by:

‣ Number of nodes (7 to 196)

‣ Number of arcs (10 to 316)

‣ Average cost deviation - average discrepancy in cost between

plowing up and plowing down (4% to 80%)

29

Computational Results

 Our IP formulation for Plowing with Precedence is large, so

we only solve the smallest of instances (up to 9 nodes) to

optimality with Gurobi

 We compare the solution produced by our heuristic to the

lower bound given by the solution framework

‣ If the heuristic solution matches lower bound, then we

know we have the optimal solution

 Our heuristic performs very well

‣ Produces the optimal solution to 24 of 45 instances

‣ Average deviation of 0.17% from the lower bound

30

Computational Results
Running Time

 All tests were

performed on a single

thread of a 1.86 GHz

Intel Core2Duo

processor

 Min = 0.156 seconds

 Max = 3686 seconds

 Average = 687

seconds

31

Computational Results
Improvement over Initial Solution

 Compare final solution

cost against the initial

solution cost

 1.8% average

improvement

 Measure percentage

improvement vs.

Average cost deviation

32

Computational Results
Deviation from Lower Bound

 Cost deviation is largest

driving factor in deviation

from lower bound

 0.17% average deviation

from the lower bound

 Deviation from the lower

bound increases as cost

deviation increases

 Want to investigate

further

33

Computational Results

 We selected two large instances (116 and 196 nodes)

and constructed several new instances that:

‣ Preserved the same graph

‣ Average cost deviation ranged from 10% to 70%

 Compare the effects of average cost deviation on:

‣ Running Time

‣ Percentage Improvement

‣ Deviation from Lower Bound

34

Computational Results

Instance A3101 Instance M3101

Running Time vs. Average Cost Deviation

35

Computational Results

Instance A3101 Instance M3101

Percentage Improvement vs. Average Cost Deviation

36

Computational Results

Instance A3101 Instance M3101

Deviation from Lower Bound vs. Average Cost Deviation

37

Conclusions

 Introduced the Plowing with Precedence variant of the WPP

 Addressed the practical consideration that the choice of

deadheading a street is only available after plowing

 Introduced the concept of precedence to postman problems

 Our heuristic generated very good results, with solutions that

are, on average, within 0.17% of the lower bound for instances

derived from those in the literature, and 0.49% for all instances

‣ Many solutions are optimal

 Observed increases in running time, percentage improvement,

and deviation from the lower bound as the average cost

deviation increased

38

Conclusions

 Future work

‣ Improve lower bound for large problems

‣ Improve upper bound

‣ Generalize the concept of precedence: Let the

possible choices and costs of traversal be a more

general function of the number of times traversed

‣ Add multiple plows: When one snow plow clears a

street, other plows are able to deadhead that street

