A Guided Tour of Several New and Interesting Routing Problems

by

Bruce Golden, University of Maryland Edward Wasil, American University

Presented at NOW 2006 Saint-Rémy de Provence, August 2006

Outline of Lecture

- The close enough traveling salesman problem (CETSP)
- The CETSP over a street network
- The colorful traveling salesman problem (CTSP)
- The consistent vehicle routing problem (CVRP)
- Conclusions

My Student Collaborators

- Chris Groer
- Damon Gulczynski
- Jeff Heath
- Carter Price
- Robert Shuttleworth
- Yupei Xiong

The Close Enough Traveling Salesman Problem

- Until recently, utility meter readers had to visit each customer location and read the meter at that site
- Now, radio frequency identification (RFID) technology allows the meter reader to get close to each customer and remotely read the meter
- A simple model
 - Customers are points in Euclidean space
 - > There is a central depot
 - > There is a fixed radius r which defines "close enough"
 - > The goal is to minimize distance traveled

CETSP Heuristic

- Create a set S of "supernodes" such that each customer is within r units of at least one supernode
- This set should be as small in cardinality as possible
- Solve the TSP over S and the central depot
- Use post-processing to reposition the supernodes in order to reduce total distance
- An illustration follows

The Central Depot and Customers

Use Geometry to Find Supernodes

7

Solve the TSP

Reposition Supernodes and Solve Again

Computational Experiments

- We focused on the location and relocation of the supernodes
- Several heuristics were compared
- Random and clustered data sets were tested
- The number of customers and the radius were varied
- The best heuristic seems to work well
- In the real-world, meter reading takes place over a street network

The CETSP over a Street Network

- We used RouteSmart (RS) with ArcGIS
 - Real-world data and constraints
 - >Address matching
 - Side-of-street level routing
 - > Solved as an arc routing problem
- Our heuristic selects segments (analogous to supernodes) to exploit the "close enough" feature of RFID
- RS routes over the chosen segments to obtain a cycle
- Currently, RS solves the problem as a Chinese (or rural) Postman Problem

Heuristic Implementation

- How do we choose the street segments to feed into RS?
- We tested several ideas
- Two are simple greedy procedures
 - ➢ Greedy A: Choose the street segment that covers the most customers, remove those customers, and repeat until all customers are covered
 - Greedy B: Same as above, but order street segments based on the number of customers covered per unit length

Each Color is a Separate Partition

A Single Partition

A Closer Look at a Partition

The Area Covered with RFID

The Area Covered by the Entire Partition

Some Preliminary Results

		500 foot radius			
<u>Method</u>	<u>Miles</u>	<u>Hours</u>	Number of <u>Segments</u>	Miles of <u>Segments</u>	Deadhead <u>Miles</u>
RS	204.8	9:22	1099	107.3	97.5
Greedy A	161.8	7:16	485	66.3	95.5
Greedy B	158.5	7:06	470	64.4	94.1
Essential	-	-	256	47.9	-
		350 foot radius			
RS	204.8	9:22	1099	107.3	97.5
Greedy A	171.9	7:45	621	78.1	93.8
Greedy B	171.2	7:43	610	78.0	93.2
Essential	-	-	451	67.9	-

The Colorful Traveling Salesman Problem

- Given an undirected complete graph with colored edges as input
- Each edge has a single color
- Different edges can have the same color
- Find a Hamiltonian tour with the minimum number of colors
- This problem is related to the Minimum Label Spanning Tree problem
- A hypothetical scenario follows

CTSP Motivation

- For his birthday, Michel wants to visit n cities without repetition and return home
- All pairs of cities are directly connected by railroad or bus lines (edges)
- There are *l* transport companies
- Each company controls a subset of the edges
- Each company charges the same monthly fee for using its edges

CTSP Motivation - - continued

- We can think of the edges owned by Company 1 as red, those owned by Company 2 as blue, and so on
- The objective is to construct a Hamiltonian tour that uses the smallest number of colors
- After much thought, Michel realizes that the CTSP is NPcomplete since if he could solve the CTSP optimally, he could determine whether a graph has a Hamiltonian tour
- He then solves the CTSP using his favorite metaheuristic and his birthday journey begins
 - Joyeux Anniversaire Michel!

Preliminary Results

- We developed a path extension algorithm (PEA) and a genetic algorithm (GA) to solve the CTSP
- We solved problems with 50, 100, 150, and 200 nodes and from 25 to 250 colors
- Our experiments were run on a Pentium 4 PC with 1.80 GHz and 256 MB RAM
- In general, GA outperforms PEA
- Average running time for the GA on a graph with 200 nodes and 250 colors was 17.2 seconds

The Consistent Vehicle Routing Problem

- This problem comes from a major package delivery company in the U.S.
- Start with a capacitated vehicle routing problem (VRP)
- Add two service quality constraints
 - Each customer must receive service from the same driver each day
 - Each customer must receive service at roughly the same time each day

The Consistent Vehicle Routing Problem

Assumptions

A week of service requirements is known in advance
 An unlimited number of vehicles each with fixed capacity (or time limit) *c*

The Goal

Produce a set of routes for each day such that total weekly cost is minimized subject to the capacity and consistency constraints

A Simple Heuristic for the CVRP

- Identify all customer locations requiring service on more than one day
- Solve a capacitated VRP (capacity = $(1 + \lambda) c$) over these locations using sweep, savings, and 2-opt procedures
- This results in a template of routes
- Create daily routes from the template
 - Remove customers who do not require service on that day
 - >Insert all customers who require service only on that day

- If we expect the daily routes to involve more insertions than removals from the template, then we set $\lambda < 0$
- If we expect there to be more removals than insertions, then set λ > 0
- In our experiments, we found that $\lambda = 0.1$ worked well

Implicit Rules that Guide the Heuristic

- If customers *i* and *j* are on the same route on one day, then they must be on the same route every day both require service
- If customer *i* is visited before customer *j* on one day, then this precedence must be satisfied every day both customers require service
- Next, we examine how well these simple rules work

How Consistent are the Solutions?

- The "same driver" requirement is automatically satisfied
- The "same time" requirement is more complex
- Observation: The amount of service time variation depends on the amount of customer overlap amongst the five days
 - >Large overlap \rightarrow slight variation
 - > Small overlap \rightarrow increased variation
- We performed several computational experiments

Experiment #1

- Each customer requires service on each day with equal probability p
- We varied *p* from 0.7 to 0.9 in steps of 0.02
- Vehicle capacity is 500 minutes
- Vehicles travel one Euclidean unit of distance per minute
- It takes one minute to service a customer
- There are k = 700 customers in total
- This results in about 100 to 125 customers per route
- Ten repetitions for each value of p

Service Time Variation

р	Max Service Time Variation	Mean Service Time Variation	Mean Number Customers/Route	Mean Number Vehicles
0.7	44.5	14.6	106.4	4.8
0.8	39.7	13.8	114.2	5.0
0.9	30.8	10.6	124.4	5.2

Bottom line: The level of consistency is quite high

Experiment #2

- This experiment is of greater practical interest
- Here we have business customers and residential customers
- Based on real-world data
 - >70% are business customers
 - ≥30% are residential customers
 - Business customers require service with probability 0.9 each day
 - Residential customers require service with probability 0.1 each day
- We generated five data sets, each with 1000 customers

Service Time Variation

Data Set	Max Service Time Variation	Mean Service Time Variation
1	43.7	18.7
2	42.7	22.3
3	47.1	17.1
4	34.6	17.5
5	51.7	24.9
Avg.	44.0	20.1

Here, consistent service is important to business customers, not residential customers

The (Approximate) Cost of Consistency

- If we relax the consistency requirements, what would the solutions look like?
- We looked at 10 homogeneous data sets with p = 0.7 and k = 800
- On average, total cost is reduced by about 3.5%
- On the other hand, the mean service time variation increases from 15 minutes to 3 hours
- We looked at 10 heterogeneous data sets also, and the results were essentially the same
- Bottom line: The two simple rules ensure a high degree of consistency
 ³³

Conclusions

- I have been working on vehicle routing problems since 1974
- But, the area is as fresh and exciting to me NOW as it was when I began
- Very interesting and practical new vehicle routing problems continue to emerge, as illustrated in this talk
- I expect this to continue for quite some time
- Clever metaheuristics can often be used to obtain excellent solutions to these new problems