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 My advanced degrees are in operations research 
(OR) 
 
 OR is a field which uses advanced analytical 

methods to help make better decisions 
 
 I have been a member of INFORMS since 1974 

 
 INFORMS sponsors a Conference on Business 

Analytics & Operations Research each Spring 
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 In Moliere’s play The Bourgeois Gentleman, Mr. 
Jourdain discovers that he has been speaking 
prose all his life, and didn’t even know it! 
 
 Well, Mike, Margrét, and I have been doing 

business analytics ever since we were graduate 
students, but we didn’t use that name 
 
 I began working on healthcare applications about 

six years ago 
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 There is more healthcare data available than ever 
before 
Careful analysis of healthcare data can lead to smarter 

decisions, better quality healthcare, and cost savings 
 

 A larger number of healthcare decision makers have 
MBAs than ever before 
 They understand that we can help 
 

 A larger number of us in OR/OM are working on 
healthcare applications than ever before 
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 The Cardiac Surgery service line at the UMMC has 30 
beds that are split between the intensive care unit (ICU) 
and the intermediate care unit (IMC) 
 

 At the time of the study, there were 11 ICU beds and 18 
IMC beds 
 

 One bed was not in use because of insufficient staffing 
 

 Key Question: What is the best mix of ICU and IMC beds? 
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 The data set contained detailed 
information about the length of stay for 
every cardiac surgery patient for a two-
year period (2005-2006) 
 
 1,675 patients had 1,725 operations and 

spent more than 17,000 days in the 
hospital 
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We used the data to perform a 
simulation of different mixes of ICU and 
IMC beds 
We maintained the current staffing level 

of 80 nurses 
 Each mix of ICU and IMC beds was 

simulated 1,000 times for four months 
each time 
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 The 14/12 bed mix enabled a total volume increase of 20% 
 

 Each cardiac surgery provides a net income of roughly 
$20,000 
 

 Staffing levels are constant, so there is no additional cost 
for nurses 
 

 The 14/12 bed mix yields an annual increase in profit of 
$4.58 million 
 

 This work can be reproduced in other service lines  
    (e.g., neuro) and at other hospitals with similar results 
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 There is significant variation in the quality of 
care from one hospital to the next 
 
 We examine how quality varies within hospitals 

between daytime (6 am- 6 pm) and off-hours  
   (6 pm- 6 am) 

 
 We focus on trauma patients 
By trauma, we mean sudden physical injury 
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 Examples 
 Car crashes 
 Traumatic brain injury 
 Gunshot wounds 

 Trauma is the leading cause of death among 
Americans ages 1 to 44 (122,000 deaths a year) 
 Trauma patients are treated at a wide variety of 

hospitals 
 Short treatment cycle 
 Clear quality metrics 
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 National Trauma Data Bank created and 
maintained by the American College of Surgeons 

 
 Data on over 1.5 million patients from 477 

hospitals 
 
 Detailed data: patient demographics, hospital 

characteristics, treatment characteristics, 
outcome, payment type, comorbidities, and 
more 
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 Mortality 
 
Waiting time to surgery 
 
 Length of ICU stay 

 
 Surgical complication rate 
 
 Number of surgeries required 
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 Regression modeling 
 
 Logistic regression modeling 
 
 The findings focus on an average patient and 

show how outcomes change if patient arrives 
in daytime, night, or early am 
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Measure Daytime Night Early am 
Mortality rate (L1) 0.10 0.104 0.108 
Mortality rate (L2) 0.10 0.104 0.109 

Mortality rate (L3-4) 0.10 0.114 0.131 
Mortality rate (all) 0.10 0.111 0.111 
Complication rate 0.125 0.131 0.135 

Multiple surgery rate 0.786 x 0.806 
Time to surgery (mins.) 182.5 175.4 167.9 

ICU LOS hours 9.78 10.32 10.61 



 Prompt treatment is essential in trauma care  
   (the Golden Hour) 
 
 To our surprise, longer waits for surgery did not 

occur during off-hours 
Hospitals are not as busy at night 
Operating rooms are mainly idle 
 

 Still, outcomes at night/early am were clearly 
worse than during daytime 
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 Staffing levels differ between daytime and off-hours 
 
 There tend to be generalists on duty overnight 
 
 More resources and specialized resources are 

available during the daytime 
 
 More experienced physicians prefer to work during 

the daytime 
 
 Therefore, we expect a higher quality of care during 

the daytime and the model outcomes confirm this 
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 The differences in resource availability between day 
and off-hours at small hospitals are greater than at 
larger hospitals 

 
 Level I trauma centers are required to have certain 

surgical specialty staff available at all times 
 
 Therefore, we expect to see larger differences in 

outcome between daytime and off-hours at lower 
level trauma centers, and smaller, more resource-
constrained hospitals 
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 Increase in mortality rate compared to daytime 
 
 
 
 Increase in surgical complication rate compared 

to daytime 
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Level 1 Level 2 Level 3-4 
Early am 11.0% 14.3% 30.6% 

Night 10.1% 13.1% 18.9% 

Level 1 Level 2 Level 3-4 
Early am 9.2% 10.8% 31.9% 

Night 4.6% 4.7% 8.2% 



 Patients who arrive at night or the early morning to 
trauma centers receive lower quality care than 
patients who arrive during the day 

 
 The decrease in quality of care is largest at small, 

resource constrained hospitals and at lower level 
trauma centers 

 
 There are fewer specialized doctors available off-

hours, which leads to lower quality 
 
 Mitigation strategies: Increase staffing levels and 

mimic the Dr. Cowley Shock Trauma Center 
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 Many hospital resources are required for surgery 
Operating rooms 
Nurses 
Anesthesia team 
Post-operative beds for recovery 

 If downstream beds are unavailable, surgery 
might be postponed or cancelled 
 Surgeons decide when patients are discharged 
Surgeons are paid to do surgery 
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 Does the utilization of downstream beds 
affect the discharge decisions of 
surgeons? 
Hypothesis: There is an increased discharge 

rate on days when post-operative utilization 
is high 
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 Data collected on every surgery performed at a large US 
hospital from Jan 1, 2007 to May 31, 2007 

 
 7808 patients, of which 6470 were admitted to the hospital 

and stayed for at least one night 
 
 These patients stayed a total of 35,478 days 
 
 Data provided on age, race, gender, surgical line, date of 

surgery, discharge date, and surgery type (scheduled vs. 
emergency) 

 
 Utilization of post-operative beds varies widely 
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 Discharge rates have positive correlation 
with utilization 



 We compute two measures of utilization 
 Discrete measure – a variable that is 1 when utilization  

exceeds a given threshold (e.g., 93%), and 0 otherwise 
 Continuous measure – a variable that counts the number of 

beds in use on each day 
 

 Compare marginal effect of each bed in use vs. a 
discrete change in discharge probability when 
utilization exceeds a threshold 
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 Can’t use logistic regression because observations are 
correlated -- a patient discharged on the fifth day cannot be 
discharged on the first four days 

 
 Singer and Willet (1993) show how to handle discrete time 

survival data 
 
 For each day, we record whether or not each patient is 

discharged, and use this as the outcome variable 
 
 The outcome variable is regressed on our utilization measures 

and our control variables 
 
 We control for the patient’s age, race, gender, severity, and 

surgery type 
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 Model 1:  logit(DISCHARGE) = AGE + ELECTIVE + FULL + CARDIAC SURGERY 
   + CARDIOLOGY +…+ DONOR SERVICE + D1 
   + D2 +…+ D59 + ε  
 
 
 Model 2:   logit(DISCHARGE) = AGE + ELECTIVE + BEDS + CARDIAC SURGERY 
   + CARDIOLOGY +…+ DONOR SERVICE + D1 
   + D2 +…+ D59 + ε  
 
 

 When the utilization threshold is exceeded, the odds of discharge 
for any given patient increase. The estimate for Full is positive and 
significant for threshold above 91.5%. 

 
 Each additional bed in use increases the odds that a patient will be 

discharged. The estimate for Beds is positive and significant. 
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 Discharge rates increase as utilization increases, 
regardless of how utilization is measured 

 
 Either some patients are held too long and 

discharged when space is needed, or some 
patients are discharged too early when utilization 
is high 

 
 Our results cannot distinguish between these 

two explanations 
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 Are patients who are discharged when 
utilization is high more likely to be 
readmitted? 
Hypothesis:  An increase in the discharge rate will 

lead to some patients with shortened lengths of 
stay.  This will cause an increase in the 
readmission rate for those patients. 
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 Using the same data set, we apply logistic regression 
to study the effect that utilization has on the 
probability of readmission for a specific patient 

 
 We use readmission within 72 hours as our dependent 

variable 
 
 Hypothesized logistic regression model 

  
 logit(READMISSION72) = AGE + BLACK + ASIAN + HISPANIC + FULL + 

ELECTIVE + TRANSPLANT + TRAUMA + … + NEURO + MALE + ε  
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 Model with Full: Controlling for race, age, gender, 
and the type of surgery, being discharged from a 
full post-operative unit increases the odds of 
readmission by a factor of 2.341 
 
 Model with Beds: Controlling for race, age, 

gender, and the type of surgery, each bed in use 
at the time of discharge increases the odds of 
readmission by a factor of 1.008 
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Bed Utilization 

The discharge rate 
and readmission 
rate both increase 
as utilization 
increases 
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Over the course of a 
month, patients 
discharged from a 
full hospital are 
much more likely to 
be readmitted 



 The discharge rate rises when utilization is high 
 
 This corresponds to an increase in the readmission rate 

 
 We conclude that some patients are discharged too soon when 

utilization is high 
 

 Surgeons have an incentive to clear space for their surgeries 
 

 Mitigation strategy: Use a checklist before discharging a 
patient—force the surgeon to think about whether the discharge 
is for the right reason 
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 Our research team is working with hospitals in 
Baltimore and Washington, D.C. 

 
 There are more opportunities to apply healthcare 

analytics than we can handle 
 
 Our colleagues at other universities are in the same 

situation 
 
 The future of healthcare analytics looks very bright 
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