Weight Annealing Heuristics for Solving
Bin Packing Problems

Kok-Hua Loh
University of Maryland

Bruce Golden
University of Maryland

Edward Wasil
American University

INFORMS Annual Meeting
October 5, 2006

Outline of Presentation

Introduction

Concept of Weight Annealing
One-Dimensional Bin Packing Problem
Two-Dimensional Bin Packing Problem

Conclusions

Weight Annealing Concept

Assigning different weights to different parts of a combinatorial problem to
guide computational effort to poorly solved regions.

> Ninio and Schneider (2005)
> FElidan et al. (2002)

Allowing both uphill and downhill moves to escape from a poor local
optimum.

Tracking changes in the objective function value, as well as how well every
region is being solved.

Applied to the Traveling Salesman Problem. (Ninio and Schneider 2005)
> Weight annealing led to mostly better results than simulated annealing.

One-Dimensional Bin Packing Problem

Pack aset of N = {1, 2, ..., n} items, each with size ¢,, i=1, 2, ...,
n, into identical bins, each with capacity C.

Minimize the number of bins without violating the capacity
constraints.

Large literature on solving this NP-hard problem.

Item List ={8,7,7,6,6,5,4,4,3,3} Bin Capacity =15
7
6
... 5
8 7 5

Bin 1 Bin2 Bin 3 Bin 4

Outline of Weight Annealing Algorithm

Construct an initial solution using first-fit decreasing.

Compute and assign weights to items to distort sizes according
to the packing solutions of individual bins.

Perform local search by swapping items between
all pairs of bins.

Carry out re-weighting based on the result of the previous
optimization run.

Reduce weight distortion according to a cooling schedule.

Neighborhood Search for Bin Packing Problem

® From a current solution, obtain the next solution by swapping items between bins
with the following objective function (suggested by Fleszar and Hindi 2002)

P
Maximize f = z:(ll.)2
i=1 t; binloadi

I
M

[

1

—

j:
number of bins

p
g, = number of items in bin i

t, = size of item j

< o-—_ 2
; 3 N [10 3
x || ——
\
5 7 ' | 5
v T e T e [[Se—
Bin 1 Bin2 Bin1

f=(+3)"+2°=68 £y =(5+3+2)> =100

Neighborhood Search for Bin Packing Problem

® Swap schemes
» Swap items between two bins.
» Carry out Swap (1,0), Swap (1,1), Swap (1,2), Swap (2,2) for all pairs of bins.
» Analogous to 2-Opt and 3-Opt.

" Swap (1,0) (suggested by Fleszar and Hindi 2002)

. ltem j
Iteli"n J ‘
\“/1 ______ >
-) Uil move
3 4 3 4
Bina Bin Bina Bin 8
F=0+3+4)° +(4+4)> =128 fo. =0G+4) +(1+4+4) =130

= Need to evaluate only the change in the objective function value.

Af =(, —tj)z "‘(l,e +tj)2 _lozz —12 [, = total load of bin &

t.=size of item i

Neighborhood Search for Bin Packing Problem

= Swap (1,1)

® Swap (1,2)

Uphill move

Uphill move

Bin 1

Bin 2

(f.., = 164)

Bin 1

Bin 2

(1,0, = 164)

Weight Annealing for Bin Packing Problem

= Weight of item i
= 1+Kr,

residual capacity ()

C = capacity
[, =load of bin i

= An item 1n a not-so-well-packed bin, with large r,,
will have its size distorted by a large amount.

= No size distortions for items in fully packed bins.

= K controls the size distortion, given a fixed ;.

Weight Annealing for Bin Packing Problem

Weight annealing allows downhill moves in a maximization
problem.

200/,
= Example c=200, k=05, w =1+0.5(20 j

w, =1.025 w, =1.087
————) [
o 92.44
90 92.25 .' 87.00 swap (85) 87.00
80 transformation @0 -~ | ®0 80)
\ * :
: 92.44 102.50: | 92.25
100 85 102.50 N~ | i s
(100) (85) (100) (90)
Bin 1 Bin2 Bin 1 Bin 2 Bin 1 Bin2

Transformed space f = 70126.3 Transformed space f ,,,, = 70132.2

Original space f= 63325 Original space f,,.,,= 63125

» Transformed space - uphill move

» Original space - downhill move

Solution Procedures (1BP)

" BISON (Scholl, Klein, and Jiirgens 1997)

» Hybrid method combining tabu search and branch-and-bound
» New branch schemes

" MTPCS (Schwerin and Wischer 1999)

» Bounding procedures based on a cutting stock problem (CS)
» Integrating the lower bound into Martello and Toth procedure (MTP)

" PMBS'+VNS (Fleszar and Hindi 2002)

» Minimum bin slack heuristic
» Variable neighborhood search

" HI BP (Alvim, Ribeiro, Glover, and Aloise 2004)

» Sophisticated hybrid improvement heuristic

> Tabu search to move items between bins

" WAIBP

» Weight annealing heuristic that creates dimension distortions to different
parts of the search space during the local search.
10

Computational Results (1BP)

" Benchmark problems

> Five sets of test problems
e Uniform U120, U205, U500, U1000
Triplet T60, T120, T249, T501

* Set Setl, Set2, Set3
e Was Wasl, Was2
 Gau Gaul

> A total of 1587 problem instances

1"

Computational Results (1BP)

" Weight annealing performed slightly better than HI BP.

» Generated more optimal solutions to the Gau set (17 versus 14).

" Weight annealing performed much better than BISON,
PMBS' +VNS, and MTPCS.

» Generated more optimal solutions to Set benchmark problems.

* Weigh annealing found optimal solutions to all 1210 instances.
* BISON, PMBS' +VNS and MTPCS fell short (by 37, 40, and 94 instances).

» Was faster than BISON and MTPCS (0.18s versus 31.5s - 118.2s).

" Overall Performance of the weight annealing algorithm
» Found 1582 optimal solutions to 1587 problem instances.
» Found three new optimal solutions to the Gau set.

» Took 0.16s on average to solve an instance.

12

Two-Dimensional Bin Packing Problems

Problem statement

Classifications

" QGuillotine Cutting
»2BP|O|G
»2BP|R|G

" Free Cutting
»2BP|O|F
»2BP|R|F

Allocate, without overlapping, » rectangular items to identical rectangular bins.
Pack items such that the edges of bins and items are parallel to each other.
Minimize the total number of rectangular bins (NP-hard).

Fixed Orientation (O), Guillotine Cutting (G)
Allowable 90° Rotation (R), Guillotine Cutting (G)

Fixed Orientation (O), Free Cutting (F)
Allowable 90° Rotation (R), Free Cutting (F)

13

Two-Dimensional Bin Packing Problems (2BP|O|G)

Hybrid first-fit algorithm
“ Phase One (one-dimensional horizontal level packing)

» Arrange the items in the order of non-increasing height.

» Pack the items from left to right into levels, each level i with
the same width W.

» Pack an item (left justified) on the first level that can accommodate it;
start a new level if no level can accommodate it.

® Phase Two (one-dimensional vertical bin packing)
> Arrange the levels in the order of non-increasing height 4 ;
this is the height of the first item on the left.

» Solve one-dimensional bin packing problems, each item i
with size 4; and bin size H.

14

Two-Dimensional Bin Packing Problems (2BP|0O|G)

An example of hybrid first-fit

Phase 1 - One Dimensional Phase 2 - One Dimensional
Horizontal Level Packing Vertical Bin Packing

h

|
1
]
|

15

Two-Dimensional Bin Packing Problems (2BP|O|G)

= Weakness of hybrid first-fit

Unoccupied space at the top end of
each bin

Unoccupied space at each level

\ S
\ .
\ N
\ N
\ A3
\ <
\ S
LEc] ‘,6!‘5’!?9“,?,5-5’.7*‘?:’.‘.
£ Wi)
BT B
b, B
\
) "

v 6
'
1

\

Bin1l Bin 1

16

Weight Annealing Algorithm (2BP|O|G)

" Phase One (one-dimensional horizontal level packing)

» Construct an initial solution.
 Arrange the items in the order of non-increasing height.
* Introduce randomness in the insertion order to generate different
starting solutions, if necessary.
> Swap items between levels to minimize the number of levels.

e Objective function

P 14
Maximize [=) (5) - > (Wh-4)
i=1 i=1

m;

b=>1,

Jj=1
t,= width of item j in level i
m, = number of items in level i
p = number of levels
A, = sum of item areas in level i
h, = height of level i

W = bin width
17

Weight Annealing Algorithm (2BP|O|G)

" Phase Two (one-dimensional vertical bin packing)

> Construct initial solution with first-fit decreasing using level
height 4, as item sizes and bin height H.

> Swap levels between bins to minimize the number of bins.

* Objective function
q
Maximize f =Z‘(a’i)2
=1

i,=3n
j=1

h; = height of level j in bin i
m, = number of levels in bin i

g = number of bins

18

Weight Annealing Algorithm (2BP|O|G)

® Phase Three
~ Filling unused space in each level. Maximize f=3 (4

A4, = sum of item areas in level

Level 1 Level 2

19

Weight Annealing Algorithm (2BP|O|G)

" Phase Three

~ Filling unused space at the top of each bin.

q
Maximize [=) (4,)
i=1

A, = sum of item areas

in bin i

20

Weight Annealing Algorithm (2BP|O|G)

" Weight assignments

» Phase Two w =14 Kr ,,_Z(H—d,-)
i i f H

> Phase Three w =1+Kr, E:(HW“A,-)

21

Weight Annealing Algorithm (2BP|R|G)

" Example: Weight Annealing allows downhill move in the maximization problem.

10

$< >
\
Bin 1 Bin 2
I transformation
w, =1.07 w, =1.18
N 3404
(45.00) | (32.00)
Bin 1 Bin 2

Swap(1,1)
==

bin area = 100 K=023

100~ 4,
j=1

100

w, =1+0.3

48.15
(45.00)

3424 [
(32.00) |

Bin 1 Bin 2

~ Transformed space - uphill move

22

~ Original space - downhill move

Weight Annealing Algorithm (2BP|R|G)

" Rotating an item through 90° to achieve a better
packing solution.

23

Weight Annealing Algorithm (2BP|R|G)

Rotate an item through 90° and move it to another bin.

q
Maximize f=) (4,)
i=1

move

24

Weight Annealing Algorithm (2BP|O|F)

® Alternate direction algorithm

» Arrange items in the order of non-increasing height.

—_—

2
| 4 } 5 .I-

» Packing items left to right. » Packing items right to left.

Weight Annealing Algorithm (2BP|O|F)

® Moving an item from one bin to another and repacking.

Bin 1 Bin 2

Bin 1

26

Weight Annealing Algorithm (2BP|O|F)

® Post-optimization processing
Maximize f=Z(A,.)2

Dead Space

Bin 1 Bin 2

Bin 1 Bin 2

27

Weight Annealing Algorithm (2BP|R|F)

® Rotate an item through 90° to occupy dead space in another bin.

Maximize f=§:(4)2

Dead Space

Bin 1 Bin 2

Bin 2

28

Solution Procedures (2BP)

Exact algorithm by Martello and Vigo (1998) for 2BP|O|F

Tabu search by Lodi, Martello and Toth (1999) for 2BP|O|G,
2BP|R|G, 2BP|O|F, 2BP|R|F

Guided local search by Faroe, Pisinger, and Zachariasen (2003)
for 2BP|O|F

Constructive algorithm (HBP) by Boschetti and Mingozzi (2003)
for 2BP|O|F

Set covering heuristic by Monact and Toth (2006) for 2BP|OJF

29

Computational Results of Weight Annealing (2BP)

= Benchmark problems
»300 problem instances of Berkey and Wang (1987)

»200 problem instances of Martello and Toth (1998)

= Comparing computational results (2BP|O|F) is not a straight-
forward task.
> Tabu search results
» Average ratios (TS solution value/ lower bound)

over 10 instances are reported.
* Lower bounds not given in the papers.

> Computational results and lower bounds quoted in journals
were inconsistent.

»Guided local search results did not include the running times.

30

Computational Results for 2BP|O|F

= Results for the 500 problem instances (summary measures).

Set Covering Heuristic | 7248 | 1485

"Weigh_t A'nnealihg | ‘ ; 725‘\3 Q__ | 1‘9.3".[’

= The results of weight annealing and set covering heuristic are comparable.

> The total number of bins are about 1.1 % above the best lower bound (7173 bins).
» Both use fewer number of bins, and are faster than the other procedures. 31

Computational Results of Weight Annealing (2BP)

= Results for the 500 problem instances (summary measures).

2BP|OJF 7053 e 119.3
2BPRF e - 66.7
2BP|0|G | 7373 = J4RN

2BPR|G 7279 - 440

Conclusions

" The application of weight annealing to bin packing
problems 1s new.

» One-dimensional bin packing problem

» Two-dimensional bin packing problem (four versions)

" Weight annealing algorithms produce high-quality
solutions.

" Weight annealing algorithms are fast and competitive.

» Easy to understand
» Simple to code

» Small number of parameters

33

