// :
’ Ay 2 | ) = B ¢ ,‘ v .;;\.‘ .\r .:“f' D ._' == 7/ s 7=}
= o L ‘_[ U ‘_l > f IRNEDE "/\‘/_2_‘ K_‘ Sl ,_‘ [_. l_A l_,

]

Bruce L. Golden
R.H. Smith School of Business
University of Maryland

Presented at AIRO 2012 Conference, September 2012

Vietri sul Mare, Italy



,//x““ B

Outline of Talk

Some personal remarks
Vehicle Routing
»The Hierarchical Traveling Salesman Problem
(HTSP)
Healthcare Analytics

»The Effects of Bed Utilization on Discharge and
Readmission Rates

Conclusions
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Introduction to the HTSP

Consider the distribution of relief aid

>E.g., food, bottled water, blankets, or
medical packs

The goal is to satistfy demand for relief
supplies at many locations

> 1Ty to minimize cost

»Take the urgency of each location into
account
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A Simple Model for Humanitarian

Relief Routing

Suppose we have a single vehicle which has enough
capacity to satisfy the needs at all demand
locations from a single depot

Each node (location) has a known demand (for a
single product called an aid package) and a known
priority

Priority indicates urgency
Typically, nodes with higher priorities need to be

visited before lower priority nodes
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Node Priorities

Priority 1 nodes are in most urgent need of service
To begin, we assume
- Priority 1 nodes must be served before priority 2
nodes
- Priority 2 nodes must be served before priority
3 nodes, and so on
- Visits to nodes must strictly obey the node
priorities



The Hierarchical Traveling
Salesman Problem

We call this model the Hierarchical Traveling
Salesman Problem (HTSP)

Despite the model’s simplicity, it allows us to
explore the fundamental tradeoff between
efficiency (distance) and priority (or urgency) in
humanitarian relief and related routing problems

A key result emerges from comparing the HTSP
and TSP in terms of worst-case behavior



Four Scenarios for Node Priorities
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Literature Review

Psaraftis (1980): precedence constrained
TSP

Fiala Tomlin, Pulleyblank (1992):
precedence constrained helicopter routing

Guttman-Beck et al. (2000): clustered
traveling salesman problem

Campbell et al. (2008): relief routing
Balcik et al. (2008): last mile distribution
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A Relaxed Version of the HTSP

De

finition: The d-relaxed priority rule adds

operational flexibility by allowing the vehicle to
visit nodes of priority ™ + 1, ..., ™ + d (if these

pri
pri
of

orities exist in the given instance) but not
ority m + d + £ for £ = 1 before visiting all nodes
priority w (for m =1, 2,...,P)

When d=0, we have the strict HTSP

When d=P-1, we have the TSP (i.e., we can ignore
node priorities)
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Efficiency vs. Priority

HTSP(4=3): Optimal Tour Length =3.56 1 HTSP(d=1): Optimal Tour Length =5.29
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Main Results

Let P be the number of priority classes

Assume the triangle inequality holds

Let Z* 4 p and Z*1sp be the optimal tour length (distance)
for the HTSP with the d-relaxed priority rule and for the
TSP (without priorities), respectively

We obtain the following results
(@)Z*op < PZ*1sp

(b) Z°gp < [ﬁ} Z1sp

12



Sketch of Proof (a)

/ 2
\ Tour t*




Sketch of Proof (a)

Construct tours t(1), ©(2), and t©(3)
Visit nodes in the same order as they appear in T

From the triangle inequality, the lengths of t(1), t(2),
and t(3) are each < Z*¢p

It is easy to construct a feasible solution t to the HTSP
from t(1), ©(2), and t(3)

The length of t < };_, {length of t (i)} < 3Zx1¢p
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Sketch of Proof of (b)




Sketch of Proof of (b)

In our example, P=4 and d=1

In the worst case, we can't visit a priority 3 node until
we have visited all priority 1 and 2 nodes

Visit nodes in the same order as they appear in T
t(1) includes priority 1 and 2 nodes

t(2) includes priority 3 and 4 nodes

As before, we can construct t from t(1) and t(2)

The length of t < Y7, {length of t (i)} < 2Zx{¢p



- The General Result and Two
Special Cases

P
7: [—]Z*
dp = |12 p

If d=0, we have part (a)

If d=P-1, then Z*d,P = Z*TSP
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Worst-case Example

Location 1 Location n-1
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Several Observations

Observation 1. The worst-case example shows that the
bounds in (a) and (b) are tight and cannot be improved

Observation 2. We can “solve” a TSP over the entire set
of nodes using our favorite TSP heuristic and obtain a
feasible tour for the HTSP by following the part (b)
proof

Observation 3. Suppose we select Christofides’ heuristic
and let Z g p be the length of the resulting feasible solution

to the HTSP, then we have Zd p < 2 [ﬁ} Z1sp

19
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Observations and Extensions

Observation 4. The HTSP (with d=0) can be modeled
and solved as an ATSP

Observation 5. Other applications of the HTSP include
routing of service technicians and routing of
unmanned aerial vehicles

We can obtain similar worst-case results (with tight
bounds) for the HTSP on the line and the Hierarchical
Chinese Postman Problem (HCPP)
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Extensions and Future Work

The HTSP and several generalizations have been
formulated as mixed integer programs

HTSP instances with 30 or so nodes were solved to
optimality using CPLEX

Future work

> The Hierarchical Vehicle Routing Problem (HVRP)
> A multi-day planning horizon
» Uncertainty with respect to node priorities

21



Emergence of Healthcare Analytics
within INFORMS

Number of Healthcare Talks at INFORMS Annual Meetings
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Strength in Numbers

There is more healthcare data available than ever
before

> Careful analysis of healthcare data can lead to smarter
decisions, better quality healthcare, and cost savings

A larger number of healthcare decision makers have
MBAs than ever before

> They understand that we can help

A larger number of us in OR/OM are working on
healthcare applications than ever before

5



The Effects of Bed Utilization on Discharge
and Readmission Rates

Many hospital resources are required for surgery
» Operating rooms
> Nurses & Physicians
> Anesthesia team
> Post-operative beds for recovery

[f downstream beds are unavailable, surgery might be
postponed or cancelled

Surgeons decide when patients are discharged

> Surgeons are paid to do surgery

24



Research Question 1

Does the utilization of downstream beds
affect the discharge decisions of surgeons?

»Hypothesis: There is an increased
discharge rate on days when post-
operative utilization is high



Data

Data collected on every surgery performed at a large
US hospital from Jan 1, 2007 to May 31, 2007

7808 patients, of which 6470 were admitted to the
hospital and stayed for at least one night

These patients stayed a total of 35,478 days

Data provided on age, race, gender, surgical line, date
of surgery, discharge date, and surgery type (scheduled
VS. emergency)

Utilization of post-operative beds varies widely



Discharge Rates

= Discharge rates have positive correlation with utilization
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Utilization Measures

We compute two measures of utilization

> Discrete measure — a variable that is 1 when utilization exceeds a
given threshold (e.g., 93%), and 0 otherwise

» Continuous measure - a variable that counts the number of beds in
use on each day

Compare marginal effect of each bed in use vs. a
discrete change in discharge probability when
utilization exceeds a threshold

28
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Discrete Time Survival Analysis

Can't use logistic regression because observations are correlated -- a
patient discharged on the fifth day cannot be discharged on the first
four days

Singer and Willet (1993) show how to handle discrete time survival data

For each day, we record whether or not each patient is discharged, and
use this as the outcome variable

The outcome variable is regressed on our utilization measures and our
control variables

We control for the patient’s age, race, gender, severity, and surgery type

29



Models and Results

Model 1: logit(DISCHARGE) = AGE + ELECTIVE + FULL + CARDIAC SURGERY
+ CARDIOLOGY +...+ DONOR SERVICE + D1
+ D2 +..+ D59 + ¢

Model 2: logit(DISCHARGE) = AGE + ELECTIVE + BEDS + CARDIAC SURGERY
+ CARDIOLOGY +...+ DONOR SERVICE + D1
+ D2 +...+4 D59 + ¢

When the utilization threshold is exceeded, the odds of discharge for any given
patient increase. The estimate for Full is positive and significant for threshold
above 91.5%.

Each additional bed in use increases the odds that a patient will be discharged.

The estimate for Beds is positive and significant.
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Observations

Discharge rates increase as utilization increases,
regardless of how utilization is measured

Either some patients are held too long and discharged
when space is needed, or some patients are discharged
too early when utilization is high

Our results cannot distinguish between these two
explanations
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Research Question 2

Are patients who are discharged when utilization

is high more likely to be readmitted?
> Hypothesis: An increase in the discharge rate will lead
to some patients with shortened lengths of stay. This

will cause an increase in the readmission rate for those
patients.

32



Analysis

Using the same data set, we apply logistic regression to
study the effect that utilization has on the probability

of readmission for a specific patient

We use readmission within 72 hours as our dependent
variable

Hypothesized logistic regression model

logit(READMISSION72) = AGE + BLACK + ASIAN + HISPANIC + FULL (or
BEDS)+ ELECTIVE + TRANSPLANT + TRAUMA + ... + NEURO + MALE + ¢
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Results

Model with Full: Controlling for race, age, gender, and
the type of surgery, being discharged from a full post-
operative unit increases the odds of readmission by a
factor of 2.341

Model with Beds: Controlling for race, age, gender, and
the type of surgery, each bed in use at the time of
discharge increases the odds of readmission by a factor
of 1.008
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Utilization-Readmission Relationship

Percent of Patients Readmitted/Discharged
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The discharge rate
and readmission
rate both increase
as utilization
Increases
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Survival Analysis

Percent Readmitted
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Over the course of a
month, patients
discharged from a full
hospital are much more
likely to be readmitted



Discussion

The discharge rate rises when utilization is high
This corresponds to an increase in the readmission rate

We conclude that some patients are discharged too soon
when utilization is high

Surgeons have an incentive to clear space for their surgeries

Mitigation strategy: Use a checklist before discharging a
patient—force the surgeon to think about whether the
discharge is for the right reason
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Conclusions

Research opportunities in vehicle routing, disaster
relief, and healthcare analytics are plentiful

The HTSP work presented here will appear in
Optimization Letters

The healthcare analytics work presented here has
appeared in Health Care Management Science (2011,
2012)

Thank you!
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