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The nature of the momentum transport processes responsible for the Reynolds shear 
stress is investigated using several ensembles of fluid particle paths obtained from a 
direct numerical simulation of turbulent channel flow. It is found that the Reynolds 
stress can be viewed as arising from two fundamentally different mechanisms. The 
more significant entails transport in the manner described by Prandtl in which 
momentum is carried unchanged from one point to another by the random 
displacement of fluid particles. One-point models, such as the gradient law are found 
to be inherently unsuitable for representing this process. However, a potentially 
useful non-local approximation to displacement transport, depending on the global 
distribution of the mean velocity gradient, may be developed as a natural 
consequence of its definition. A second important transport mechanism involves fluid 
particles experiencing systematic accelerations and decelerations. Close to the wall 
this results in a reduction in Reynolds stress due to the slowing of sweep-type 
motions. Further away Reynolds stress is produced in spiralling motions, where 
particles accelerate or decelerate while changing direction. Both transport mech- 
anisms appear to be closely associated with the dynamics of vortical structures in 
the wall region. 

1. Introduction 
A fundamental objective to which much research in turbulence is ultimately 

directed is to explain the nature of the transport process in turbulent shear flow 
culminating in the Reynolds stress. With such knowledge, the goal of developing a 
comprehensive closure scheme for use in prediction of turbulent flows may be 
significantly advanced. Perhaps the first comprehensive attempt a t  explaining the 
existence of Reynolds stress was given in Prandtl's (1925) mixing-length theory. In 
this, Prandtl proposed that Reynolds stress reflects the net transport of momentum 
across a plane arising from the random movement of fluid particles in the presence 
of a mean shear. In  essence, eddies of fluid carry, unchanged, the average momentum 
of their original location to their destination a mixing length away. Since the mean 
velocity is non-constant, its difference between the initial and final locations of a 
particle correlates with the direction of travel, so that a momentum flux and 
consequently Reynolds stress is created. With the proviso that the mixing length 
should be relatively small, Prandtl used this physical model to justify the 
representation of Reynolds stress in the form of a gradient law. 

For the purposes of the present work it is useful to make a distinction between the 
physical idea advanced by Prandtl regarding the physics of momentum transfer and 
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the deduction of a gradient transport law from it. Some elements of the former 
undoubtedly have considerable merit, while the later step is of questionable validity. 
For example, Corrsin (1974) effectively showed that the mixing length must 
ordinarily be of the same scale as that of significant variation in the mean velocity 
field. As a consequence, the assumption that the mixing length is small is not tenable 
except in unusual cases. The occurrence of such anomalous flows as a wall jet (Hinze 
1975, p. 580) and transpired channel (Piomelli, Moin & Ferziger 1989) and the less 
than satisfactory performance of gradient closure schemes in the computation of 
complex flows (Lakshminarayana 1986) provide additional evidence to prove the 
inadequacy of the gradient model. 

Since the work of Prandtl much effort has been expended in deriving methods for 
estimating the mixing length or eddy viscosity (Hinze 1975). Empirical and 
dimensional arguments have been applied in these developments which largely skirt 
direct consideration of physical mechanisms. Beyond the scope of Prandtl’s theory, 
the primary focus in explaining Reynolds stress has relied less on consideration of 
fundamental physics than on the postulation of constitutive forms of the Reynolds 
stress tensor (Lumley 1983). These pursue the use of appropriate invariance 
principles to guide the development of formal mathematical constructions. In some 
theories (Speziale 1987) these go well beyond the framework of the gradient model. 
While such approaches bring into play a wealth of physical ideas of turbulent flow, 
these are often not directly involved with the mechanisms of momentum transport. 

In recent times considerable attention has also been paid to exploring the 
phenomenological properties of coherent motions in the turbulent wall region 
(Wallace 1985; Robinson, Kline & Spalart 1988). In  effect, any progress in this area 
should be of considerable importance towards explaining the physics of Reynolds 
stress, since burst and sweep events in turbulent boundary layers, which are a 
manifestation of the presence of vortical structures, are intrinsically associated with 
the turbulent transport of momentum. On the surface, such motions would appear 
to be one aspect of the kind of transport process described by Prandtl. However, if 
one is to obtain a practical recipe for the prediction of Reynolds stress from 
knowledge of such mechanisms, then much greater precision regarding the particulars 
of the coherency and how it relates to the instantaneous Reynolds stress is required. 
This is an area which current analyses of coherent structures have yet to treat in 
great depth. 

In  consideration of the large extent to which turbulent transport processes depend 
upon the dynamics of fluid particle motions, it may be expected that there is 
considerable benefit to taking the Lagrangian perspective in the analysis of Reynolds 
stress. This point of view was taken very early on by Taylor (1932) in a related study 
of vorticity transport. Over the years, several analyses of particle trajectories in 
shear flows have been made (Deardorff & Peskin 1970; Peskin 1974), though these 
have been limited by the technical difficulties of obtaining Lagrangian data. 
Recently, however, with the development of direct numerical simulations of 
turbulent flow as a practical tool, it has become possible to study the Lagrangian 
statistics of particle motions to any desired extent. 

A recent study (Bernard, Ashmawey & Handler 1989a, b)  has demonstrated the 
potential for explaining the physics of Reynolds stress which may be had from the 
analysis of particle paths in turbulent flow. The mechanisms for momentum 
transport were investigated a t  the point y+ = 15.8 in the wall region of channel flow, 
by using ensembles of computed particle paths to evaluate a Lagrangian 
decomposition of the Reynolds stress into component physical processes. Some 
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limited results were also obtained further from the wall a t  y+ = 37.5. It was found 
that the gradient mechanism overpredicts the Reynolds stress at y+ = 15.8. 
In  compensation, significant positive contributions to Reynolds stress came from 
non-gradient transport processes, reflecting the inadequacies of a local linear 
approximation to the mean velocity field, and the influence of pressure and viscous 
forces in changing the momentum of particles along their paths. To connect these 
results to the phenomenological aspects of boundary layers, the paths contributing 
most significantly to instantaneous Reynolds stress were visualized. Such paths, 
which were also implicated as the source of non-gradient transport, tended to be 
highly vortical with generally large displacements in the wall-normal direction. 

The success of the Lagrangian technique in investigating momentum transport a t  
primarily a single point has prompted interest in applying the technique throughout 
the wall region with the intent of developing a comprehensive description of the 
physics of momentum transport in the turbulent boundary layer. In particular, it is 
of interest to map out the relative trends of gradient and non-gradient effects across 
the wall layer and to find an explanation for these in terms of the particular motions 
of fluid particles. The insights provided by this analysis can be of considerable benefit 
in the construction of Reynolds stress models and in tying the presence of coherent 
structures to the formation of Reynolds stress. 

The present study incorporates a greatly expanded data base of particle paths in 
pursuit of these objectives. Six ensembles of particle trajectories are obtained which 
have terminal points a t  six locations in the region encompassing 0 < yf < 40, where 
yf z U, ylv,  y is the distance from the wall, U, is the friction velocity, and v is the 
kinematic viscosity. With the view afforded by this data a fairly complete picture of 
the origins of Reynolds stress in the wall region emerges. It is shown that it is most 
natural to consider the Reynolds stress as originating from two physical mechanisms 
encompassing the effects of displacement and acceleration of fluid particles. The 
former, which is the more significant of the two, corresponds to the process 
envisioned by Prandtl in which transport occurs through displacements of fluid 
particles without a change in momentum. A principal result of the study is to show 
that one-point models, such as the gradient transport law, are incapable of describing 
this process, so that it is inappropriate to view the Reynolds stress as arising from 
primarily a gradient mechanism supplemented by non-gradient corrections. 
Furthermore, it will be shown that the displacement transport process as a whole has 
a natural representation in terms of a global integral of the mean velocity gradient. 

The second fundamental process affecting the Reynolds stress entails systematic 
accelerations and decelerations of fluid particles brought about by the influence of 
pressure and viscous forces. Close to the wall this involves the deceleration of sweep 
events resulting in a reduction of the total Reynolds stress. Further from the wall 
Reynolds stress is produced when fluid particles decelerate or accelerate while 
changing direction. These motions appear to be largely disjoint from those most 
responsible for displacement transport, though both sources of Reynolds stress may 
be manifestations of vortical structures containing a significant streamwise vorticity 
component. 

The next section provides background on the method of Lagrangian analysis 
employed in the study. Following this the computational aspects of the approach, 
including that of the channel flow simulation and particle data sets, are given. The 
chief results concerning the physics of Reynolds stress are then presented, including 
the evaluation of the transport decomposition and descriptions of the typical fluid 
particle motions in the wall region leading to displacement and acceleration 
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transport. An overall assessment of the mechanisms leading to momentum transport 
is then made and some of the implications of this for the modelling of Reynolds stress 
are described. In  the last section conclusions are given together with an outline of 
future work. 

2. Reynolds stress analysis 
A Lagrangian decomposition of the Reynolds shear stress, WD, a t  a fixed spatial 

point, a, a t  a given time, t o ,  in a turbulent channel flow may be derived following an 
approach presented in detail elsewhere (Bernard et al. 1989a, b ) .  In  essence, one 
substitutes for u an expression deduced from integrating the streamwise component 
of the Navier-Stokes equation along an arbitrary particle path terminating at  a,  at  
time to.  Denoting the initial point of the path a t  time t0 -7 ,  7 > 0, as b, which will 
vary randomly from realization to realization of the flow field, the decomposition 
takes the form 

Here, u is the streamwise and w the wall-normal velocity fluctuation, U is the total 
streamwise velocity, p the pressure, p the density, the subscripts a and b denote 
quantities evaluated a t  a,  to and b, to -7 ,  respectively, and the overbar indicates 
ensemble averaging. The notation U ( s )  is adopted to indicate quantities evaluated 
along the particle path a t  time s ,  and, without loss of generality, to is considered to 
be 0. 

The further step may be taken of substituting for Ob in (1) its Taylor series 
expansion 

where for each realization of the flow field, 0 denotes a different point on the path 
between b and a. This yields 

where 

and w(0) w(s) w(r) dsdr. 
1 d2U 

(4) 

As 7 increases, the magnitude of the first term on the right-hand side of (3) reduces 
to zero as was demonstrated in earlier work (Bernard et al. 1989a, b ) .  The second 
term on the right-hand side accounts for mean gradient diffusion of momentum. It 
contains an explicit expression for the eddy viscosity in the form 

which, in view of the properties of v(O)v(s) ,  will be positive. The terms and @j2, 

defined in (4) and (5), respectively, represent non-gradient transport processes which 
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are potentially important sources of Reynolds stress. The previous study found both 
of these to be significant a t  the point y+ = 15.8. Term represents Reynolds stress 
arising from a correlation between the fluctuation v, and changes in the momentum 
of fluid particles, i.e. accelerations or decelerations, caused by the action of pressure 
and viscous forces. The remaining term, G2, reflects a correction to gradient 
transport caused by the motion of fluid particles over distances greater than that a t  
which a local linear approximation to 0 can be justified. 

Implicit in the early analysis of Prandtl is the concept of the mixing time, i.e. the 
time period over which particles must travel until their momentum is in some sense 
blended in with the surroundings. The existence of a mixing time is also fundamental 
to the present approach. It was suggested previously (Bernard et at?. 1 9 8 9 ~ )  that this 
scale may be naturally associated with the time interval 7 until ub and v, become 
uncorrelated, i.e. = 0 in (3), since it takes this long for the dynamical processes 
of the flow field to create, in a sense, the Reynolds stress correlation. A closer 
inspection of (3), however, suggests that a more fundamental definition of mixing 
time may be discerned. In  particular, it  may be seen that there must be a threshold 
in 7 beyond which all of the terms in (3) are constants independent of 7. To see this, 
note that as 7 increases, v(0) and w(7) becomes less correlated so that eventually vT 
given by (6) becomes constant and so too does the gradient term in (3). Similarly, the 
correlation of v(0) with ap/ax( -7) and V2U( -7) will be zero after 7 exceeds a certain 
lower bound. In this case a1 will then be constant. Clearly, the remaining term, G2, 
will be constant once 7 is large enough to make all the other terms constant. The 
time, say 7*, when this is first achieved may be taken as a precise definition of 
the mixing time. This scale is intrinsic to the turbulent flow field a t  any point. For 
7 > 7*, (3) produces a fundamental decomposition of the Reynolds stress into its 
constituent physical processes. By examining these, it is possible to learn a 
considerable amounb about the physics of turbulent momentum transport and the 
Reynolds stress. 

Equation (3) was derived from the point of view of specifically identifying a term 
responsible for gradient transport. This required applying (2) so as to subdivide the 
correlation v,( Ob - 0,) into gradient and non-gradient components. This step is a 
mathematical artifice which is not necessarily beneficial either to representing the 
physics of the Reynolds stress, or as an aid to its modelling. In fact, it will become 
apparent below that ( l ) ,  which may be rewritten in the form 

since the last term is just Q1, permits a more natural and straightforward analysis of 
the Reynolds stress than does (3). This equation will be seen to offer some important 
conceptual advantages in explaining the physics of turbulent momentum transport, 
and in developing closure relations. 

Equation (7)  suggests that the Reynolds stress should be looked a t  as arising from 
two fundamental processes. The first, which is encompassed by the middle term on 
the right-hand side, is just the transport mechanism described by Prandtl, wherein 
v, is correlated with the change in the mean velocity between a fluid particles’ initial 
and final location. Intrinsic to this term is the idea that the velocity fluctuation u, 
arises simply from the fluid particle a t  point b bringing to point a, on average, the 
mean momentum of its starting location. For the purpose of the following discussion 
this transport mode will be referred to as transport by fluid particle displacements. 
It has been pointed out by Tennekes & Lumley (1972) that this mechanism, as it was 
envisioned by Prandtl, suffers from the contradiction of requiring both complete 
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mixing at  the end of the mixing time, yet also transfer of momentum unchanged from 
one position to another. It should be apparent that  (7)  offers a framework for sorting 
out this paradox, since, within the context of continuous changes in the momentum 
of fluid particles, it allows for both the notion of complete mixing as discussed above, 
as well as diffusion according to Prandtl’s conception. 

A very different type of transport is represented by the last term in (7). This 
incorporates the correlation of v, with the total change in momentum along particle 
paths, i.e. the acceleration and deceleration of fluid particles. Consequently, it will be 
convenient to refer to this effect as transport associated with fluid particle 
accelerations. The suggestion that this type of transport may be significant was put 
forth by Taylor (1915) as a reason for rejecting a gradient transport model of the kind 
which was later to be developed by Prandtl. It is evident from (3) that  both viscous 
and pressure forces acting either separately, or in concert, can potentially contribute 
to acceleration transport. 

The two transport mechanisms represented in (7) may, in principle, be of 
significance a t  a particular point in the flow independently of one another. 
Displacement transport should occur generally in the presence of a mean shear, while 
the circumstances under which acceleration transport should exist is less obvious. An 
important outcome of the present study will be to reveal some of the occasions when 
the latter will be of consequence. In  general, it will be shown that different types of 
particle motions are associated with each of the transport mechanisms, though they 
may have a common origin in the dynamics of vortical structures in the turbulent 
wall layer. 

3. Computational technique 
The particle trajectories used in the present study were obtained from a direct 

numerical simulation of channel flow a t  Reynolds number R, = 250, based on friction 
velocity and channel width. In  terms of the centreline velocity the Reynolds number 
is 4274. A relatively low value of R, was chosen with a view towards obtaining an 
acceptable simulation on a mesh with fewer points than would be needed at higher 
values of R,. In  particular, for the present study a grid with 32 x 65 x 64 mesh points 
in the streamwise, wall-normal and spanwise directions, respectively, was used. By 
so reducing the storage requirements necessary to hold each realization of the 
velocity field in computer memory, the manageability of computing particle paths 
backward in time was enhanced. 

The turbulent field was simulated by solving the Navier-Stokes equations in 
rotation form subject to  the incompressibility condition and no-slip boundary 
conditions. A forcing term in the momentum equation was chosen in such a manner 
as to act like a constant pressure gradient driving the flow to a statistically steady 
state. Numerical solutions to  the governing equations were obtained using a 
pseudospectral method in which Chebyshev polynomials are used in the wall-normal 
direction, and Fourier series in the streamwise and spanwise directions. 

A time-splitting scheme incorporating the Green’s-function approach developed 
by Marcus (1984) was employed to  obtain numerical solutions. This technique is a 
modification of the Orszag-Kells (1980) algorithm in which time-splitting errors 
inherent in that method are significantly reduced by forcing a divergence-free 
velocity field a t  the wall. The code that has been used for the current calculations was 
originally written by John McLaughlin (Azab & McLaughlin 1987) and has been 
extensively modified to make it more memory efficient. The present calculations were 
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initialized from a previous simulation which was known to be nearly statistically 
steady. Dealiasing of the computed solution was done in the horizontal wavenumber 
plane using the ' 3/2 ' rule so that each of the 64 x 16 complex modes in the horizontal 
plane was fully populated. The domain size in wall units was 625 in the streamwise 
and spanwise directions and 250 in the wall-normal direction. The mean properties 
of the computed velocity field were comparable in quality to that of other 
simulations. For example, the constants A and B in the expression for the law of the 
wall, o+ = Aln y++B, were found to be 2.5 and 5.5, respectively, and the ratio of 
centreline to bulk mean velocity was 1.17 compared to 1.18 found by Kim, Moin & 
Moser (1987). Details of the channel flow solution have been reported elsewhere by 
Handler, Hendricks & Leighton (1989). 

The ensembles of paths used in the current study consist of the trajectories of 1000 
particles with end points on each of the six planes y+ = 3.8, 7.3, 12.0, 17.8, 24.6, and 
36.6. In each case, 500 particles were obtained from the flow in the lower half of the 
channel and 500 in the upper half. The total simulation time of the paths was 7' = 
32. They were computed by first storing 640 consecutive realizations of the velocity 
field on magnetic tapes and disk files at  intervals At+ = At e / v  = 0.05. The final 
positions of the particles were randomly placed in the planes and the particle 
locations earlier in time were determined by integration through the velocity 
realizations taken in reverse order. A second-order Runge-Kutta scheme was used to 
perform the time integration. 

The accuracy of the paths was assessed by computing the motion of all the 
particles from their positions at time t+ = -T+ forward in time over the identical 640 
flow records until t+ = 0. Denoting the backward and forward paths by X,(a, t )  and 
X,(a, t ) ,  respectively, then by definition, X,,(a, 0) = a and Xf(a, -7+) = X,(a, -7+). 
The root-mean-square difference 

where N = 1000, between the backward and forward positions of the particles was 
calculated. Figure 1 contains a plot of e(t+) for each y+ level as a function of time. It 
is seen that on average the particles return to within a very small distance of their 
starting points. For example, in the worst case, which is for the paths which end at  
y+ = 36.6, the root-mean-square error is < as measured in viscous units. It is 
also evident that these errors are rapidly increasing with time so that for longer time 
intervals they may become significant. 

An additional source of error in the particle paths arises from the use of three- 
dimensional linear interpolation to find the velocities of particles at off-nodal points 
(Yeung & Pope 1988). An extensive study of how such errors affect the accuracy of 
the current paths was carried out by comparing paths computed using linear 
interpolation with those computed using exact spectral interpolation. For the near- 
wall region considered in the present study it was found that the mesh cell size was 
sufficiently small that particle paths generated by the linear scheme were essentially 
indistinguishable from those derived from the exact formula. 

Ensemble averages are estimated in the present work by taking averages over the 
sets of paths. Clearly, this introduces a statistical error depending on both the sample 
size, i.e. the number of paths in the ensemble, as well as the degree of independence 
of the paths in the data set. The large number of particles, 1000, used a t  each y-level, 
is enough to ensure a relatively low variance in the average properties computed 
from the ensembles. The final points of the paths are distributed on each y-plane at 
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FIGURE 1. Root-mean-square positional errors for computed particle paths : (a-f) correspond to 
y+ = 3.8, 7.3, 12.0, 17.8, 24.6 and 36.6, respectively. 

the density of approximately one for every fourth cell in the planar mesh. Including 
more paths computed over the same time interval of the simulation was found to 
have only a minor quantitative affect on the statistics. This indicates that such paths 
do not offer much in the way of additional statistically independent information. 

To obtain an ideal set of paths for the current analysis, i.e. one whose averages 
would be equal to the theoretically exact averages, requires having paths separated 
in time as well as in space. I n  this way statistical information from the complete 
simulated velocity field could be brought into the ensemble of paths. Unfortunately, 
practical considerations preclude obtaining this kind of data. In particular, this 
would considerably magnify the already formidable task of storing and retrieving the 
data contained in just one contiguous set of 640 velocity records. However, by 
incorporating data sets from both walls of the channel, as was done here, it was 
possible to augment the statistical independence of the paths without great 
additional cost. The statistics for the combined set of data including both the top and 
bottom of the channel are given here. These are not substantially different from those 
taken from the separate data sets. Consequently, it is unlikely that the results of the 
present study would be much different if a larger, more statistically independent 
ensemble of paths were used. 

4. Overview of Reynolds stress decomposition 
According to the discussion in $2, the decomposition of w given in (3) will be useful 

only if T exceeds the mixing time. Consequently, i t  is necessary to check that this 
condition is satisfied before considering the predicted values of the terms in (3). A 
plot of the time history of the correlation normalized by m, a t  the different y+ 
locations, is shown in figure 2. It is seen that of the six positions treated in the current 
study, essentially reached zero a t  the four points for which y+ 2 12, while for 
y+ = 7.3, it  was reduced to less than 20% of its initial value. At the point closest ho 
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FIGURE 2.  Time development of correlation for each ensemble of paths : (a-f) correspond 
to y+ = 3.8, 7.3,  12.0, 17.8, 24.6 and 36.6, respectively. 

the wall, yf = 3.8, was only approximately halfway to  zero. Similar behaviour 
was found regarding the constancy of the remaining terms in (3). Away from the wall 
they were either constant or nearly so, while near the boundary they were still 
evolving a t  T+ = 32. This suggests that the total simulation time of T+ = 32 is 
sufficient for complete mixing everywhere except very close to the wall. 

The subsequent results will make it clear that the fluid particle motions associated 
with sweep events, i.e. u, > 0, w, < 0, commonly experience substantial decelerations 
as they enter the near-wall region. For such paths it is expected that u remains 
positive over a significant time interval prior to to. In this case, a large contribution 
to the product ub w, is likely which can explain the persistence of the ~b2), correlation 
adjacent to the boundary. Fortunately, because of the very small magnitude of the 
Reynolds stress at  y+ = 3.8, the failure of UbZI, to be close to zero a t  this point will 
turn out to be of only minor consequence for the following discussion. 

A numerical evaluation of the Reynolds stress decomposition given in (3) obtained 
from the particle paths a t  all six locations is summarized in figure 3. The magnitude 
of ~b21, is seen to be uniformly small across the region so that the decomposition of 
m into the remaining terms in (3) is meaningful. Note that a t  y+ = 3.8, even though 
~b21, still accounts for a large fraction of im, it  is very small relative to the peak 
magnitude of the Reynolds stress distribution. This suggests that any conclusions 
about the physics of the Reynolds stress which may be deduced from the figure will 
not be significantly affected if a larger value of 7' were used near the boundary. 

A striking feature of figure 3 is the behaviour of the gradient transport term with 
respect to the Reynolds stress itself. The former exceeds the latter in magnitude for 
y+ 6 20, and is less than it for the region y+ > 20. This result is consistent with the 
earlier study (Bernard et al. 1989a). Extrapolation of the curves in figure 3 towards 
the centreline suggests that gradient transport will continue to diminish in 
importance with respect to the total Reynolds stress as the central region of the 
channel is approached. Figure 3 shows that a2 in (3) is positive near the wall so that 
it counterbalances the tendency of the gradient term to overestimate the Reynolds 
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FIGURE 3. Spatial dependence of terms in Reynolds stress decomposition (3) : (a )  m; 
(b )  gradient term; (c )  GI; ( d )  G 2 ;  ( e )  m. 

stress. Near yi = 30, Qj2 changes sign so that beyond this point it acts in the manner 
of an additional source of Reynolds stress. Term is observed to contribute 
positively to EB for yf < 12 while it makes a somewhat constant negative contribution 
to Reynolds stress further from the wall. 

It may be concluded from figure 3, in agreement with earlier work, that the 
physical effects accounted for by the terms and a2 constitute a significant aspect 
of the physics of the Reynolds stress, and therefore cannot be neglected in favour of 
a simple gradient transport model. To further the specific aims of the present study 
it is thus necessary to delve more deeply into the physical processes represented by 
these terms. A step in this direction was taken previously (Bernard et al. 1989a, b)  
when it was established that non-gradient transport effects are largely attributable 
to the motion of a small number of exceptional particles travelling long distances 
during the mixing time. Here, many refinements to this observation will be made as 
the connection between particle motions and Reynolds stress is further mapped out. 

5. Analysis of particle paths 
For the purpose of developing a physical picture of the Reynolds stress it is helpful 

to study the contributions which particular subgroups of paths make to the terms in 
(3). It turns out to be especially useful to subdivide the paths according to  both their 
initial positions in the y-direction and the quadrant in the (u,v)-hodograph plane 
they are in a t  their termination point. In the following, the paths will be considered 
according to these two criteria applied either separately or together as the situation 
warrants. 

Before considering the relationship between specific attributes of trajectories and 
the results contained in figure 3, it is advantageous to examine some of the basic 
statistics of the computed particle paths. In  particular, the probability density 
function (p.d.f.), p(y), corresponding to the initial positions of the particles as 
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FIGURE 4. Probability density functions of initial particle positions : (a-f ) correspond to 

y+ = 3.8, 7.3, 12.0, 17.8, 24.6 and 36.6, respectively. 
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FIQURE 5. Quadrant breakdown of the p.d.f. of particle displacement at y+ = 12.0: (a)  Q1;  
( b )  Q2; (c) Q3; (d )  Q4; ( e )  total. 

measured from the wall, for each of the six y-locations, is shown in figure 4. These 
were computed by first evaluating the cumulative probability distribution function 
P(y)  = k m p ( z )  dz, at  a set of discrete points, and then setting p(y)  equal to the slope 
of a straight line fitted to P in the vicinity of y, As expected, the least spread of initial 
states is for the paths that end at  y+ = 3.8, while the greatest is for those arriving at  
yi = 36.6. A t  each y+ location the most probable initial state is approximately 
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coincident with the final state. However, the p ( y )  curves are asymmetric about the 
most probable location with the longer tail extending in the direction away from the 
channel wall. This suggests that  the mean y-location for each ensemble of paths 
should be drifting towards the wall. Direct calculation reveals that this is indeed the 
case. 

Considerable insight into the dynamics of the wall region can be had by performing 
a quadrant analysis of the curves in figure 4 along the lines discussed previously. 
Such a breakdown of the particular curve in figure 4 at y+ = 12 is shown in figure 5. 
It is seen that, as expected, Q2 events, i.e. particles for which u,, v, are in quadrant 
2 (u, < 0, v, > 0) of the hodograph plane, are most likely to have originated closer to 
the wall than y+ = 12, while Q4 events are most likely to have approached the wall 
from further away. Q2 and Q4 events are also seen to be much more numerous than 
Q1 or Q3 events. It may be observed that for all of the four groups of paths, there 
are many which begin their travel from locations opposite to ones’ expectation of 
where they should start judging solely by the sign of v,. I n  other words, a significant 
fraction of the particle paths change their direction over the mixing time. 

An especially interesting feature of figure 5 is that  a very high percentage, in fact, 
76% of the Q1 events undergo a change in direction. Visualizations of these paths 
along the lines done in the earlier study (Bernard et al. 19896) show that many of 
them follow arcing trajectories in which they descend towards the wall very much 
like sweep motions, but become reoriented upwards prior to time to .  In  general, these 
particles travel faster than the local mean a t  y+ = 12 so that the source of a positive 
fluctuation, u,, lies in their origin in the high-speed region further from the wall. 

As in the case of Q l  events, figure 5 shows that slightly more than half, namely 
53%, of all Q3 events begin travelling outward from close to the wall and then 
change direction back towards the wall. These also may be seen to be largely spiral 
motions in which u, is negative owing to the fluid particle’s previous passage close 
to the wall. Taken as a whole, it is seen that Q l  and Q3 particle trajectories give the 
appearance of being the culminating behaviour of sweep and ejection events, 
respectively, in which particles change direction because of their association with the 
motion of vortical structures in the wall region. It should be noted that a similar 
scenario was proposed by Brodkey, Wallace & Eckelmann (1974) in their 
interpretation of experimentally observed particle paths. 

It may be concluded that the positive fluctuation u, associated with Q1 and Q4 
events signifies that the fluid particle is highly likely to have originated farther from 
the wall than its final position. Similarly, u, < 0, occurring in Q2 and Q3 events, 
most often means that the particle path started in the slow-moving region closc to 
the wall. These general conclusions also apply to the paths a t  locations other than 
y+ = 12, since the remaining curves in figure 4 have quadrant breakdowns similar to 
that shown in figure 5. 

6. Transport by fluid particle displacements 
The computed trends in the gradient and G2 terms in figure 3 are a natural 

consequence of the relationship between the particle motions occurring during the 
mixing time and the properties of the mean velocity field. By exploring this 
connection, a considerable amount can be revealed about the physics of momentum 
transport. The present discussion considers the gradient term together with the non- 
gradient process represented by G2, since together they form the correlation 
v,(Ub - U,).  This term, as suggested previously, corresponds mathematically to the 
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FIGURE 6. Mean velocity profile in channel flow showing the suitability of 
linear approximations. 

physical process described by Prandtl in which u, is treated as if it  were created 
entirely by the mean velocity a t  point b being brought to pointa by the displacement 
of fluid particles. 

The association between the mean velocity field and the gradient and @j2 terms can 
be understood with the help of figure 6, containing a plot of U upon which is 
superimposed tangent lines a t  the three points y f  = 3.8, 17.8 and 36.6. Consider the 
dynamics of typical fluid particles causing momentum transport across the plane a t  
y+ = 17.8. For a particle having v, > 0, and y i  < y i  = 17.8, i.e. that originated a t  a 
position b closer to the wall, Ob - U ,  will be negative. According to (2), 0,- U ,  can 
be decomposed into a sum of contributions from the linear approximation to 0 
through a, plus a higher-order correction. The relative positions of the curves in 
figure 6 a t  a hypothetical point y i ,  situated somewhat to the left of y i ,  make it 
evident that the part of Ub - U ,  deriving from the linear approximation to 0 will be 
negative, and will account for only a part of the total difference, U b - 0 , .  The 
remaining contribution to TJb-Ua comes from the higher-order term in (2) which 
may be seen to also be negative. Since the gradient term in (2) is composed of the 
correlation of v, with the gradient part of Ub-O,, i t  follows that particles with 
v, > 0, y i  < y i ,  tend to contribute less in magnitude to  gradient transport than they 
do to the overall local Reynolds stress. In  addition, since @j2 is formed as the product 
of v, with the higher-order term in (2), it will receive a negative contribution from 
this kind of particle motion. 

Now consider the equivalent situation, but for a particle for which v, < 0 and 
y l  > y i .  In this case Ub- Ua will be positive. Examination of the curves in figure 6 
just to the right of y+ = 17.8 reveals that, unlike the previous instance, the linear term 
in (2) will now tend to be larger in magnitude than Ub- u,, while the part of ir, - 0, 
coming from the higher-order correction in (2) will counterbalance this by being 
negative. It thus happens that for particles approaching the wall, i t  is expected that 
their contribution to the gradient term in (3) will exceed in magnitude that of their 
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FIGURE 7. Computed probability density functions at y+ = 3.8 : (a) gradient term ; ( b )  @2 ; 
( e )  initial positions of particles. 

contribution to the Reynolds stress, while a t  the same time they contribute 
positively to Q2. 

In summary, in so far as the gradient term in (3) is concerned, particles moving 
away from the wall tend to contribute less to it in magnitude than they do to the 
local Reynolds stress, while particles moving towards the wall tend to contribute 
more in magnitude to it than they do to the Reynolds stress. For the term Q2, 

outward-moving particles contribute negatively, i.e. so as to enhance the local 
Reynolds stress, while those moving inward contribute positively, i.e. so as to reduce 
the total Reynolds stress. In the event that a linear approximation to l7 is acceptable 
over the distance a t  which fluid particles move over the mixing time, then the higher- 
order term in (2) will be negligible and @, can be expected to be zero. In contrast, the 
gradient term will contribute to Reynolds stress in all circumstances, so long as 
dU/dy $; 0. 

At this point it is possible to readily explain the behaviour of the gradient and @2 

terms shown in figure 3. First consider the region near the wall. It may be seen in 
figure 6 that a linear approximation to 0 a t  y+ = 3.8 is excellent for particles 
travelling outward towards y+ = 3.8, while it is not particularly good for particles 
heading inward to yf = 3.8. In view of the previous discussion, it may be expected 
that the gradient term will overpredict the Reynolds stress at this point since the Q4 
particles travelling to y+ = 3.8 from above make excessive contributions to gradient 
transport without a compensating underprediction from outward-moving particles. 
Similarly, the curves in figure 6 a t  y+ = 3.8 suggest that the main contribution to O2 
is from particles moving to the wall, since the correction to the gradient 
approximation to 0 for outward-moving particles will be negligible. The net result 
is that @* should be positive, as is shown to be the case in figure 3. 

An instructive view of the conclusions just reached is given in figure 7, containing 
a plot of the p.d.f.'s associated with the gradient and terms in (3) at the point 
y+ = 3.8, as well as the p.d.f. of particle displacement. The former curves, a t  a fixed y, 
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give the fraction of the total gradient and Q2 terms, respectively, stemming from 
particles originating near y and travelling to y+ = 3.8. It is evaluated in the same 
manner by which the p.d.f. of particle displacement was computed, namely by 
differentiation of the associated cumulative probability function, P ( y ) .  Since it is 
possible that particles originating from a particular location may tend to contribute 
opposite in sign to that of the net value of the term, it cannot be ruled out that  there 
are regions where p ( y )  is negative. In  all cases, however, the integral of p(y) over all 
y is unity. 

Figure 7 reveals the remarkable extent to which a very large portion of the 
gradient contribution to Reynolds stress, and almost the entire contribution to Q2, 
come from the small number of particles travelling to y+ = 3.8 from positions beyond 
y+ = 10 from the wall. The most probable contribution to gradient transport is from 
particles originating near yi x 17, yet, as shown in figure 6, the tangent line to U a t  
y+ = 3.8 very poorly approximates l7 in this vicinity. The result, as was made clear 
in the previous discussion, is that the gradient term will be too large in magnitude, 
and Q2 will be positive. 

At points further from the wall, such as y+ = 17.8, the local linear approximation 
to 0 is a poor representation of O0 for both outbound and inbound particles 
travelling significant distances. Figure 8 shows the p.d.f.'s for the gradient and Q2 

terms in (3) for particles arriving a t  y+ = 17.8. As before, the dominant contribution 
to displacement transport is from a small number of particles travelling relatively 
long distances during the mixing time. The p.d.f. for the gradient term displays a 
characteristic profile in which a local maximum occurs on either side of the terminal 
point. The greatest contributions to gradient transport arise from particles travelling 
outward from y' x 10 and inward from y+ x 3-5. The inadequacy of a linear 
approximation to 0 at y+ = 17.8 in accounting for these contributions is evident in 
figure 6. However, it may be expected that the tendency towards overprediction of 
gradient transport by the inward-moving particles will be counteracted by an 
opposite effect due to the outward-moving particles. Thus a lessening of the 

I I I I I I I I 1 
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magnitude of the gradient term with respect to the Reynolds stress should occur. 
Figure 3 shows that, in fact, a t  y+ x 20 the gradient term begins to underpredict the 
Reynolds stress. 

The increasing importance of outward-moving particles a t  y+ = 17.8 is made 
evident by the p.d.f. for CP,. Here i t  is seen that these particles make a sizeable 
negative contribution to  CP2,  cancelling some of the positive contribution from 
inward-travelling particles. This explains the decrease in CP, for y+ > 12 evident in 
figure 3. At y+ x 30 the positive and negative contributions to  Q2 fully balance so 
that it is zero. Beyond this point the negative contributions from outward-moving 
particles dominate and G2 becomes negative. 

At y+ = 36.6, figure 6 shows that a situation somewhat opposite to  that at y+ = 
3.8 occurs. The p.d.f. of the gradient term a t  y' = 36.6 shown in figure 9 indicates 
that the most probable contributions to gradient transport come from particles 
moving outward from y+ x 18 and inward from y+ x 60. For the latter particles the 
linear representation of 0 a t  y+ = 36.6 is considerably better than for the former, so 
the gradient term can be expected to fall short of the total Reynolds stress in 
magnitude. The negative value of Q2 a t  y+ = 36.6 is reflected in the fact that its p.d.f. 
curve, which is shown in figure 9, is now positive for particles heading outward, and 
negative for ones moving inward, in contrast to  the situation at y+ = 17.8. It also 
may be concluded from figure 9 that the Reynolds stress, away from the vicinity of 
the wall, depends on physical processes covering a very substantial part of the 
channel. 

Quadrant analyses of the gradient and CP2 transport terms are presented in figures 
10 and 11, respectively. Next to the boundary almost the entire contribution to these 
processes is due to fluid particle motions terminating in Q4.  Outside the immediate 
wall region Q4 events continue to exert a major influence on both facets of 
displacement transport, though this is mollified somewhat in that they contribute 
negatively to the gradient and positively to the CP2 terms. In  contrast, the figures 
show that Q2 events contribute negatively to both processes and, as will be shown 
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FIGURE 10. Quadrant decomposition of the gradient term in (3): (a) Q1; (b) Q2; (c) Q3; (d )  Q4; 
(e) total. 
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FIGURE 11. Quadrant decomposition of term G2 in (3):  (a) Q1; (b) Q2; (c) Q3; (d )  Q4; (e) total. 

below, come to dominate displacement transport away from the wall. An interesting 
aspect of figure 10 is that Q1 events appear to be responsible for a sizeable positive 
contribution to gradient transport. For this to happen, since va > 0 for such particles, 
i t  must generally be the case that Ub > Om, so that y: > y:. In other words, a change 
in direction is implied in these motions. The presence of many Q1 paths with this 
property was established previously. 
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FIGURE 12. Quadrant decomposition of term in (3) :  (a) Q 1 ;  ( b )  Q2; (c) Q3; ( d )  Q4; ( e )  total. 

7. Transport by fluid particle accelerations 
The behaviour of SP, = v,(U, - Ub) shown in figure 3 can also be interpreted in 

terms of the basic properties of the fluid particle motions. Near the wall where it is 
positive, a correlation is implied between events in which v, and U ,  - ub have the 
same sign. A quadrant breakdown of the acceleration transport term shown in figure 
12 reveals that the positivity of near the wall is entirely due to Q4 events. For 
these paths v, < 0 so it must often be the case that U, - u b  < 0 as well. In other 
words, the positivity of SP, near the boundary is explained by the deceleration of 
many sweep motions heading into the near-wall region. The opposite situation, in 
which ejection events accelerate, also occurs as will be seen below, though this is of 
less significance. 

Since, according to figure 3, 0, changes sign at y+ x 12, the complete set of 
physical processes underlying this term must be more complex than the simple 
scheme just proposed. For example, the mechanisms cited to account for positive SP, 
cannot explain why it is negative, since it is implausible to expect either that many 
particles leaving from near the wall decelerate or that many particles approaching 
the wall accelerate. Figure 12 makes clear that the source of negative SP,, near y+ = 
15, lies in the motion of paths terminating in Q1 and Q2. Since these events have 

v, > 0, to contribute negatively to Q1 they must be decelerating. In view of the 
previous remarks, it appears to be highly likely that a change in direction is involved 
in these paths. Figure 12 a180 shows that by y+ = 36, Q3 and Q4 motions contribute 
negatively to SP,. In this case, there must exist a number of particles which accelerate 
as they leave from near the wall, and then turn back towards it so that they 
terminate with v, < 0. 

Visualizations of the ten paths, out of the complete set of 1000 paths, contributing 
most negatively to acceleration transport at  y+ = 24.6 are contained in figure 13. The 
trajectories are displayed in orthogonal projections from the side, top and end-on, as 
seen by an observer moving at  the mean speed at y+ = 24.6. The paths are plotted 
from a common origin and an equal spatial scaling is used in all coordinate directions. 
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Paths to the right of the x+ origin in the top two figures are travelling slower than 
the mean, and paths to the left faster. Viewed end-on it is apparent that the particles 
terminate in Q1 or Q2 so that they are all decelerating. It is also evident that they 
have undergone a change in direction consistent with the previous discussion. 

The paths in figure 13 tend to displace only a small distance in the wall-normal 
direction over the mixing time. This is consistent with a plot of the p.d.f. of GI at 
y+ = 24.6 in figure 14 which shows that p ( y )  is at a peak at  y+ = 24.6. This implies 
that the most significant source of negative contributions to GI is from paths which 
do not travel a large distance normal to the wall. The regions in figure 14 where p(y) 
is negative are locations where the instantaneous product va( U, - U,) tends to be 
positive. Clearly, these paths contribute to by either slowing as they approach the 
wall (y' > 40), or accelerating as they leave the wall (y' < 15), without an implied 
change in direction. 

It is natural to wonder how the particles depicted in figure 13 are able to decelerate 
to any great extent without having travelled a significant distance towards the fixed 
boundary. A possible explanation is suggested by the fact that the paths display a 
clear spiral pattern, as if they are convecting around the cores of vortex tubes tilted 
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downstream at an angle to the wall. In  particular, the velocity field generated by 
such structures can be expected to enhance the streamwise velocity on one side and 
diminish it on the other, so that fluid travelling into such vortices from underneath 
would tend to decelerate. If these structures form the legs of lifted-up horseshoe or 
hairpin vortices, then the events being considered represent fluid being drawn into 
their centres from outside. A similar argument can be provided to explain the 
acceleration transport generated by Q3 and Q4 events further from the wall. In this 
case the fluid particles may be heading in an arc around the upper part of the vortex 
cores. 

8. Summary of Reynolds stress physics 
At this point a number of conclusions may be drawn about the kinds of physical 

processes in turbulent flow which lead to the Reynolds stress. First, it  is clear from 
figure 3 that the gradient transport mechanism is a poor estimate of the total 
Reynolds stress throughout the wall region. By all indications i t  will be even worse 
at points further from the wall. Besides its inability to  account for the Reynolds 
stress, it is also inadequate for approximating the total displacement transport term, 
va(Oo-Oa), of which it is one part. I n  particular, the inappropriateness of a local 
linear approximation to 0 in representing Db ensures a t  the outset that Qj2 cannot act 
as merely a small correction to  the gradient approximation to v,( 0 0  - 0,). It may be 
concluded that gradient transport has no intrinsic meaning to turbulent diffusion, so 

that the subdivision of v,(Ob- 0,) into gradient and non-gradient parts serves only 
to obscure the physics of the Reynolds stress. 

The present study thus leads to  the notion that i t  is advantageous to consider the 
displacement transport process taken as a whole instead of divided into gradient and 
non-gradient parts. Thus the decomposition of the Reynolds stress given in (7 )  is 
preferable to that given in (3). This point of view is supported by figure 15 showing 
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FIGURE 15. Spatial dependence of terms in Reynolds stress decomposition (7) : (a )  m; 
( b )  ' , ( U b - u a ) ;  (c) 'a ( ' , - 'b) ;  ( d )  m. 

the distribution of the separate terms in (7) across the channel together with the 
Reynolds stress. It is evident that va( ub- oa) provides a much more credible 
approximation to the total Reynolds stress than does the gradient term taken by 
itself. 

A quadrant breakdown of the displacement transport term is shown in figure 16. 
The dominant role of sweep, i.e. Q4 motions, is evident near the wall. Beyond 
approximately y+ = 18, as suggested previously, Q2 events involving the ejection of 
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low-speed fluid away from the wall constitute the major source of displacement 
transport. According to the figure the net effect of displacement transport is reduced 
somewhat by the action of Q1 and Q3 paths which have experienced a change in 
direction over the mixing time. 

Acceleration transport has been seen to be the result of two dissimilar mechanisms 
with different consequences for the overall Reynolds stress distribution. Near the 
wall it, is manifested in the guise of slowing sweep motions and thus leads to a 
reduction of the Reynolds stress. Further from the wall i t  acts as an additional source 
of Reynolds stress by a mechanism consisting of the deceleration of particles 
travelling in spiral paths first towards and then away from the wall. At more distant 
points the opposite case occurs in which accelerating particles travel away from and 
then back towards the boundary. Figures 8 , 9  and 14 make the important point that 
the paths most responsible for displacement and acceleration transport are largely 
disjoint from each other. The former tend to originate at locations considerably 
above or below the termination point while the latter begin and end near the same 
y-level. However, visualizations of the paths most responsible for displacement 
transport, in agreement with the previous study (Bernard et al. 19896), generally 
show spiral motions covering significant vertical motion, as would be associated with 
vortical structures more or less aligned with the flow. This together with the previous 
assessment of the causes of acceleration transport suggests that  the two differing 
sources of turbulent momentum transport have a common origin in the dynamics of 
largely streamwise vortices in the turbulent boundary layer. 

9. Implications for Reynolds stress modelling 
Having established in the previous section a comprehensive picture of the sources 

of momentum transport, it is of interest to now consider some of the implications 
that this may have on schemes for predicting the Reynolds stress. It has already been 
remarked that the simple gradient law is untenable IS a model of the Reynolds stress. 
Now it will be shown that the properties of displacement transport discussed 
previously suggest a natural representation of displacement transport in terms of the 
global properties of the mean velocity gradient. This result is consistent with general 
observations which have been made concerning the non-local dependence of 
Reynolds stress on the mean velocity field (Lumley 1983). 

A model of the correlation ~ ~ ( 0 ~ -  0,) may be developed from the probability of 
particle displacement previously considered. Thus, a t  a particular point y, fluid 
particles have the probability, say p J r ) A r ,  of arriving a t  point y from the 
neighbourhood Jr-yJ < $Ar during the mixing time T * ( Y ) .  For each of these particles, 
ub - 0, x B(r) - 0(y). In  addition, these particles travel the distance r - y in the time 
~ * ( y )  so that it is natural to suggest that on average v, - - (r-y)/.r*(y). Introducing 
a factor a,(r) i t  may be asserted that 

(T - Y) ay(r) 

7*(Y) . 
va = - 

In  this case the contribution. to va( ab - 0,) from particles travelling from a near 
neighbourhood Ar  of r to y in time T * ( Y )  is given approximately by 



Reynolds stress and the physics of turbulent momentum transport 121 

Summing this over all r-positions gives the result 

In  view of the fact that = 0 in channel flow, it must be the case that 

1 a,@) P&) dr  = 0 (9) 

if the current model is to be self-consistent. This equation serves as a constraint on 
ay( r ) .  If ay(r) = 1, then (9) is equivalent to the statement that the first moment 
of p&r) is zero. However, none of the curves in figure 4 have this property since, 
as mentioned previously, there is a mean drift of the particles towards the wall. 
It follows that ay(r )  =I= 1, and to balance the asymmetry of p,(r) i t  is likely that 
aJr)  < 1 for r > y. 

To develop a one-point approximation to the Reynolds stress from (8) one can 
substitute for U(r) - o ( y )  the first N terms in its Taylor series expansion about y .  This 
yields 

where 

When N = 1 this simplifies to a gradient transport law in which vT in (6) is 
approximated by r2(y) /7*(y) .  The previous results make it quite clear that this 
degree of approximation is not acceptable. In  addition, the large support of p J r )  
evidenced in figure 4 suggests that N must be relatively large if (10) is to capture the 
non-gradient contribution. Test calculations of the first five terms have been done 
using the particle path data, which showed that (10) could not be safely truncated 
a t  this level. This suggests that it is not possible to develop a practical one-point 
formula for approximating the Reynolds stress. 

An instructive step that may be taken in simplifying ($9, which also preserves its 
global character, is to incorporate into it the identity 

‘dU 
U ( r )  - U ( y )  = I,dy ( s )  ds. 

After reversing the order of integration it follows that 

where 

(s-y)a&)p,(s)ds ,  y d r d h 

may be regarded as a function that weights the contribution of the mean velocity 
gradient to the Reynolds stress in a region around y .  Figure 17 contains a plot of Fy(r) 
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FIQURE 17. The function FJr) at each y-position: (a- f )  correspond to y' = 3.8,  7.3,  12.0, 17.8, 
24.6 and 36.6, respectively. 

for each of the six y-levels, computed by assuming that aJr)  is unity for r < y and 
equal to  a constant less than one for r > y. The value of the constant is chosen so as 
to ensure that (9) is satisfied. The computed values of F'(r) graphically illustrate that 
the local Reynolds stress depends on flow conditions over a wide spatial range. 

Beyond the use that (12) has in concretely expressing the physics of displacement 
transport, it also has potential benefit in pointing the way towards a practical closure 
scheme for the Reynolds stress. Clearly, a number of important issues still need to be 
resolved before the latter goal can be achieved. In  particular, i t  is necessary to better 
understand the parameters affecting the function FU(r) so that its form in general 
flows could be predicted. It also must be recognized that it is necessary to account 
for the contributions of acceleration transport to the Reynolds stress. These 
important issues may be treatable by closely examining how vortical elements in the 
turbulent boundary layer specifically affect the movements of fluid particles. 

10. Conclusions 
The Reynolds stress has been shown to have its origin in fundamental processes 

involving the displacement and acceleration of fluid particles. The former, which is 
the more significant process of the two, arises from the tendency of momentum to be 
transported unchanged from one level to another by the random motion of fluid 
elements. Generally, displacement transport is the result of relatively small numbers 
of particles travelling long vertical distances in the mixing time. These paths appear 
to be a manifestation of the burst and sweep events usually associated with the 
dynamics of vortical structures in the wall region. Owing to the inappropriateness of 
a linear approximation to the mean velocity field over the range travelled by fluid 
particles during the mixing time, displacement transport was found to be poorly 
represented by a gradient law. However, as a consequence of its definition, the 
displacement transport mechanism was shown in (12) to  have a natural rep- 
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resentation in terms of the global distribution of the mean velocity gradient. This 
result may be of some advantage in the design of improved Reynolds stress models. 

The physical process which has been labelled acceleration transport, is a 
consequence of two basic phenomena associated with the change in streamwise 
velocity of fluid particles. Near the wall this primarily consists of the deceleration of 
fluid particles contained in sweep events by the action of viscous and pressure forces. 
This process acts to reduce the total Reynolds stress. Further from the wall Reynolds 
stress is generated when fluid particles decelerate while spiralling towards and then 
away from the wall. In addition, the inverse process may occur in which particles 
accelerate while heading away from and then towards the wall. For these motions the 
net vertical displacement of the fluid particles is relatively small. 

The fluid particle motions most closely connected to  the displacement transport 
mechanism appear to be largely distinct from those occurring in acceleration 
transport. An important exception is the decelerating sweep events near the wall 
which contribute significantly to both modes of transport. In  spite of the differences 
between the two sets of pat,hs, a common ground between them may lie in the fact 
that  they appear to represent different aspects of the motions associated with 
vortical st,ructures in the turbulent boundary layer. This connection with the 
structural aspects of turbulent flow will be pursued further using three-dimensional 
animated visualizations of the fluid particle paths. An understanding of the 
particular effects of vortices on particle motions may suggest a means for bringing 
formula (12) to a practical level and for modelling the acceleration transport 
contribution to Reynolds stress. 

The Lagrangian approach pursued here may be applied to the analysis of a broad 
range of physical processes in turbulent flow. In  future work concerned with 
momentum transport, i t  is intended to study the relative contributions that pressure 
and viscous forces make to acceleration transport and to investigate the nature of the 
Reynolds stress in the central region of the channel. It is also planned to  apply 
similar analyses to studies of vorticity transport and scalar diffusion. 

The assistance of Dr Richard Leighton in the development of the direct numerical 
simulat,ion code is greatly appreciated. Support of P. S. Bernard for this study was 
provided in part through an ASEE/Navy Summer Faculty Research Fellowship a t  
the Naval Research Laboratory, Washington, DC. 
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