Methicillin-Resistant Staphylococcus aureus Transmission Reduction using Agent-Based Modeling and Simulation

Sean Barnes

Applied Mathematics & Scientific Computation University of Maryland, College Park <u>sbarnes@math.umd.edu</u>

Bruce Golden

Robert H. Smith School of Business University of Maryland, College Park <u>bgolden@rhsmith.umd.edu</u>

> Edward Wasil Kogod School of Business American University <u>ewasil@american.edu</u>

Presented at the 2009 INFORMS Annual Meeting in San Diego, CA

Agenda

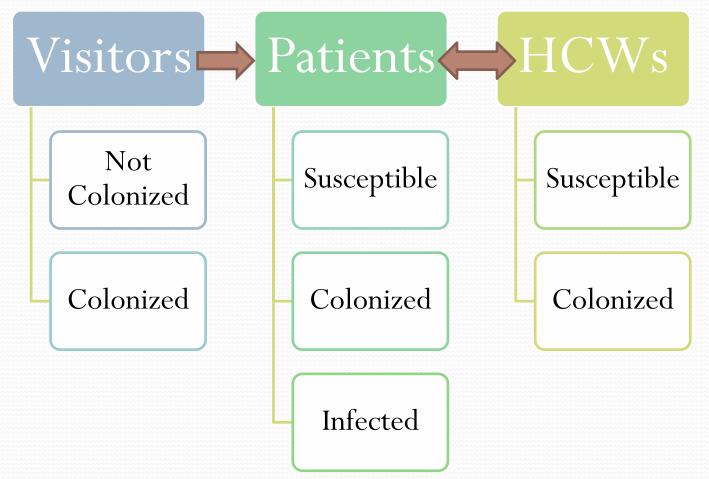
- Motivation
- Methodology
- Implementation
- Verification and Validation
- Testing
- Conclusions

Motivation

- The spread of infection is a dangerous problem, particularly in hospitals and communities around the country
- One of the most prevalent types of infection is **Methicillin resistant** *Staphylococcus aureus* (MRSA), the cause of close to 300,000 hospital-acquired infections and 20,000 deaths per year in the US

• Project Goals:

- 1. Model the transmission dynamics of MRSA within a hospital
- 2. Test the effectiveness of various infection control measures on preventing the spread of MRSA
- 3. Use the software to answer novel questions about transmission dynamics in a hospital


Methodology

- The majority of modeling efforts on this problem have relied heavily upon equation based methods
- The tractability of these methods depends on limiting assumptions that make it difficult to examine complex scenarios
- Agent-based modeling and simulation (ABMS) allows us to model explicitly the **interactions** between patients, health care workers, and visitors

ABMS

- Seeks to generate unexpected (emergent) macroscopic behavior from modeling microscopic interactions
- Easily allows for heterogeneity within the population
- Requires:
 - Definition of agents and their behaviors
 - Scope of interactions between agents
 - Optional: Explicit representation of the environment
- Agents:
 - Patients
 - Health care workers (HCWs, i.e., nurses and physicians)
 - Visitors
- The hospital serves as the environment in which agents interact

Agent States and Interactions

Implementation

- Stochastic agent-based simulation package developed in Python using various modules, most prevalently SimPy and Parallel Python
- SimPy: Discrete event simulation package which provides builtin functionality for simulating the interactions between agents and generating useful data
- Parallel Python: Multi-core parallel processing package which allowed for simultaneous execution of Monte Carlo simulation replications
- Agents were developed as object-oriented classes, with process execution methods defined for SimPy

Transmission Factors

- Hand hygiene compliance
- Hand hygiene efficacy
- HCW to patient ratios
- Transmissibility
 - Patient to HCW
 - HCW to Patient
 - Visitor to Patient
- Length of stay
- Number of daily contacts
- Proportion of colonized patients admitted
- Number of visitors

Performance

External

Infection Control Measures

- Active surveillance/Patient screening
 - On admission (with some probability)
 - With some frequency during patient stay
- Patient isolation
 - Once patient has been positively identified as a MRSA carrier, they can be isolated in a single room if there is one available
 - Cannot transmit MRSA to other patients by way of HCWs
- Decolonization
 - Once patient has been positively identified as a MRSA carrier, they can begin the decolonization process
 - When the treatment process is completed, patient returns to susceptible state

Infection Metrics

- Basic reproduction number, R₀: Mean number of secondary cases directly attributable to a single primary case
- Successful introduction rate: No. of secondary cases
- Attack rate: Ratio of transmissions to uncolonized patient days
- **Colonized patient days**: Percentage of total days spent as a colonized or infected patient
- Ward prevalence: Percentage of days on which at least one colonized patient was present

Computing I

Small Case

- 100 days, 250 replications
- 10 single/10 double rooms
- 10 nurses/5 physicians
- 10 day length of stay
- 5 daily contacts
- No infection control measures
- All testing was performed on Genome cluster machine: 32 processors/128 GB RAM

Results

Ν	JobTime Sum (s)	Run Times (s)	Speedup
1	747	747	-
2	752	377	1.98
4	746	188	3.97
8	752	96	7.78
16	761	50	14.94
32	941	33	22.64

Degradation in speedup due to extraction of results from larger number of processors

Computing II

Large Case

- 500 days, 25 replications
- 50 single/150 double rooms
- 50 nurses/20 physicians
- 10 day length of stay
- 5 daily contacts
- All infection control measures
- All testing was performed on Genome cluster machine: 32 processors/128 GB RAM

Results

	N	JobTime Sum (m)	Run Times (m)	Speedup
ŝ	1	136.9	136.9	-
	2	138.4	71.84	1.91
	4	136.1	37.91	3.61
	8	133.7	21.10	6.49
	16	141.3	11.88	11.52
	32	182.3	8.96	15.28

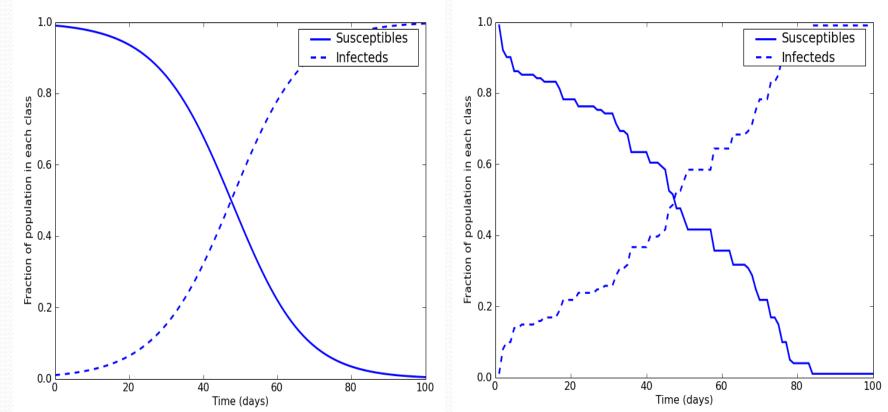
Degradation in speedup due to extraction of results from larger number of processors

Verification and Validation

- Verification -- Is the model implemented correctly?
 - Programmatic testing
 - Simple test cases and scenarios (i.e. corner cases, relative value testing)
 - Event logging
- Validation -- Does the model represent real world behavior?
 - Matching behavior from the literature
 - SIR Model Kermack and McKendrick (1927)
 - Beggs, Shepherd, and Kerr (2008)
 - Other models

SIR Model

- Population transitions between Susceptible, Infected, and Recovered states
- Assumptions:
 - Closed population (i.e. no births, deaths, migration)
 - Homogeneous population, well-mixed
- Model equations:


$$\frac{dS}{dt} = -\beta SI, \ \frac{dI}{dt} = \beta SI - \gamma I, \ \frac{dR}{dt} = \gamma I$$

• Used to validate transmission dynamics of ABMS software

Comparison

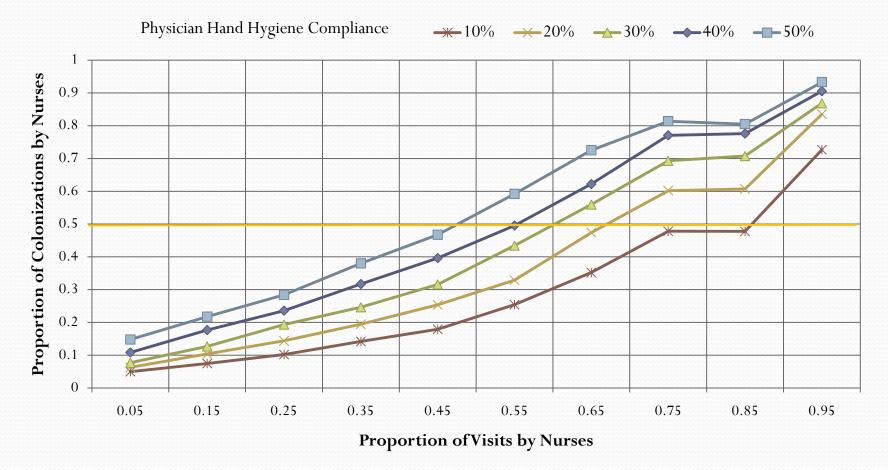
ABMS

31 August 2009

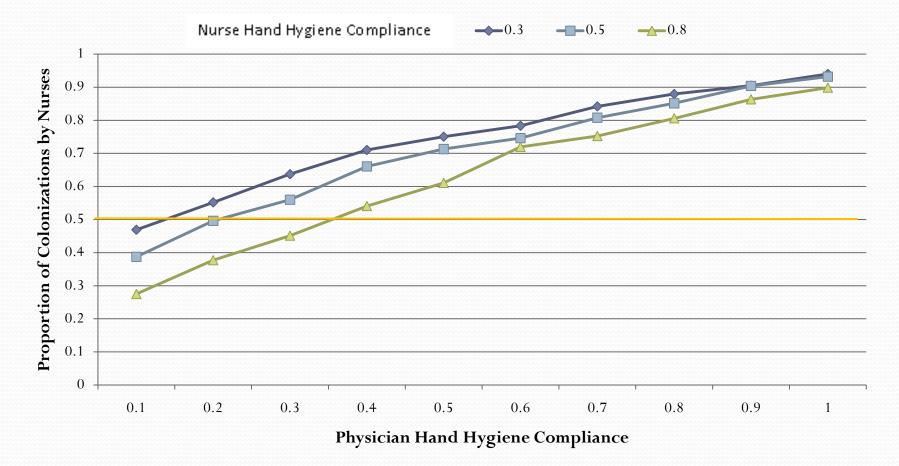
Targeting Zero

- Additional control measures are required to further reduce the incidence of transmission
- Baseline Case:
 - 100 days, 250 replications
 - 30 patients, 5 HCWs
 - 10 single, 10 double rooms
 - 5% of patients admitted are colonized with MRSA
 - 5 daily contacts per patient, U(0,10) day LOS
 - 50% hand hygiene compliance, 80% efficacy
 - No interventions

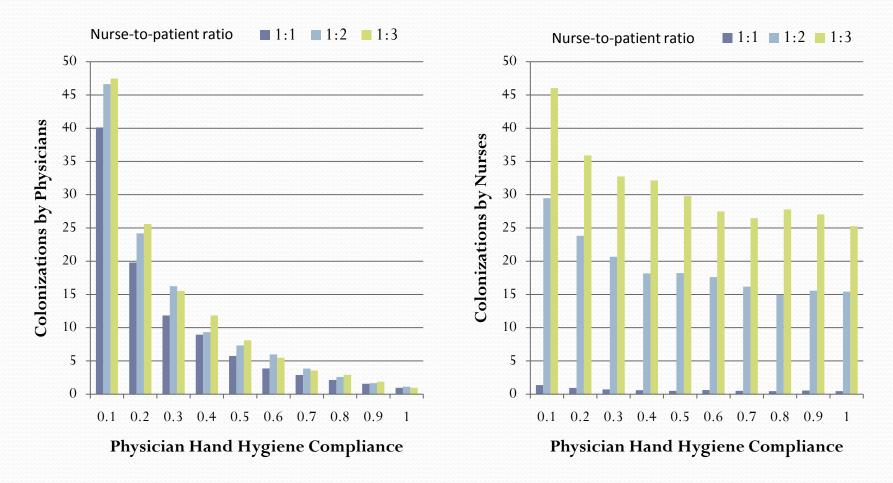
Comparison

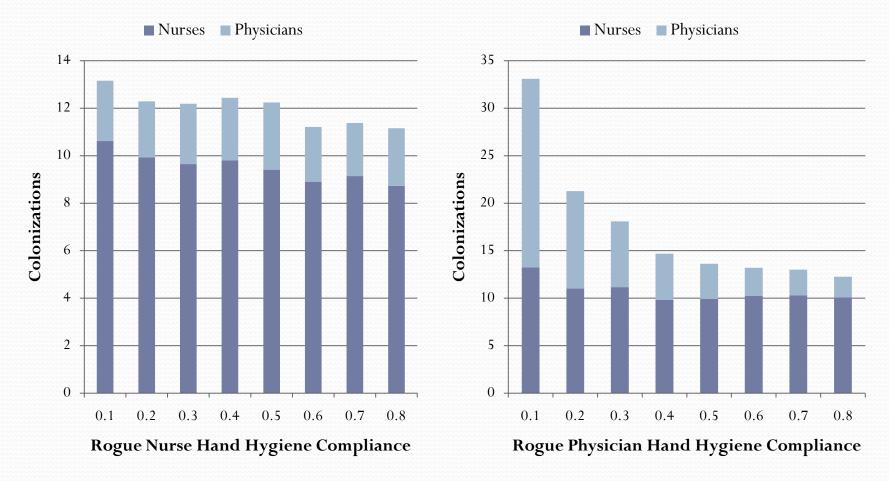

Mean Statistic	<u>Baseline</u>	Isolation	Decolonization	<u>Cohorting (1:1/2:1)</u>	
Patients Colonized	51.46	39.56	45.42	34.79	40.65
Colonized Patients Admitted	36.50	34.48	34.76	33.85	33.89
No. of Secondary Cases	14.97	5.08	10.66	0.94	6.75
Ward Prevalence	82.51%	81.44%	78.82%	78.99%	80.57%
Colonized Patient Days	6.49%	5.66%	5.72%	5.14%	5.64%
Attack Rate	0.004989	0.001693	0.003553	0.000313	0.002251
R ₀	0.4098	0.1474	0.3056	0.0272	0.1991

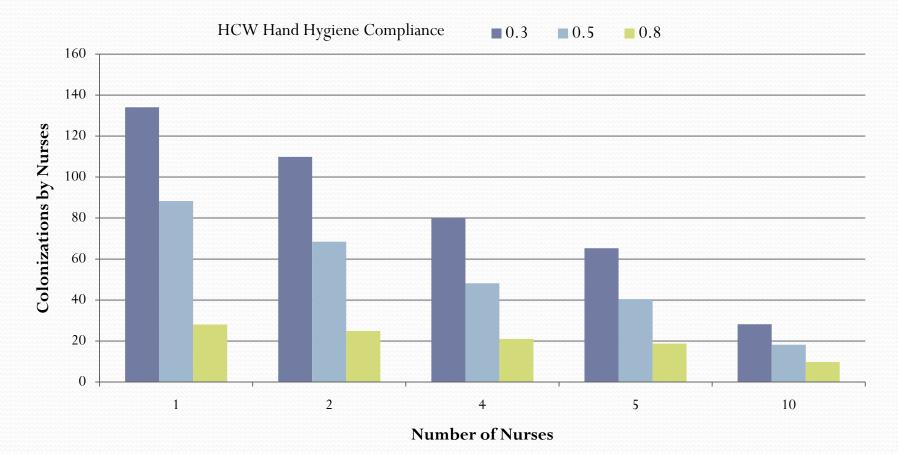
* Best case results shown for each infection control measure


Testing

- A verified and validated AMBS software package allows us to perform a wide variety of *simulation experiments* to answer relevant questions
- Two Important Questions
 - 1. Do nurses or physicians spread more to patients?
 - 2. Could a 'good' hospital still be susceptible to an outbreak?


Physician Compliance – General Ward


Physician Compliance - ICU


HCW Comparison

Rogue Behavior

Compliance vs. Nurse-to-Patient Ratios

31 August 2009

Striving For Excellence

- Hospital: 100 patients, 20 nurses, 10 physicians
- Even with 70% hand hygiene compliance, the following cases can lead to $R_0 > 1$:
 - 10 daily contacts or more between HCWs and each patient,
 - 20 day or more average patient length of stay
 - Transmissibility greater than 0.15,
 - Hand hygiene efficacy less than 0.6, or
 - 200 or more visitors per day at 2% transmission rate
- The addition of patient screening on admission, isolation, and decolonization still does not prevent all outbreaks, as the following cases can still lead to $R_0 > 1$:
 - Transmissibility > 0.28
 - 200 or more visitors per day (2% transmission rate) Small world effect

Conclusions

- ABMS is a powerful technique for exploring complex systems
- Parallel processing provides an indispensable capability for running experiments
- Key Findings:
 - Hand hygiene compliance is a critical factor affecting transmission, but it demonstrates diminishing returns, necessitating additional measures
 - Nurses appear to spread more often than physicians due to more frequent contact, but physicians pose a great danger by introducing MRSA into unaffected cohorts
 - Even the best hospitals can still be susceptible to outbreaks
 - Best defense:
 - Decrease the connectivity of the patient network (isolation, low HCW-topatient ratios) and
 - 2. Decrease the likelihood of transmission by increasing compliance and efficacy and limiting transmissibility and daily contacts