
Multi-Period Street
Scheduling and Sweeping
Benjamin Dussault
 Department of Applied Mathematics and Scientific Computation - University of Maryland

Carmine Cerrone
 Department of Mathematics and Computer Science - University of Salerno

Bruce Golden
 Robert H. Smith School of Business - University of Maryland

Edward Wasil
 Kogod School of Business - American University Tristan VII

June 2010

Introduction

❖ Washington D.C. wants to sweep a subset of its streets
over two days

❖ A street sweeper cannot sweep a side of a street if
there are cars parked on that side

❖ There are parking restrictions for each street segment
that are enforced by parking signs and dictate parking
availability and hence sweeping ability

❖ A common parking constraint (and central motivator) is
the requirement that parking be available on one side of
a street at all times

2

Motivating Parking Constraint
Day 1 - Park on the left, sweep on the right
Day 2 - Park on the right, sweep on the left

Day 1 Day 2

3

Motivating Parking Constraint
Day 1 - Park on the right, sweep on the left
Day 2 - Park on the left, sweep on the right

Day 1 Day 2

4

Introduction

❖ Some streets have no
parking at all

‣ Allowed to sweep
either side of the
street at any time

‣ There are no parking
signs in this case

5

Literature Review

❖ Bodin and Kursh (1978, 1979) study street sweeping in
New York City

‣ Deal with time-window parking constraints

❖ Street sweeping can be modeled as a Directed Rural
Postman Problem (DRPP) (Christofides et al. 1986)

‣ Our problem is more complicated; the decision
variables of interest are choosing appropriate street
signs over choosing routing

❖ Eglese and Murdock (1991) consider bidirectional street
sweeping

6

Problem 1

❖ Suppose the city decides to redo all parking signs while
still obeying parking constraints

❖ How should the city redo the signs to minimize the
length of the path traveled by the street sweeper?

❖ Problem 1: Solve for the optimal routing given existing
parking constraints

❖ Relaxing the signs can only decrease the distance
traveled by the sweeper

7

Problem 1 - Example
All street sides must be swept and require
available parking on one side

8

Problem 1 - Example
Bolded edges are street sides that must be
swept on even days

9

Problem 1 - Example
Schedule induces undesirable sweeping route on
even days

10

Problem 1 - Example
New schedule: bold edges are street sides that
must be swept on even days

11

Problem 1 - Example
Induces optimal sweeping route on even days
(and odd days as well)

12

Problem 2

❖ The city has street signs already in place

❖ How can the city change a minimal number of street
signs to allow for a schedule that maximally decreases
the distance traveled by the sweeper?

❖ There are costs associated with changing existing
street signs (e.g., actual cost for new signs, residents
confused by new signs)

13

Problem Statement

❖ City is represented by a directed graph G

❖ G is strongly connected

❖ Each street has by two edges representing the two
sides of the street

‣ The edges go in opposite directions if the street is
two way

‣ Same direction if the street is one way

❖ Street sweeper is responsible for some subset of the
streets (not necessarily connected)

14

Example
Washington DC -
bolded edges must
be swept

15

Problem Statement

❖ Each street (and associated edge pairs) have the following
constraints determined ahead of time:

‣ Both sides are not swept during the two days. Travel along either
side will result in deadheading

‣ One side does not need to be swept and the other does. Travel
along the former will result in deadheading, and the latter may be
swept on either day

‣ Both sides need to be swept, but cannot be swept on the same
day. This is the situation where parking is required to be available
on one side of the street at all times

‣ Both sides need to be swept. This allows for the possibility of
both sides to be swept on the same day

16

Problem Statement

❖ A feasible schedule assigns a sweeping day to each
edge that requires sweeping in a way that obeys the
pre-assigned parking constraints

❖ A schedule completely determines the parking signs so
we only concern ourselves with schedules

❖ We seek to determine a feasible schedule that
produces the Eulerian cycle with the smallest deadhead
(by solving the DRPP with a simple heuristic)

❖ This problem is NP-hard since it is a generalization of
the DRPP

17

Solution Methodology

❖ We use a genetic algorithm (GA) that acts on a
population of feasible schedules

❖ We use a simple and fast heuristic for the DRPP to
produce a cycle whose length serves as a fitness
function

18

GA Overview

❖ Chromosomes are schedules

❖ Begin with initial population of schedules

‣ Constructed randomly

❖ Iterate

‣ Breeding process - breed each schedule with a better
schedule

‣ Mutate some solutions

❖ Repeat until no new best solution is found for N iterations
19

Breeding Process

❖ The induced Eulerian cycle of a schedule is highly
sensitive to the schedule

❖ Haphazard breeding, such as random street assignment
swaps, destroys good solutions

❖ To construct a good breeding algorithm, we note that
most Eulerian cycles can be decomposed into sub-cycles

❖ A good Eulerian cycle will have “good” sub-cycles and
good sub-cycles will induce a good Eulerian cycle

❖ Our breeding algorithm tries to swap sub-cycles between
schedules

20

Cycle Example
Figure-8 is decomposed into 2 cycles

21

Breeding Process

❖ A schedule does not have sub-cycles itself; the Eulerian
cycle that it induces does

❖ We make the reasonable assumption that a good
schedule allows for good cycles

❖ Our breeding algorithm determines a cycle allowed by
the first schedule on a random day and adjusts the
second schedule to allow the same cycle on the same
day

22

Breeding Example
Portion of city graph - each street must have
available parking on one side each day

23

Breeding Example
Schedule 1 on even days - Note induced
deadhead

24

Breeding Example
Schedule 2 on even days - Note good cycle 1, 3,
4, 2, 1

25

Breeding Example
The good structure of schedule 2 is imparted on
schedule 1

26

Results - Problem 1

❖ Compare GA against a CPLEX implementation of an integer
program (IP) of the problem as well as a naive local search
procedure (LS)

‣ Local search changes one element of the schedule at a
time and keeps improvements

❖ All run on a 1.83 GHz Intel Core 2 Duo Processor

❖ Two types of test instances: randomly generated to emulate
a city and obtained from actual data of Washington, DC

‣ Number of nodes in random instances are 25, 50, 100,
and 225 (20, 20, 10, and 10 instances, respectively)

27

Results - Problem 1

❖ CPLEX on 40 small instances (25 and 50 nodes)

‣ CPLEX hits its time limit of 7,200 seconds on 25
instances

‣ Fails to obtain a feasible solution to 2 instances

‣ Produces optimal solution to 15 instances

28

Results - Problem 1

❖ GA and LS accuracy on 40 small instances

‣ GA obtains good solutions with respect to CPLEX
when CPLEX is able to obtain a solution, on average
0.18% worse

‣ GA outperforms LS by an average of 1.1% over all
problems

29

Results - Problem 1

❖ CPLEX running times on small instances

‣ Range from 0.743 seconds to 6580 seconds (and
7200 seconds)

‣ Average of 548 seconds, not including instances
where CPLEX hits its time limit

❖ GA: 5.4 seconds on average

❖ LS: 1.2 seconds on average

30

Results - Problem 1

❖ CPLEX on 20 large instances (100 and 225 nodes)

‣ Hits time limit of 7200 seconds on 19 instances

‣ Fails to obtain a feasible solution to 18 instances

‣ CPLEX is not a viable way of solving large instances

31

Results - Problem 1

❖ GA and LS on 20 large instances

‣ GA outperforms LS by an average of 0.37% with
respect to route length

‣ GA comparable or outperforms LS with respect to
running time

- 44 vs. 34.4 seconds for 100 nodes

- 708.7 vs. 3006.2 seconds for 225 nodes

32

Results - Problem 2

❖ Iteratively increase the number of allowed street sign
changes (n) and compare the resulting fitness values

❖ Measure

‣ Improvement as a function of n

‣ Deviation from best solution as a function of n

33

Problem 2
Percentage improvement vs. percentage of
allowed street sign changes

Percentage of allowed changes

P
er

ce
nt

ag
e

im
pr

ov
em

en
t

34

Problem 2
Percentage deviation from Problem 1 vs.
percentage of allowed street sign changes

Percentage of allowed changes

P
er

ce
nt

ag
e

de
vi

at
io

n
fro

m
 b

es
t k

no
w

n
so

lu
tio

n

35

Results Problem 2

❖ Convergence of the fitness function in Problem 2 to
best-known obtained from Problem 1 occurs in nearly
all test instances

❖ Average deviation

‣ 0.004% when 12% of the signs are changed

‣ 0.927% when 7% of the signs are changed

❖ One does not lose solution quality to begin with an
initial solution and modify it

36

Conclusions

❖ Described two new street scheduling and sweeping
problems encountered in Washington, DC

❖ Constructed a novel genetic algorithm

‣ Accurate

‣ Fast running times

❖ Interesting managerial results in Problem 2

37

