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Introduction 
 Washington, DC wants to have a subset of its streets swept 

over two days 
 

 A street sweeper cannot sweep a side of a street if there are 
cars parked on that side 

 

 There are parking restrictions for each street segment that 
are enforced by parking signs and they dictate parking 
availability and hence sweeping ability 

 

 A common parking constraint is the requirement that 
parking be available on one side of a street at all times 
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Motivating Parking Constraint 
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Day 1 Day 2 

Day 1 – Park on the left, sweep on the right 
Day 2 – Park on the right, sweep on the left 



Motivating Parking Constraint 
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Day 1 Day 2 

Day 1 – Park on the right, sweep on the left 
Day 2 – Park on the left, sweep on the right 



Parking Constraints 

 Some streets have no 
   parking at all 
 

  Here we can sweep 
        either side of the 
        street at any time 
 

There are no parking 
         signs in this case 

5 



Variant 1 
 Suppose the city decides to redo all parking signs 

(reschedule No Parking) while still obeying 
parking constraints 

 

 How should the city redo the signs to minimize the 
length of the path traveled by the street sweeper? 

 

 If we redo the signs, we can decrease the distance 
traveled by the sweeper 
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Variant 1 - Example 
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All street sides must be swept and available parking is required on one side 

1 2 

4 3 



Variant 1 - Example 
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1 2 

3 4 

Bold edges are street sides that must be swept on even days 



Variant 1 - Example 
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3 4 

Schedule leads to an undesirable sweeping route on even days 



1 2 

3 4 
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Variant 1 - Example 

2 

4 

New  schedule: bold edges are street sides that must be swept on even days 

Old 



Variant 1 - Solved 
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1 2 

3 4 

Optimal sweeping route on even days (on odd days the route is the reverse) 

1 

4 2 

3 



Variant 2 
 The city has street signs already in place 
 

 How can the city change a small number of street 
signs to allow for a schedule that substantially 
decreases the distance traveled by the sweeper? 

 

 There are costs associated with changing existing 
street signs (e.g., the actual cost of new signs and 
sign replacement, the confusion caused by new 
signs) 
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Problem Statement 
 The city is represented by a directed graph G 

 G is strongly connected 

 Each street has two edges representing the two sides of 
the street 

The edges go in opposite directions if the street is two 
way 

Same direction if the street is one way 

 The street sweeper is responsible for some subset of 
the streets (not necessarily connected) 
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Washington, DC Example 
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Bold edges must be 
swept 



Problem Statement 
 Each street (and associated edge pairs) has one of the 

following constraints, determined ahead of time: 
 Neither side is swept during the two days. Travel along either side 

will result in deadheading 

 One side does not need to be swept and the other does. Travel along 
the former will result in deadheading, and the latter may be swept 
on either day 

 Both sides need to be swept, but cannot be swept on the same day. 
This is the situation where parking is required to be available on one 
side of the street at all times 

 Both sides need to be swept, but they may be swept on the same day 
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A Feasible Schedule 
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 A feasible schedule assigns a sweeping day to each edge 
that requires sweeping, in a way that obeys the parking 
constraints 

 

 A schedule completely determines the parking signs 
 

 We want to determine a feasible schedule that produces 
the Eulerian cycle with the smallest deadhead distance 
(by solving the DRPP with a simple heuristic) 

 

 This combined problem is NP-hard since it is a 
generalization of the DRPP 
 



Solution Methodology 
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 We use a genetic algorithm (GA) that acts on 
a population of feasible schedules 

 

 We use a simple and fast heuristic for the 
DRPP to produce a cycle whose length 
serves as a fitness function in the GA 



GA Overview 
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 Chromosomes are schedules 

 Begin with an initial population of randomly 
constructed schedules 

 Iterate 

Breed each schedule with another schedule 

Mutate some solutions 

 Repeat until no new best solution is found for N 
iterations 



Breeding Process 
 The induced Eulerian cycle of a schedule is highly 

sensitive to the schedule 

 To construct a good breeding algorithm, we note that 
most Eulerian cycles can be decomposed into sub- 
cycles 

 A good Eulerian cycle will have low-deadhead sub-
cycles  

 Our breeding algorithm tries to swap sub-cycles 
between schedules 

19 



20 

The cycle above can be decomposed into two 
cycles given by edges 1 to 4 and 5 to 8 



Breeding Process - continued 
A good schedule is one that yields low-

deadhead cycles 
 

Our breeding algorithm determines a 
random sub-cycle allowed by one 
schedule on a given day and inserts it 
into a second schedule on the same day 
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An Example of Breeding 
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Portion of city graph – each street must have 
available parking on one side each day 
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Schedule 1 on even days - note substantial 
deadhead required 
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Schedule 2 on even days – note the low-
deadhead cycle 1-3-4-2-1 
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The good structure of schedule 2 is 
inserted into schedule 1 



Results for Variant 1 
 We compare the GA to a CPLEX solution of an integer 

program (IP) of the problem and to a naive local search 
procedure (LS) 

 

LS changes one element of the schedule at a time and 
keeps improvements 

 

 Two types of test instances: 1) randomly generated to look 
like a street network and  2) obtained from actual data of 
Washington, DC 

Number of nodes in random instances are 25, 50, 100, 
and 225 (20, 20, 10, and 10 instances, respectively) 
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Variant 1 Results 

 CPLEX applied to 40 small instances (25 and 
50 nodes) 

 

CPLEX hits a time limit of 7200 seconds on 25 
instances 

Fails to obtain a feasible solution to 2 instances 

Produces optimal solution to 15 instances 
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Variant 1 Results - continued 

 GA and LS accuracy on 40 small instances 
 

GA obtains good solutions with respect to 
CPLEX when CPLEX is able to obtain a solution, 
on average 0.18% worse 

GA outperforms LS by an average of 1.1% over all 
problems 
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Variant 1 Results 

 CPLEX running times on small instances 

Average of 548 seconds, not including instances 
where CPLEX hits the time limit 

 

 GA: 5.4 seconds on average 
 

 LS: 1.2 seconds on average 
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Variant 1 Results - continued 

CPLEX applied to 20 large instances 
(100 and 225 nodes) 

 

Hits time limit of 7200 seconds on 19 instances 

Fails to obtain a feasible solution on 18 instances 

CPLEX is not a viable way of solving large 
instances 
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Variant 1 Results - continued 

GA and LS on 20 large instances 
 

GA outperforms LS by an average of 0.37% with 
respect to route length 

GA outperforms LS with respect to running time 

- 44 vs. 34.4 seconds for 100 nodes 

- 708.7 vs. 3006.2 seconds for 225 nodes 
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Variant 2 Results 

 Iteratively increase the number of allowed 
street sign changes (n) and compare the 
resulting fitness values 

 

 Measure 
 

Deviation from best solution as a function of n 
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Variant 2 Results 
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Percentage deviation from best-known solution vs. 
percentage of allowed street sign changes 

Percentage of allowed changes 
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Variant 2 Results - continued 

 Convergence of the fitness function in Variant 2 to 
best-known result obtained from Variant 1 occurs 
in nearly all test instances 

 

 Average deviation 

0.004% when 12% of the signs are changed 

0.927% when 7% of the signs are changed 
 

 One does not lose solution quality when beginning 
with an initial solution and then modifying it 
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Conclusions 

 We described two new street scheduling and 
sweeping problems encountered in Washington, 
DC 

 

 We developed a novel genetic algorithm 

Accurate 

Fast running times 
 

 Interesting managerial results for Variant 2 
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