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1. Introduction

A main impetus for developing gridfree vortex filament methods (VFM) for simulating turbulent flow [1,2] derives from
their comparatively small exposure to the debilitating effects of numerical diffusion that lowers the effective Reynolds
numbers in under-resolved mesh-based computations. VFM'’s represent the flow through many small, straight, vortex tubes
that are strung end-to-end to form filaments. With the velocity field recovered using the Biot-Savart law, vortex stretching
and transport are captured through the advection of the tubes without introducing diffusion. Sharp vortical features remain
sharp and the flow of energy to small dissipative scales as well as backscatter toward large scales is captured.

The vortex filament approach has been made practical through the availability of the adaptive fast multipole scheme
(FMM) [3] that enables velocity determination over N tubes with O (N) cost. Affordable simulations can thus be made with
108 vortices and higher [4]. An equally important innovation is the use of vortex loop removal [5] as a means of curtailing
the extraordinarily robust growth in the number of vortex tubes fed by the action of the vortex stretching process. With
vortex loop removal, energy that would ordinarily cascade to small dissipative scales is removed at the much larger inertial
range thus allowing the number of vortices to remain stable and affordable. With these innovations the vortex filament
approach has had a number of successful applications to turbulent flows of practical interest including a coflowing jet [6],
mixing layer [7], automotive flow [8] and boundary layers [9,10].

For turbulent flows in which heat and mass transfer are an essential aspect, the prediction of temperature and concen-
tration fields depends on accurately accounting for scalar transport driven by the turbulent eddying motion. To the extent
that excessive diffusion is brought to simulations through eddy viscosity modeling and/or through numerical diffusion, it
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can be expected that the physical mechanisms underlying scalar transport are poorly accounted for and thus so too are the
predictions of the energy and mass concentration fields of interest. Since vortex filament schemes are notably well posi-
tioned to faithfully account for the vortical structure leading to scalar transport, it is of some interest to extend and further
develop the VFM so as to be applicable to 3D flows with heat and mass transfer. This paper is primarily concerned with
such a development.

The gridfree representation of 3D turbulent flows via a filament scheme that is of interest here may be contrasted
with the closely related but distinct vortex particle or blob methods [11] that have been used in conjunction with particle
schemes for accommodating heat and mass transfer. In vortex blob methods the flow field is represented by circular or
spherical amorphous regions of vorticity that convect through the flow. Interest in such methods has been spurred by
the fact that they can be made the basis for accurately accommodating viscous vorticity diffusion, though a remeshing
procedure is often necessary in such cases to maintain an overlapping system of blobs. For three-dimensional flows vortex
stretching and shearing must be taken into account and in this case blob methods tend to be unstable unless ad hoc
measures are taken such as the use of a grid as an intermediary in evaluating the stretching term in the vorticity equation.
For these reasons, vortex particle methods have tended to be developed and applied to two-dimensional flows where vortex
stretching is absent. For the simulation of 3D turbulence there have been a small number of applications of vortex particle
schemes [12].

In an early extension of vortex particle methods to include flows with heat and mass transfer [13] both temperature
and temperature gradient particles were introduced in addition to one-dimensional vortex particles to enable the study of
several one-dimensional applications. A model problem of one-dimensional natural convection adjacent to a heated wall
was studied using vorticity and temperature particles. This included a scheme for modeling baroclinic vorticity generation
in which new vortex particles were introduced at each time step with strength determined from the local temperature
gradient.

The idea of holding information about scalar gradients of energy and mass contaminants on an additional class of particle
elements was generalized into two and three dimensions as the transport element method [14]. This approach requires the
additional step of recovering the temperature or scalar concentration field by summing contributions from the gradient
elements. A 2D thermally stratified shear layer was studied [14] and an extension of this methodology [15] was made to
study 2D buoyant plumes in which two-way coupling between the vorticity and density gradient was taken into account by
modification of the vortex element strength. Subsequently, the transport element method was extended to nearly buoyant
flows in 2D [16] and a two-dimensional Rayleigh-Taylor flow evolving under the action of gravity across a large temperature
gradient without the simplification of the Boussinesq approximation. The transport element method has also been applied
to planar buoyant plume simulations [17] as well as some 3D problems in natural convection including sudden release of
heat into a spherical region [18], a problem that is treated here as well.

Temperature elements were introduced in 2D vortex particle simulations of forced convection around a circular cylinder
[19,20]. Ogami [21] introduced energy particles with a Gaussian core structure to represent the temperature in studies of
two-dimensional flows with heat transfer including two-way coupling. Diffusion was accommodated via a diffusion velocity
technique. Baroclinic vorticity generation was modeled by modifying the vorticity of the pre-existing vortices in regions
where the support of the temperature field is within that of the vorticity field. In regions lacking vortex elements new
vortex particles were created in +— pairs corresponding to each temperature particle. Periodic remeshing of the energy
particles was done so as to limit the computational cost. A test calculation considered heat release into a square region and
its subsequent buoyant plume-like rise in the fluid.

Some development has been made of methodologies for including two-way coupling between vortex methods and parti-
cle laden flows that are closely related to the analogous case of heat transfer. One such scheme [22] incorporates Lagrangian
control points to represent the vorticity and mass particles and operates similar to a vortex particle method. New vorticity
control points are added in response to the particle induced body force. Such a technique has been applied to such two-
dimensional flows as the descent of a circular particle laden region of vorticity and a two-phase plane mixing layer [22,23].
A similar approach based on vortex particles for which it was necessary to periodically remesh [24] included vortex creation
associated with interior particle forces and was applied to the simulation of a falling 3D blob of particles.

In the present work the application of a VFM to turbulent flows with heat transfer and two-way coupling is pursued.
The vortex filaments used in representing the vorticity and velocity field are supplemented with energy particles that carry
information about energy residing in the flow field that is associated with temperature over and above the ambient. In this
way the physical extent over which energy particles are required is similar to that over which gradient particles are used in
the transport element method [18]. For both the vortex filaments and energy particles there is no need to remesh. Loop re-
moval and the presence of vortex stretching assure good coverage of vorticity in all turbulent flow regions. Viscous vorticity
diffusion away from boundaries is not accounted for on the assumption that dissipation at viscous scales is accommodated
implicitly by loop removal. At the same time, the Reynolds number in applications is assumed to be sufficiently high that
viscous diffusion is insignificant at points distant from solid boundaries. Though not part of the applications described here,
the inclusion of viscous vorticity diffusion near solid walls requires the use of a thin boundary mesh as was developed and
applied in previous simulations of boundary layer flow [9,10]. In flows for which energy diffusion must be taken into ac-
count, a Monte-Carlo scheme in which the energy particles are subjected to a random walk at each time step with variance
determined by the Peclet number ([25]), fits in with the goal of simulating turbulence and is readily added to the algorithm.
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The development and implementation of the proposed scheme has required advances in three areas that will be de-
scribed here. These include the attainment of significant acceleration of the core velocity solver to enable the inclusion of
large numbers of energy particles in addition to the many vortex tubes need to accommodate turbulent flow. Helpful in this
regard are innovations that improve parallelization of the computation, storage and load balancing. A second advance is in
the formulation and implementation of the loop removal algorithm and the third concerns the development of a scheme for
accommodating baroclinic vorticity production. Each of these facets of the scheme will be considered in turn followed by
the application of the 3D vortex filament and energy particle methodology to studying the rise of initially elliptical shaped
heated regions and their comparisons to the results of previous grid-based numerical studies.

2. Physical problem

The Navier-Stokes equation modified by the Boussinesq approximation to the effect that density variations are limited
to a temperature dependence within the gravitational term consists of
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where B is the isobaric coefficient of thermal expansion, o is the ambient fluid density g = (0,0, —g) is the gravitational
acceleration and p is the viscosity. A curl of Eq. (1) yields the vorticity equation in the form
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where the second term on the right-hand side is responsible for baroclinic vorticity generation. It is clear from this ex-
pression that only the horizontal vorticity components are affected by this two-way coupling with the temperature field.
Moreover, the new vorticity depends only on the horizontal temperature gradients.

The temperature distribution in the calculation can be determined from knowledge of the internal energy field. Toward
this end energy elements consisting of points containing a finite amount of energy are introduced into the flow to accom-
modate initial or boundary conditions whose strength is determined according to the local surplus of energy over and above
that in the ambient. The dynamical evolution of the energy elements is governed by the first law of thermodynamics in the
form of the convective diffusion equation for the temperature
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where « is the thermal diffusivity. The advection terms on the left-hand side of Eq. (3) can be satisfied by convecting the
energy particles in the flow field according to their local velocity. As mentioned previously, the intended use of the filament
scheme for turbulent flows suggests that a Monte-Carlo scheme is likely to be the simplest and most natural approach to
take in accounting for molecular diffusion. In particular, adding a random walk to the movement of the energy particles
cannot be expected to introduce any additional statistical limitations (e.g. convergence issues) beyond that associated with
random mixing by the turbulent flow.

Equations (2) and (3) are the coupled momentum and energy equations that are the focus of this work and in non-
dimensional form they become:
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where O is the non-dimensional temperature
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Ty, is a reference high temperature and Ty is the ambient temperature,
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is the Peclet number,
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is the Richardson number, R, = ULp/u is the Reynolds number, L is a length scale, and U is a characteristic velocity scale.
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The temperature at any point in the flow field can be obtained from the energy contained in nearby particles. Thus,
choosing a sensing volume V surrounding a point of interest, the local temperature that can be computed from

N
NE:
To + Zl !
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where N is the number of energy particles in Vg, E; is the energy carried by the ith particle, and c, is the specific heat at

constant volume [25]. Vs should be small enough so as to localize the temperature estimate but also large enough to obtain
smooth statistics. Using the definition of ® in Eq. (6), it follows from Eq. (9) that
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In order to non-dimensionalize the right-hand side of Eq. (10) it is helpful to introduce an energy scale Eg. Then
N
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where E} = E—(’) is the scaled energy of the particles. The quantity
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Eo

represents the number of reference energies Eg per unit volume needed to raise the local temperature by the amount
AT, or equivalently, raise ® by unit temperature. Substituting this into Eq. (11) gives a convenient computational form for
temperature determined from a distribution of particles as
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It follows that the resolution of the temperature and temperature gradient computations are a function of the number of
particles needed to raise ® in V; by one unit. Vs and p, are key parameters in the numerical algorithm.
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3. Numerical implementation

At the onset of a calculation the flow domain is initialized as appropriate with vorticity in the form of filaments and
temperature in the form of energy particles. The latter are placed into the flow according to the local energy contained in
sensing volumes that form a partition of the flow domain. Initially, a uniform mesh is constructed with cell size equal to
or less than the chosen sensing volume, V,, and the requisite number of particles contained in each cell are distributed
randomly. Subsequently, at each time step an octree encompassing the energy particles is constructed such that the leaf
nodes at the maximum level of the tree are the sensing volumes. At each time step, temperature gradients are computed
and the baroclinically produced vorticity is released into the flow as filaments. The tube end points and locations of energy
particles are then advected using a 4th-order Runge Kutta method, and for those applications where it is warranted, the
energy particles are moved via a random walk. The velocity at a point x is determined as the sum of contributions from
the vortex tubes according to the Biot-Savart law
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where x!,x? are the end points of the ith tube, s; =x? — x| is an axial vector, r; =X — X;, X; = (x] + x?)/2, T is the

circulation and ¢ is a smoothing function that compensates for lack of knowledge in the details of the local vortex structure.
As in previous studies

p(ril/o) =1~ (1 - %(|r,-|/a>3)e*<‘“‘/”>3, (15)

where the smoothing parameter o, taken to be 0.01 in this study, determines the distance at which the smoothing takes
place from the center of the tubes. The velocity at all stages of the Runge Kutta calculation are determined by applying the
FMM to the evaluation of Eq. (14). As they convect and stretch, tubes exceeding a length constraint are split and those that
fall beneath a minimum length are removed and the associated filaments reconnected. Finally, vortex loops are detected
and removed.
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Viscous diffusion as contained in the last term in Eq. (4) must be accounted for at solid boundaries where it is the
mechanism by which new vorticity is generated in the flow and gathered into new vortex filaments. Away from boundaries
it is reasonable to assume that viscous diffusion is of minor importance compared to the dominant vortex stretching and
folding process, and so it is not explicitly accounted for. This is also consistent with the inviscid nature of the thermal
bubble problem to be considered below. While viscous diffusion is not modeled, nonetheless viscous energy dissipation
needs to be accounted for in turbulent flow regions and this is done via loop removal. With each loop that is eliminated, so
too is some local energy that would otherwise be dissipated at the small, unresolved viscous scales.

3.1. Implementation of the FMM

The pacing item in this algorithm is the calculation of velocities so that raising the performance of the FMM is a chief
goal of developing a new implementation of the VFM. An advance in developing a highly parallelized implementation of
the FMM for vortex particles was achieved in the EXAFMM code that is available in the public domain [4]. The EXAFMM
is well tuned to the treatment of closely distributed vortex elements in simple 3D regions such as the cubical domain for
which test applications were carried out [12]. The effectiveness of EXAFMM for the arbitrary non-uniform vortex particle
distributions of interest in the present study is much diminished, however, so that it was necessary to modify some elements
of the EXAFMM algorithm.! Consequently, a new FMM implementation was developed for this work that incorporates many
aspects of EXAFMM including its spherical harmonics routines, tree traversal and shared memory parallelization techniques
but otherwise includes modifications that enable fast and accurate calculations of general problems such as those of interest
in this study. The new implementation uses OpenMP [26] for shared memory parallelization and MPI for parallelization
across nodes. The order of the multipole expansions for all calculations reported here is 6.

The FMM is written as a C** template class incorporating an octree framework that is available for both the FMM and
the temperature gradient calculation. Template arguments define the kernel type, for example Biot-Savart and Laplace, and
the associated data types. A list-based dual tree approach is used where separate octrees are constructed for the sources and
targets. The dual tree approach is well suited to the VFM because the depth of the source tree is limited by the smoothing
function whereas no such restriction exists for the target tree. If the source tree reaches its depth limit, and the number
of source points in the near-field computation becomes too large, their near-field velocity contributions are computed at
the corners of the target box and tri-trilinear interpolation is use to compute the associated velocities at each point within
the target box. The far-field computation has no such restriction and is allowed to traverse down the tree to its natural
depth.

Some aspects of the FMM implementation reflect the potentially competing requirements of filament level operations
such as loop removal considered in the next section. Having all tubes in a filament on the same processor aids efficiency
when searching for and removing loops. Some loops are large, however, and are thus spread over a significant portion of
the physical domain, thus conflicting with the efficiency in the FMM that is gained by having processors focused on small,
contiguous regions with minimal shared boundaries. No attempt was made to resolve these competing interests because a
relatively simple algorithm for detecting loops becomes complex if a filament is widely distributed. Instead, filaments are
distributed over the processors intact. The resulting communication cost within the FMM from this decision is minimized in
some situations by optionally redistributing the filaments based on the distribution of its tubes during the previous velocity
calculation.

3.2. Loop removal

In turbulent flow calculations the lengths of filaments tend to grow in time as they acquire large numbers of tubes via
the subdivision associated with vortex stretching. A wide range in filament length can be expected, with some containing
thousands of tubes and others very much less. In past practice, the criterion for determining whether or not a loop was
present that was suitable for removal depended on an absolute criterion in which the end points of two tubes along a
filament had to be within a fixed distance of each other. However, by keeping the critical gap distance constant for all loops
it can be expected that longer filaments will have less likelihood of being declared loops than shorter filaments. To avoid
the long term consequences of this bias as filaments naturally stretch in time, the basis for loop removal has been changed
to one in which the gap distance between end points of tubes forming a potential loop is set to being a percentage of the
length of the tubes between the end points. This results in a scheme for which loop removal is applied equitably to all
loop sizes. For the calculations shown here, loops were removed if the gap size was less than 1/2% of the length of the
loop.

Loop removal is accomplished by starting at one end of a filament and sequentially searching for loops through all
subsequent tubes beginning after a gap of n, tubes. Typically n, =5 is chosen. Loops are removed as they are found and
the ends reattached. All loops in a filament are removed at each time step since failure to do so can lead to unbounded
growth in the number of tubes. Filaments that are subjected to loop removal must have a minimum number of tubes. If
the number of tubes removed from a filament exceeds a fixed percentage of the total number of tubes on the filament,

1 The EXAFMM code used was from 2015. The problems encountered may have been fixed in later versions.
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Fig. 2. A full second-order temperature polynomial is constructed for the highlighted node by a least-squares fit using its temperature plus that of its
nearest neighbors.

then the remaining tubes are removed so that in essence the entire filament is removed from the simulation. This step is
particularly advantageous in reducing the growth rate in the number of tubes since even a small number of tubes left in a
previously long filament will rapidly multiply until the filament once again is composed of many tubes. For the subsequent
simulations this parameter has been taken to be 80%.

3.3. Baroclinic vorticity generation

Vorticity is produced anywhere in the flow field that the baroclinic vorticity production term in Eq. (4) is non-negligible.
The new vorticity enters the calculation at discrete volumes in the flow field in the form of new vortex tubes of an appropri-
ate circulation and orientation. To acquire the necessary temperature gradients for the baroclinic term, the energy particles
are partitioned into sensing volumes with an octree whose leaf nodes at the maximum level are the desired sensing vol-
ume. An input parameter, n,s, defines a minimum number of energy particles above which the temperature is considered
greater than zero. This controls the growth of the octree such that the number of energy particles in the sensing volumes
will always contain greater than or equal to this amount or will have at least one sibling that does. For the calculations
describe here, n:,r =8 is used. Once constructed, it is a simple matter to sum the energy of all the particles in a sens-
ing volume to compute the temperature. Fig. 1 shows an example of a spherical cloud of energy particles enclosed by the
“sensing volume” octree.

Full second-order polynomial approximations of the temperature are constructed at the centers of the sensing volume
nodes using a least squares fit of the node’s temperature and that of its nearest neighbors. Fig. 2 shows an example where
all 26 neighbors exist. If any of its near neighbors do not exist or are not at the maximum level (i.e. the sensing volume
level) it is because the non-dimensional temperature vanishes in that region and ® = 0 is assumed. Differentiating these
polynomials gives the temperature gradients for the baroclinic production term.

The obvious choice for the discrete volumes where new vorticity is introduced are the octree sensing volumes; however,
any alternative volumetric partition that may be suggested by the geometry of the flow of interest can also be used. What-
ever the choice, these volumes are referred to as the release volumes and the new filaments are released at their centers.
For a given release volume, the orientation of the tube is parallel to that determined by the temperature gradients in the



J.P. Collins, PS. Bernard / Journal of Computational Physics 369 (2018) 209-224 215

e

Fig. 3. Line representing a new filament inside a release volume surrounded by local energy particles.

baroclinic term, and its length is set so that its end points are at the sides of the release volume as shown in Fig. 3. The
strength of a new filament is

vV
N

r

(16)

where

2 2
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is the amplitude of the new vorticity created in dimensionless time At, V is the release volume and s is the length of the
new tube. Equation (16) ensures that the far field velocity field associated with the tube is the same as that which would be
determined from the Biot-Savart law associated with the release volume. If the new filament is longer than the maximum
tube length it is subdivided. For the calculations reported here, this non-dimensional length is taken to be 0.025.

In the case of the spherical thermal bubble calculations presented below, releasing vortices at the octree sensing vol-
umes, essentially on a rectangular grid aligned with the coordinate axes, injects some grid characteristics into the vortical
arrangements. This could have been mitigated by reducing the size of the desired sensing volume; however, this would have
significantly increase the number of energy particles needed. Instead, release volumes with radial symmetry and volumes
equal to the desired sensing volume were used. For the purposes of obtaining tube lengths, an equivalent cube centered
over each release volume was used. Temperature gradients were obtained by differentiating the temperature polynomial
associated with the octree sensing volume that contains the center of the release volume.

4. Simulation of ellipsoidal bubbles

The accuracy and efficiency of the VFM scheme including two-way coupling with energy particles was tested by its
application to the prediction of a family of seven ellipsoidal thermal bubbles studied by Shapiro and Kanak [27] using a
grid-based scheme. The initial temperature distributions of the bubbles is defined by
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where Ly, Ly and L, are the semi-principal axes of the ellipsoid,
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and ATy is the maximum temperature rise. The seven cases studied include a spherical bubble as the control calculation
with six ellipsoidal bubbles representing different perturbations away from the spherical shape. Table 1 summarizes the
parameters defining each of the seven cases. No solid wall boundaries were used in the VFM simulations.
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Table 1
Parameters and reference quantities for the Shapiro-Kanak bubbles. Tres =300 K for all cases.
Ly (m) Ly (m) L, (m) ATy (K) Lref (m) tref (s) Uref (m/S) Ri

CNTRL 64.24 64.24 64.24 1.5 64.24 72.5 0.886 4.01
EXPT1 26.84 64.24 64.24 1.5 64.24 72.5 0.886 4.01
EXPT2 20.84 49.88 64.24 1.5 64.24 72.5 0.886 4,01
EXPT3 20.84 64.24 49.88 1.5 64.24 72.5 0.886 4.01
EXPT4 26.84 64.24 26.84 1.5 64.24 72.5 0.886 4.01
EXPT5 20.84 49.88 19.23 1.5 49.88 63.89 0.781 4.01
EXPT6 20.84 49.88 19.23 3.0 49.88 45.23 1.103 4.02

The numerical solutions are computed for the non-dimensional problem based on the reference length Ly =
max (Lx, Ly, L;) and a reference time t.f given by the approximate time it takes for a bubble at constant temperature
to rise a distance Ly if the acceleration due to buoyancy remains at its initial value. An estimate of the acceleration is
given by

mp—mg ATy

- , 21
Emp+my  22Tw + AT, 21

ap = —

where my, is the mass of the bubble and my is mass of the displaced fluid, a general form suggested by consideration of the
added mass [28]. The reference time is then tref = /2 Lief/ap, the reference velocity is Urer = Lyef /tref and the reference
temperature, Ty, is 300 K for all cases. The Richardson number written in terms of T,.f and AT is

AT 2 AT
Ri=25 270 4y b
ap Tref Tref

3

and is listed in Table 1 for each case.

The energy particles are given uniform strength throughout the original configuration. Parameters for the energy particles
are pp =16 x 108 and V5 =512 x 107% so that a single sensing volume needs to contain 8192 energy particles in order
for its non-dimensional temperature to be raised by one degree. Consistent with [27], molecular energy diffusion is omitted
so that the energy particles are not given a random walk with variance depending on the thermal diffusivity. The thermal
bubbles were initialized with a distribution of energy particles that represented the temperature given by equation (18).
This was done by covering the bubble with a net of cubes each of whose volume was 1/512 of the sensing volume.
The temperature in each cube was considered constant and the appropriate number of energy particles was deposited
randomly into the cube. Depending on the overall size of the initial energy fields, the number of energy particles varied
from 17,212,408 in the case of EXPT5 and EXPT6 to 89,322,424 for the sphere.

Fig. 4 shows the initial shapes of the bubbles from three perspectives as demarcated via the initial distributions of energy
particles. In this z is the vertical axis and x, y are the horizontal axes. The first row shows the spherical bubble, while the
second row, denoted as EXPT1, shows the sphere flattened in the x direction. For EXPT2, in essence, the sphere is elongated
in the vertical direction while flattened somewhat in the x direction while for EXPT3 the sphere is elongated in the y
direction while flattened in the x direction. For the last three cases, the sphere is greatly elongated in the y direction in
comparison to the other two directions. EXPT4-EXPT6 differ from EXPT1 by reducing L,. EXPT6 differs from EXPT5 by a
doubling in the maximum temperature difference. It can be seen from the table that doubling AT, has a minimal effect on
the Richardson number and a large effect on the reference time. Because of this, EXPT5 and EXPT6 are essentially the same
case run to different non-dimensional times.

Each case was run to a physical time of 216 seconds using a constant non-dimensional time step At = 0.033103. Cases
EXPT5 and EXPT6 required 102 and 144 time steps, respectively, while the other cases required 90 time steps. Fig. 5 shows
the time variation in the number of tubes over the simulation time for the different calculations. Initially, there are no tubes
but then they form quickly in response to the temperature gradients contained in the initial conditions. The number of tubes
rises rapidly and then slows to an approximate exponential growth proportional of 10° - e%-011 AL After approximately time
96 seconds, when the number of tubes is less than 10M in each example, there is an increase in the rate at which new tubes
are entering the flow, to a rate given approximately by 2.6x10% . ¢0-923 At reflecting the beginning of transition to turbulent
flow that occurs for each case. The rate of tube growth depends on several factors including the continual production from
the thermal field, the expanding volume occupied by vortices and the vortex stretching process that rapidly produces new
vortex tubes by the stretching and folding of filaments. The effect of the latter is ameliorated to some extent by the action
of loop removal which in bounded domains successfully slows the growth in vortices so that equilibrium is readily achieved.
For applications such as thermal bubbles the number of tubes can, in principle, be limited by modeling the relaminarization
process (e.g. through a vortex reconnection algorithm) that follows at the completion of the dispersal of the thermal field.
No attempt was made here to take such additional measures to control the number of tubes. The large number of tubes
in the present calculations, as high as 500M, justifies future investment in gaining additional computational efficiencies via
such measures as migrating to the usage of GPU nodes.
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Fig. 4. Initial cloud of energy particles as viewed in the (a) —x, (b) +y, and (c) —z directions for the spherical and 6 ellipsoidal thermal bubbles.

The ways in which turbulent flow is manifested in the simulations can be seen indirectly in the plots of Fig. 6 showing
how the initial clouds of energy particles visualized in Fig. 4 have evolved after 216 seconds. Comparing images for each
case between these figures reveals the effect of the geometric variations in the initial bubbles on their eventual rise and
transition into turbulence. A common facet of the various cases is an eruption of a rising mushroom-like feature out of
the top part of the initial bubble. In the case of the sphere this is broad and symmetrical and sits above the sphere as
it elongates into an elliptical shape. The view from above in Fig. 6(c) shows the effect of flattening the sphere in various
ways is to consistently promote a local ejection of turbulent rising fluid from the highest central point. In each case the
original bubble volume elongates into the vertical direction just below the rising turbulent mushroom-like feature. For the
last three cases in Fig. 6 the horizontally oriented original ellipsoid is distorted into a horseshoe shape as the central region
rises.

The development of the bubbles shown in Fig. 6 closely follows that seen in the grid-based computations. Three-
dimensional renderings of the temperature field computed in the sphere and EXPT1 at time 216 seconds are shown in
Figs. 7 and 8 that are essentially indistinguishable from similar views in the previous study [27]. The notable reorientation
through 90" of the rising mushroom-like thermal field observed in Fig. 8 for case EXPT1 is a consequence of the appearance
of vertical vorticity produced from reorientation of horizontal vorticity acquired via the baroclinic mechanism. The velocity
field associated with the vertical vorticity is illustrated in Fig. 9 as a quiver plot on the horizontal plane z =430 m for the
EXPT1 bubble at time t = 180 seconds. It is seen that the effect of such a velocity field is to take energy in the bubble that
is initially aligned along the x axis and reconfigure it along the y axis consistent with Fig. 8.
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Fig. 5. Growth in time in the number of vortex tubes in each of the simulations.

The plumes developing in each of the non-spherical bubbles seen in Fig. 6 contain a substantial production of vertical
vorticity similar to EXPT1. A quantitative look at the production of vertical vorticity is shown as in Fig. 10 for several of
the individual cases. In this figure, the maximum vertical vorticity component computed in the grid-based simulations is
compared to that calculated in the vortex filament code. To compute vorticity in the filament scheme, a uniform 3D grid
of size 121 x 121 x 201 with non-dimensional grid spacing of 0.05 is constructed around each bubble. From velocities
computed on the mesh, the vorticity is found by a finite difference calculation.

The comparisons in Fig. 10 establish similar trends in producing vertical vorticity though there are some quantitative
differences that reflect, in part, the innate difficulty of computing maximum vertical vorticity in the filament scheme. In
particular, the finite difference formulas used in this case are subject to truncation errors that will be felt most in the
maximum vorticity. Moreover, the velocities computed in a filament scheme depend on the precise local positioning of
vortex tubes, an influence that is magnified in computing vorticity. Also relevant is the sensitivity of the vortex tubes to
perturbations that accelerates the appearance of non-horizontal vorticity, a phenomenon that is visible in the early time
behaviors of the curves in Fig. 10. The relatively large transient variations in the maximum vorticity evident in Fig. 10 in
EXPT1, EXPT3 and EXPT5 is a further consequence of the significant interaction between vortex filaments that will affect
the maximum vorticity computation as the flow becomes turbulent. It should also be noted, for example in the grid-based
calculation in EXPT3, that the extreme vorticity growth visible in this case may be reflect inadequate resolution as the
flow transitions to turbulence. In contrast, the filament scheme accommodates the enhanced resolution needed in modeling
turbulence by appropriately growing the number of tubes.

By lacking the substantial asymmetry present in the elliptical bubbles, the vertical vorticity in the spherical bubble grows
slowly at first mimicking the grid-based computation since there is less of an immediate perturbation to the filaments. After
a sizeable delay that is likely disrupted by the appearance of 3D turbulence in the cap of the rising mushroom shape, the
maximum vertical vorticity begins to rapidly grow. In this, the mechanism for creating vertical vorticity is dissimilar to that
which is a prominent characteristic of the elliptical bubbles.

The time history of the maximum vertical velocity component in the filament calculation is compared to results of the
grid-based study in Fig. 11 for four representative cases. It is seen that there is very close agreement for CNTRL and EXPT5
and good agreement in the others. Similarly accurate results are obtained in predicting the height reached by the bubbles
as a function of time as may be seen in Fig. 12 comparing the heights of the vortex filament simulation with data obtained
from flow visualizations in [27] for the CNTRL and EXPT1.

Additional indication of the capabilities of the gridfree scheme in capturing the time history of the rising bubbles is
illustrated in Fig. 13 for the sphere and Figs. 14 and 15 for EXPT1 from the x-z and y-z perspectives, respectively. In both
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Fig. 6. Same as Fig. 4 but at t =216 seconds.

cases a region of sharp temperature variation develops along the leading edge of the rising bubbles that consequently leads
to the strongest vortex filaments. These are instrumental in producing the mushroom-like shapes capping the initial bubble
volumes and producing vertical vorticity that promotes the development of the growing field at the top of Fig. 15 by vortex
reorientation.

5. Code performance

For the results presented, the VFM was run on a small, 64 node, IBM iDataPlex HPC system with 2 Intel 8-core Sandy
Bridge processors and 32 GB of memory per node. All runs were configured to use 2 MPI processes per node with 8 cores
per process. Table 2 gives the number of MPI processes and cores used for each case, as well as, the number of particles,
tubes and targets at the end of the calculation. Targets are the velocity evaluation points, that is, the sum of the number of
particles and tube end points. The column labeled points/core-sec gives the average number of sources and targets processed
on a single core in 1 CPU second. This number remains fairly constant over the last half of each simulation. The last column
gives the total wall clock time in hours for each case. Further speedup is expected on larger systems, such as the Cray XC40,
that have more memory and larger core counts.

An indication of the current scalability of the code can be seen from the simulations of the spherical thermal bubble.
Table 3 gives the wall-clock times for MPI processor counts of 4 to 32 at time step 30 where at that point there are 5,652,723
vortex tubes and 96,605,034 velocity evaluation points. Over 95% of the computational time for all results presented is spent
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Fig. 8. 3D rendering of temperature field in the EXPT1 calculation at t = 216.

in the FMM and so the scalability reflects that of the velocity calculation. The results show the FMM scales well but there
is room for additional single and multiple processor optimizations.

6. Conclusions

Thermal elements have been successfully added to a vortex filament scheme to enable gridfree calculations of two-way
coupled velocity and temperature fields occurring in natural convection. Among the advances necessary to create a viable
gridfree methodology in such cases is development of a new implementation of the adaptive FMM to enable computations
containing very large collections of vortex tubes with arbitrary spatial distributions. As much as 1/2 billion tubes have been
employed in the present simulations on 256 cores so that significant simulations of realistic flows with coupled vorticity
and temperature are feasible on larger HPC systems. Other important developments center on the implementation of loop
removal in such a way that it remains effective for filaments of all lengths and the derivation of a reliable scheme for the
smooth generation of new vortex tubes from random distributions of energy particles.
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Fig. 10. Maximum vertical vorticity. Symbols denote data in [27].

Computations of a collection of thermal bubbles that had been previously studied via grid-based schemes were successful
in reproducing the velocity and key structural aspects of the earlier results. In the present case, the methodology is well
suited to including the development of turbulence since stretching vortex tubes are more than adequate to resolve the
essential scales that appear in turbulent flow. In contrast, grid-based schemes require additional mesh resolution or the
imposition of sub-grid modeling before calculations of turbulent thermal bubbles are possible. Future work, which will
include the thermal boundary layer forming on a vertical heated plate and further optimizations of the FMM, will capitalize
on the advances made in this study.
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Table 2
VFM run configurations and problem sizes at the end of each calculation. Points/core-sec is the average number of the combined tubes and targets processed
on a single core in 1 CPU second. WC is the total wall clock time in hours.

Expt Procs Cores Particles Tubes Targets c—g?ei{‘s‘: - WC
CNTRL 16 128 89322424 113085992 206533581 5202 3.67
EXPT1 32 256 48777768 334298531 386366495 4447 3.22
EXPT2 32 256 31832360 364379492 398650716 3980 3.50
EXPT3 32 256 31832360 323079119 357372276 4303 3.03
EXPT4 16 128 18383048 77288312 96886139 4406 1.78
EXPT5 32 256 17212408 107678960 126152569 3844 1.76
EXPT6 32 256 17212408 533352010 552590402 4975 6.79
Table 3
VEM scalability.
Np Wall-clock (s) Speedup
4 409.5
8 2199 19
16 108.3 2.0
32 65.8 1.6
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