The Computerized Routing of Meter Readers over Street Networks: New Technologies Turn Old Problems into New Opportunities

by

Robert Shuttleworth, University of Maryland Bruce Golden, University of Maryland Edward Wasil, American University

> Presented at EURO XXII Prague, July 2007

Outline of Lecture

- The close enough traveling salesman problem (CETSP)
- The CETSP over a street network
- Heuristics for solving this problem
 Greedy Approaches
 IP Formulations
- Computational Results
- Conclusions

The CETSP over a Street Network

- Until recently, utility meter readers had to visit each customer location and read the meter at that site
- Now, radio frequency identification (RFID) technology allows the meter reader to get close to each customer and remotely read the meter
- Our models are based on data from a utility and use an actual road network with a central depot and a fixed radius r for the hand held device
- Our goal is to minimize distance traveled or elapsed time

The CETSP over a Street Network

- We used RouteSmart (RS) with ArcGIS
 - Real-world data and constraints
 - >Address matching
 - Side-of-street level routing
 - > Solved as an arc routing problem
- Our heuristic selects segments to exploit the "close enough" feature of RFID
- RS routes over the chosen segments to obtain a cycle
- Currently, RS solves the problem as a Chinese (or rural) Postman Problem

Heuristic Implementation

- How do we choose the street segments to feed into RS?
- We tested several ideas
- Greedy procedures
 - ➢ Greedy A: Choose the street segment that covers the most customers, remove those customers, and repeat until all customers are covered
 - Greedy B: Same as above, but order street segments based on the number of customers covered per unit length
- IP Formulations

IP Formulation

• We also experimented with formulating the problem as an IP: $\sum_{i=1}^{N}$

Minimize $\sum_{j} c_{j} x_{j}$

subject to

 $\sum_{j} a_{ij} x_{j} \ge 1 \text{ for all } i$ $x_{j} \in \{0,1\}$

where $a_{ij} = 1$ if customer i is covered by road segment j 0 otherwise

and $x_j = 1$ if road segment j is traversed 0 otherwise

IP Variants

• We tested several choices for the objective function

IP1: Minimize the number of road segments chosen
c_i = 1 for all j

IPD1: Minimize the distance of the road segments chosen
c_j = the distance of road segment j

Each Color is a Separate Partition

A Single Partition

A Closer Look at a Partition

The Area Covered with RFID

The Area Covered by the Entire Partition

Dense Partition Results

		500 foot radius			
<u>Method</u>	<u>Miles</u>	Number ofHoursSegments		Miles of <u>Segments</u>	Deadhead <u>Miles</u>
RS	204.8	9:22	1099	97.5	107.3
Greedy A	160.5	7:06 470		64.4	96.1
Greedy B	166.5	7:27	577	64.2	102.3
IP1	165.8	7:25	458	62.4	103.4
IPD1	161.6	7:15	470	59.1	102.5
Essential	_	_	342	43.3	_

Dense Partition Results

		350 foot radius			
<u>Method</u>	<u>Miles</u>	Number ofHoursSegments		Miles of <u>Segments</u>	Deadhead <u>Miles</u>
RS	204.8	9:22	1099	97.5	107.3
Greedy A	171.9	7:45 621		78.1	93.8
Greedy B	179.3	7:55	610	78.0	101.3
IP1	169.8	7:39	608	77.6	92.2
IPD1	168.1	7:40	609	76.9	91.2
Essential	—	_	451	61.9	_

Sparse Partition Results

		500 foot radius			
<u>Method</u>	<u>Miles</u>	Number ofHoursSegments		Miles of <u>Segments</u>	Deadhead <u>Miles</u>
RS	213.6	9:26	405	98.4	115.2
Greedy A	189.9	8:22 217		79.6	110.3
Greedy B	197.0	8:56	236	84.7	112.3
IP1	188.2	8:18	216	78.5	109.7
IPD1	188.4	8:18	216	78.3	110.1
Essential	-	_	212	78.0	-

Sparse Partition Results

		350 foot radius			
<u>Method</u>	<u>Miles</u>	Number ofHoursSegments		Miles of <u>Segments</u>	Deadhead <u>Miles</u>
RS	213.6	9:26	405	98.4	115.2
Greedy A	200.1	8:34	379	91.2	108.9
Greedy B	203.1	8:41	391	93.3	109.8
IP1	200.5	8:36	378	91.6	108.9
IPD1	201.0	8:37	380	91.0	110.0
Essential	_	_	325	85.9	_

Results for all 18 Partitions

		500 foot radius			
<u>Method</u>	<u>Miles</u>	Number ofHoursSegments		Miles of <u>Segments</u>	Deadhead <u>Miles</u>
RS	3798.1	165:41	16509	1545.1	2253.0
Greedy A	3045.2	140:05 9895		1498.9	1546.3
Greedy B	3140.3	144:41	11483	1528.6	1611.7
IP1	3055.6	140:37	9857	1492.8	1562.8
IPD1	3039.1	140:02	9907	1491.8	1547.3
Essential	_	_	7777	1399.6	_

Results for all 18 Partitions

	-			
	Best			Best
<u>Method</u>	<u>Miles</u>	<u>Hours</u>	<u>Time</u>	Distance
RS	3798.1	165:41	0	0
Greedy A	3045.2	140:05	7	7
Greedy B	3140.3	144:41	0	0
IP1	3055.6	140:37	4	5
IPD1	3039.1	140:02	7	8

Redundancy

To provide redundancy, we test how serving each customer by at least two different road segments effects the costs

In terms of the IP, change $\sum_{i} a_{ij} x_j \ge 1$ to $\sum_{i} a_{ij} x_j \ge 2$

		500 foot radius			
<u>Method</u>	<u>Miles</u>	Number ofHoursSegments		Miles of <u>Segments</u>	Deadhead <u>Miles</u>
IP2	192.3	8:23	250	81.2	111.1
IPD2	193.1	8:26	251	79.9	113.2
IP1	188.2	8:18	216	78.5	109.7
IPD1	188.4	8:18	216	78.3	110.1

Sparse Partition

Conclusions

- We have shown several heuristics for solving this new class of problems
- The best heuristics seem to work well
- RFID travel paths have a 15% time savings and 20% distance savings over the RS solution
- As the technology improves (i.e., the radius increases) the savings will increase dramatically₂₀