Data Analysis for the New Millennium: Data Mining, Genetic Algorithms, and Visualization

by

Bruce L. Golden RH Smith School of Business University of Maryland

IMC Knowledge Management Seminar April 15, 1999

Focus

- Connection between data and knowledge
- Examples of data analysis from late 1980s
- Contrast with data analysis in late 1990s
- Introduce techniques
 - MDS and Sammon maps
 - neural networks and SOMs
 - decision trees
 - genetic algorithms
- Illustrate the power of visualization
- Data analysis as a strategic asset
- Conclusion

Setting the Stage

"Data is information devoid of context, information is data in context and knowledge is information with causal links. The more structure is added to a pool of information, the more we can talk about knowledge."

(California Management Review, Winter 1999)

How can we systematically discover knowledge from data?

Modeling Salinity Dynamics in the Chesapeake Bay

- The Goal: Construct multiple regression models that accurately describe the dynamics of salinity in the Maryland portion of the Bay
- The work was done in late 1989/early 1990
- Motivation:
 - Salinity exerts a major influence over the survival and distribution of many fish species in the Chesapeake Bay
 - Maryland was the nation's leader in oyster production several decades ago
 - MDNR's oyster production rebuilding program relied on predicting salinity levels for various areas in the Bay

Model Building

- Data collected at 34 stations by USEPA from 1984 to 1989
- 36,258 water samples collected at different depths (9 variables per sample)
- Constructed 10 models in all (bottom data / total data)
 - Upper, Middle, Lower, Entire Bay, Lower Tributaries
- Four key independent variables
 - Day, Depth, Latitude, Longitude
- Transformation of key variables
- Extensive screening for independent variables
- Used stepwise regression in SPSS/PC

Model Results

- Six independent variables in each model
- Model assumptions are not violated
- R² values range from 0.56 to 0.81
- Entire Bay Model

 $R^2 = 0.649$

depth increases, salinity increases

Salinity = 199.839 - 1.151 Day1 + 1.161 Day2 + 0.283 Depth - 4.863 Latitude - 1.543 Longitude - 13.402 Longitude1

Salinity Modeling Summary

- The regression models were validated using new (1990) data involving 7,000 observations
- These regression models can be used to predict salinity for a location on the Bay at a specified depth and date
- In 1991, we applied neural networks to the same problem
- To our surprise, the neural network models predicted salinity levels more accurately than the regression models in 90% of the cases

The Problem with Linear Regression

■ "But we all know the world is nonlinear." (Harold Hotelling, 1948)

Linear Regression Shortcomings: Nonlinear Data (Cabena et al., 1998) 8

Neural Network Configuration

Neural Networks

- Neural networks are computer programs designed to recognize patterns and learn "like" the human brain
- They are versatile and have been used to perform *prediction* and *classification*
- The key is to iteratively determine the "best" weights for the links connecting the nodes
- Drawback: It is difficult to explain/interpret the results (same is true for regression)

Visualization

Psychologists claim that more than 80% of the information we absorb is received visually (Cabena et al., 1997)

Data is often highly multidimensional

Mapping from three or more dimensions to two dimensions is not easy

Flattening the Earth

■ "Would you tell me, please, which way I ought to go from here?" asked Alice.

"That depends a good deal on where you want to get to," said the Cat.

(Lewis Carroll)

Map Projections

- We use map projections to represent a spherical Earth on a flat surface
- Two map projections of the world can look quite different
- All map projections distort reality in some ways -- shape, area, distance, angles, etc.
- Equivalent projections preserve area
- Conformal projections preserve angles
- No projection can be both *conformal* and *equivalent*
- Bottom line: map projections are extremely useful, but offer compromise solutions

Visual Clustering (Segmentation) Methods

- Multi-Dimensional Scaling (MDS)
- Sammon Mapping
- Self-Organizing Maps
- Euclidean distance (more or less) is used as a similarity measure

د

BGD

MDS Applied to a World Poverty Data Set (World Bank, 1992)

19

Sammon Mapping of World Poverty Data Set

Self-Organizing Maps (SOMs)

- Developed by Teuvo Kohonen in early 1980s
- Observations are mapped onto a two-dimensional hexagonal grid
- Related to MDS and Sammon maps, but ensures better spacing
- Colors are used to indicate clusters
- Software: SOM_PAK (Public domain, WWW), Viscovery (Eudaptics, Austria)

Country Risk Data

- Goal: Look at risks involved in investing in stock markets around the world
- Source: *Wall Street Journal* of June 26, 1997
- 52 countries, 20 variables
- The article clusters countries into five groups of approximately equal size
 - those most similar to the U.S.
 - other developed countries
 - mature and emerging markets
 - newly emerging markets
 - frontier markets

Sammon Mapping of Country Risk Data

Country Risk Data (continued)

- Nine clusters is a better representation of the data than five clusters
- Component maps and cluster summary statistics help explain why
- Numerous other applications in finance and economics

[Proj.Eam.Growth] - AlTrMap1.som

[Did Yld] - AllTrMap1.som

[GNP/capita 1995] - AlTriMap1.som

0.9 1.6 2.2 2.9 3.5 4.2 4.8 5.5 6.1 6.8

10352 15399 20445 25491 30537 35584 5306 40630

[GDP Growth 90-95] - AllTirMap1.som

[Proj GDP Growth 97] - AllTirMap1.som

[Proj. Inflation] - AIITrMap1.som

INS

TWN:

KOR.

[No Companies] - AllTirMap1.som

PAK

MEX

EGY

CZF

VE

POI

NG

TUF

HUN

[Short Interest rate] - AlTirMap1.som

1 9 18 24 32 40 48 58 64 72

[Turnover %] - AllTirMap1.som

[Volatility] - AlTrMap1.som

[Correlation_vs_US] - AllTirMap1.som

-0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.0

[Age of Market] - AllTrMap1.som

[Safekeeping Efficiency] - AlTrMap1.som

[Settlement Efficiency] - AlTrMap1.som

Picking Mutual Funds with SOMs

- Source: Morningstar 1997 data on 500 mutual funds
- Among the most successful funds, historically
- Approximately 15 variables
- Categories: World Stocks, International Bonds, Large & Midsize Stocks,

Small Cap Stocks, Emerging Markets, All Funds

 \blacksquare Diversification \Rightarrow invest in funds that are in different clusters

Current SOM Projects

Direct Mail Response

- observations -- hundreds of thousands of customers
- variables -- customer history with firm, age, zip code
- goal -- identify clusters of customers for direct mail promotion
- Profit Opportunities in Telecommunications Worldwide
 - observations -- approximately 200 countries
 - variables -- socio-economic measures, teledensity measures
 - goal -- identify clusters of countries in which demand for wireless services may be high

Flattening the Earth and SOMs: Connections

- There is an art and science to each
- Each is based on sophisticated mathematics
- When you move from many dimensions to two dimensions, you lose important details
- On the other hand, visualization generates insights and impact

Data Mining and Knowledge Management

Two types of organizational knowledge

• Explicit Knowledge

databases

reports

manuals

• Tacit Knowledge

in employees' heads learned from experience not yet codified

Data mining attempts to convert some of this tacit knowledge into explicit knowledge

Decision Trees

- Given a table of data
 - potential customers are the rows
 - independent variables and dependent variable are the columns
- Decision trees are used for classification, prediction, or estimation of the dependent variable
- Accuracy is typically less than 100%
- One popular approach -- information theory
 - maximize information gain at each split
 - limit the number of splits
 - software: C4.5
- Another popular approach -- statistics
 - software: CART, CHAID

A Decision Tree for Widget Buyers

Evolutionary Algorithms / Genetic Algorithms

- Developed by John Holland in the late 1960s / early 1970s
- Speed up evolution a millionfold or so on the computer
- Simple, elegant, powerful idea

A Simple Genetic Algorithm

- 1. Start with a randomly generated population of n chromosomes (candidate solutions to a problem)
- 2. Calculate the fitness f(x) of each chromosome x in the population
- 3. Repeat the following steps until n offspring have been created
 - a. Randomly select a pair of parent chromosomes from the current population
 - b. Crossover (mate) the pair at a randomly chosen point to form two offspring
 - c. Randomly mutate the two offspring and add the resulting chromosomes to the population
 - d. Calculate the fitness of the resulting chromosomes

A Simple Genetic Algorithm (continued)

- 4. Let the n fittest chromosomes survive to the next generation
- 5. Go to Step 3 (repeat for 50 generations)

Financial Investment Example

■ Five sectors

- 1. Financial services
- 2. Health care
- 3. Utilities
- 4. Technology
- 5. Consumer

■ Two parents

Financial Investment Example (continued)

■ Crossover

After normalization and rounding, we obtain two offspring

Crossover Illustration for Decision Trees

Parent 1

Crossover Illustration (continued)

Child 1

Child 2

Mutation Illustration

GA Applications

Financial Data Analysis

- State Street Global Advisors
- Advanced Investment Technologies
- Barclays Global Investors
- PanAgora Asset Management
- Fidelity Funds

Operations and Supply Chain Management

- General Motors
- Volvo
- Cemex
- Engineering Design
 - General Electric
 - Boeing

Data Analysis Then and Now

Late 1980s

Late 1990s

Linear methods

Large data sets

Few dimensions

Ask specific questions

Search for information

Nonlinear methods

Massive data sets

Highly multi-dimensional

What can we infer?

Search for knowledge

Data Analysis as a Strategic Asset

- Competitive advantage
- Sustainable over a period of time

Examples

BT Labs

- Enterprise Rent-A-Car
- Dupont

Concluding Remarks

- Corporate data is more plentiful than ever before
- Companies are becoming more serious about mining that data
- Powerful software tools are widely available
- Many companies already view data analysis/data mining as a strategic asset
- Data analysis/data mining is a key area within knowledge management
- Exciting opportunities exist for collaborative research

Recommended Books

- Berry & Linoff, <u>Data Mining Techniques for Marketing</u>, <u>Sales</u>, and <u>Customer Support</u>, Wiley (1997)
- Deboeck & Kohonen, <u>Visual Explorations in Finance with SOMs</u>, Springer (1998)
- Dhar & Stein, <u>Seven Methods for Transforming Corporate Data into</u> <u>Business Intelligence</u>, Prentice Hall (1997)
- Mitchell, <u>An Introduction to Genetic Algorithms</u>, MIT Press (1996)
- Monmonier, <u>How to Lie with Maps</u> (second edition), University of Chicago Press (1996)