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ABSTRACT
The traditional practice of using rotational motion as the principal attribute of coherent vortical structures in the buffer region of near-wall
turbulent flow is shown to create a biased accounting of the role of vorticity within the structures. Vorticity associated with rotation is given
a favored consideration against vorticity that is equally strong but not associated with rotation. Using data from a highly resolved direct
numerical simulation of channel flow, it is shown that describing the structures based on the properties of the rotational field leads to a
distorted view of the actual structures that are present. As a practical matter, this means that where hairpins are typically considered to be the
flow structures, a more accurate description of the coherent events is that they are elongated mushroom-shaped vortical objects ejecting over
low speed streaks. In this, hairpin-shaped rotational regions are embedded in the lobes of the mushrooms.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5089883

I. INTRODUCTION

Ever since the development of reliable means for locating rota-
tional regions in turbulent flows,1–3 the magnitude of the local rota-
tion or swirling strength has become a primary means by which
coherent vortical events are identified and described within transi-
tioning and fully turbulent boundary layers. The most commonly
accepted view of what the rotational regions say about structures
is that they are hairpin-shaped vortices4–9 although plausible argu-
ments can be made to support other interpretations of the shape of
the swirling strength.10–12 A well formed hairpin is viewed as being
something like a vortex in the shape of a folded-over tornado. An
iconic depiction of this idea is in the figure of a horseshoe vortex by
Theodorsen that is widely reproduced.13 In fully developed turbu-
lence, as against transition, the random flow conditions are such as
to inhibit the appearance of vortices in the idealized hairpin shape
so that in practice, the concept of the “hairpin vortex” is usually
meant to also include hairpins deformed in various ways as well as
single-legged hairpins and so forth.14

Hairpin vortices in the buffer layer within y+ = 100 of a solid
boundary that are associated with low-speed streaks, and which are
the subject of this paper, must originate out of the intense vortic-
ity field present in the viscous sublayer of wall-bounded flows. A

well known argument15 explains the process as involving the ejec-
tion of spanwise vorticity over low-speed streaks that is sheared for-
ward forming into the hairpin vortices. The complete vorticity field
in this dynamical process consists of the rotational region forming
the hairpin and ancillary vorticity, or what we will call “supporting
vorticity,” that cannot be seen via the swirling strength since it is
not rotational. Such vorticity is both upstream of and coincident
with locations where rotation occurs. Various aspects of the sup-
porting vorticity can and have been visualized using vorticity lines,
two-dimensional vorticity contours over streaks and three dimen-
sional vorticity isosurfaces.16–23 It is also visible as shear layers in
two-dimensional (2D) velocity quiver plots where rotational pat-
terns may sometimes17,24,25 (but not always26,27) be attributable to
hairpins.

The common assumption that the shape of the rotational
field is a good indicator of the nature of the wall structure has
encouraged the viewpoint that the hairpins by themselves are to
be taken to be the principal vortical structures in the buffer layer.
This belief is so well entrenched that current analyses of the
boundary layer structure have as their goal finding and analyz-
ing the behavior of hairpins under the implicit assumption that
there is no need to inquire further as to what the structures might
be. In particular, the possibility that the supporting vorticity is
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sufficiently important to warrant rethinking the hairpin paradigm
is not considered.

An analysis and visualization technique that has given some
insight into the shape of the entire local vorticity field within struc-
tures is that based on using gridfree vortex filaments to represent the
flow field. A simulation of transitional boundary layers using this
methodology28,29 shows that the filaments organize to create struc-
tures that cannot be called hairpins, yet contain rotational regions
within them that are consistent with the hairpin idea. The differ-
ence between structures in the filament calculation and hairpins is
that the former contains the supporting vorticity within it as a fun-
damental part that cannot be reasonably set aside as unimportant
to the structure itself. The overall structure in the filament calcu-
lation is best understood as being a streamwise elongated, tilted
raised fold in the surface vorticity layer over low-speed streaks that
develops downstream into a mushroom-like shape in which the
hairpins are contained within the lobes of the mushrooms. The
mushroom-like structures are similar to that seen in physical exper-
iments wherein Göertler type vortices are generated in perturbed
boundary layers30–32 as well as in a direct numerical simulation
(DNS) of transition.33

The supporting vorticity that occurs within and upstream of
hairpins as seen in DNS studies is consistent with the behavior of
the vorticity found in the structures occurring in the filament cal-
culation. Moreover, hairpin-like rotational regions are compatible
with both the hairpin model and the mushroom-like ejections seen
in the filament study. These observations suggest that it is worth-
while to take a more comprehensive look at the vorticity field seen
in DNS near low-speed streaks to see if the hairpins that occur
there are truly self-contained structures or not. What will emerge
in this study is that once the biased view that rotation is the defin-
ing element of structure is put to the side, then it is readily con-
cluded that the standard structure along streaks consists of the eject-
ing vorticity that evolves into a mushroom-like form, not hairpin
vortices.

II. CHANNEL FLOW SIMULATION
The DNS channel flow data used in this study were obtained

from the Johns Hopkins University (JHU) turbulence database.34

In this, a no-slip boundary condition is imposed on the top and
bottom walls of the channel and periodic boundary conditions are
applied in the longitudinal and transverse directions. The wall-
normal, velocity-vorticity formulation of the Navier-Stokes equation
is solved using a Fourier-Galerkin pseudo-spectral method in the
longitudinal and transverse directions and a seventh-order basis-
spline collocation method in the wall-normal direction. Initially,
the flow is driven by a constant volume flux control. Once station-
ary conditions are reached, the control is changed to a mean pres-
sure gradient forcing term. More specific simulation details includ-
ing validation of the solutions have been given by the authors of
Refs. 34–36.

Our analysis is for flow at Reynolds number Reτ = 1000 based
on the friction velocity and channel half width. In terms of the cen-
terline velocity, the Reynolds number is Rec = 22, 625. The grid in
the simulation has 2048 × 512 × 1536 mesh points in the stream-
wise (x), wall-normal (y), and spanwise (z) directions. The scaled
viscosity is ν = 5 × 10−5, and the scaled mean pressure gradient

driving the flow is dp/dx = −0.0025. Velocity data from the simula-
tion are stored over the interval 0 ≤ t ≤ 25.9935 in time increments of
∆t = 0.0013. The size of the flow domain is 8π × 2 × 3π, or in terms
of wall units 25 133 × 2000 × 9425.

The JHU turbulence database provides software for extracting
velocity and velocity derivative data at arbitrary points and times
within the simulation. From this, the vorticity can be computed as
well as, in this study, the scalar parameter λ2 that is used for visu-
alizing the rotation field. λ2 is the (real) middle eigenvalue of the
symmetric tensor

B ≡ S2 + W2, (1)

where S = (∇U +∇Ut
)/2 is the rate-of-strain tensor and

W = (∇U − ∇Ut)/2 is the rotation tensor. Regions for which
λ2 < 0 contain swirling motion,2 so plotting isosurfaces of constant
λ2 < 0 gives an idea of the shape and location of such regions.

III. TWO-DIMENSIONAL VIEW OF STRUCTURES
To make clear what aspects of structures are potentially over-

looked in the hairpin model, consider end-on views of a typical
vortical structure that is very commonly found on slices through
low-speed streaks. Figure 1 shows contours of streamwise velocity
forming a mushroom-like shape in a particularly well-formed and
symmetric ejection of fluid over a low speed streak. The mushroom-
like shape of the U contours here is the same as one can see very
clearly in DNS simulations of transition.33 Superimposed, in thick
black lines, are the contours of λ2 = −50 that intersect this 2D
plane. The rotation field is slicing through the legs of a hairpin
vortex with the fluid ejection occurring between the legs. In fact,
the rotation is strongly tied to the streamwise vorticity component,
Ω1, as shown in Fig. 2, where its contours are plotted together
with λ2. The correspondence between λ2 and Ω1 is very strong and
fits exactly the concept that is used in defining the legs of hairpin
vortices.

Now consider the corresponding distributions of the wall-
normal and spanwise vorticity shown in Figs. 3 and 4, respectively.
TheΩ2 field in amplitude is very much as strong as the magnitude as
Ω1 in Fig. 2 and forms in a vertical ± pattern that may be referred to
as being the “stem” of the mushroom shape formed by the low speed

FIG. 1. Contour plot of streamwise velocity, U, at t = 10 from an end-on perspective
centered at x+ = 9517 along a low-speed streak. Intersection of λ2 = −50 with the
plane is given by heavy black lines.
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FIG. 2. Contour plot of streamwise vorticityΩ1 and λ2 = −50 for the same location
as in Fig. 1.

ejecting fluid. Similarly, spanwise vorticity of the same overall mag-
nitude is seen to appear over the top of the mushroom in Fig. 4. The
configuration of the individual vorticity components shown in these
end-on plots fits exactly the structural aspects seen in the filament
calculations.

The arrangement of velocity, vorticity, and rotation in
Figs. 1–4 is very common in spanwise local planes sitting over low-
speed streaks. One way of demonstrating this indirectly is shown in
Fig. 5 containing a contour plot of velocity contours 0 ≤ U ≤ 0.3,
where the local maximum velocity is Umax = 1.0323, on the plane

FIG. 3. Contour plot of wall-normal vorticityΩ2 and λ2 =−50 for the same location
as in Fig. 1.

FIG. 4. Contour plot of spanwise vorticity Ω3 and λ2 = −50 for the same location
as in Fig. 1.

FIG. 5. Connection between wall-normal vorticity at y+ = 30 and low-speed streaks
at y+ = 10. Red line: Ω2 = 10, blue dashed line Ω2 = −10, and black dots:
streamwise velocity, 0 ≤ U ≤ 0.3.

y+ = 10 that marks low-speed streaks, with superimposed contours
of Ω2 taken from the plane y+ = 30. The latter are seen to form
numerous elongated regions of wall-normal vorticity in plus minus
pairs that exactly track along the low speed regions. A similar behav-
ior can be inferred from velocity quiver plots on planes parallel to
the boundary.37,38 Spanwise cuts through the contours in Fig. 5
almost invariably show wall-normal vorticity contours that are sim-
ilar to those seen in Fig. 3. Also visible in many of the spanwise
cuts through the low-speed streaks are arrangements of streamwise
and spanwise vorticity and swirling strength that are consistent with
those shown in the previous example. The exact distributions of
these quantities differ from one location to another due to variations
in local conditions including the relative position within a structure
and the distorting influence of nearby vortices. Despite these varia-
tions, for the great majority of end-on views over low-speed streaks,
it is straightforward to identify the ejecting fluid, the local rotational
motions that are associated with it and trends in the vorticity field
that fit the example in Figs. 2–4.

IV. THREE-DIMENSIONAL VIEW OF STRUCTURES
We turn attention now to considering how the behavior of the

vorticity field seen in the 2D plots is manifested in a representative
three-dimensional (3D) buffer layer structure. The goal is to achieve
a holistic view of how the physics of fluid ejection leading to hairpin
formation occurs within entire self-contained structures. We begin
with a three-dimensional view in Fig. 6 of the wall-normal vortic-
ity field that produces the kinds of Ω2 contours seen in Fig. 5. This
particular event sits over a low-speed streak for data at t = 15 and
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FIG. 6. Isosurfaces of wall-normal vorticity, ±14, as they
appear in numerous events in the near-wall flow. Contour
plot of 0 ≤ U ≤ 0.4 in the ground plane.

is approximately 200 wall units in the streamwise extent. The wall-
normal vorticity is seen to form a± pattern to either side of the streak
that rises upward reaching to y+ = 100 at the downstream end. The
growing height of the Ω2 field with downstream distance fits in with
the idea of the spanwise vorticity rising up over low speed streaks
to form the stems of the mushroom-like vorticity field within which
the hairpins are embedded.

The source of Ω2 in Fig. 6 is expected to lie in the reorienta-
tion of spanwise vorticity as it is ejected outward. Such a rise in the
spanwise vorticity field over low speed streaks has been observed in
streamwise 2D contour plots.20 A view of the same phenomenon as
3D isosurfaces of the Ω3 field is shown in Fig. 7 that corresponds
to the structure in Fig. 6. In particular, it is seen that the Ω3 sur-
face rises upward in coordination with that of the Ω2 field. The
close relationship between Ω2 and Ω3 is illustrated by their seamless

connection in the image in Fig. 8 where the isosurfaces in Figs. 6
and 7 are plotted together. The abrupt downstream end to Ω3 seen
in the figures indicates the limits of the ejection as well as the end
result of the reorientation of spanwise vorticity.

At the upstream end of the vorticity surfaces shown in
Figs. 6–8, spanwise vorticity rises a small amount and with it ± wall-
normal vorticity develops. At the same time, the presence of shearing
begins the process of creating streamwise vorticity that starts near
the wall and rises upwards through the structure eventually forming
the hairpin shape. Some idea of how the roll-up into the hairpin legs
develops can be seen by following tracer particles.29 The mechanism
involves the presence of points in the flow where slow moving eject-
ing fluid meets high speed fluid arcing in from the sides leading to a
consequent reorientation of the wall-normal and spanwise vorticity
into the streamwise direction. Such streamwise vorticity produced

FIG. 7. Isosurface of Ω3 = −25 corre-
sponding to the same event depicted in
Fig. 6. The accompanying streamwise
velocity for 0 ≤ U ≤ 0.4 is shown in the
ground plane. The raised Ω3 surface is
directly over the low speed streak.
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FIG. 8. The isosurfaces ofΩ2 andΩ3 contained in Figs. 6 and 7 brought together
into one plot.

by this process is shown in Fig. 9 containing a plot of the Ω1 isosur-
faces with the values ±14. The streamwise vorticity field has all the
expected attributes of a hairpin and, according to Figs. 6 and 9, sits at
the highest part of the stem region formed byΩ2.Ω1 andΩ2 overlap
where the orientation of the total vorticity is tilted at an angle with
respect to the streamwise direction. An important point is that the
wall-normal vorticity fills the region underneath the hairpin forming
the stem part of the mushroom-like ejection of vorticity.

The isosurfaces of the three vorticity components that have
been mapped out in Figs. 6–9 for one particular event point to the
presence of a structure that is similar to that seen in the filament
calculations of transition. This includes lift up of spanwise vorticity
leading to the ± isosurfaces of Ω2 that grow with downstream dis-
tance and out of which the hairpin shaped Ω1 field appears. It is not
surprising then to see that the rotational region for this structure,
shown in Fig. 10, forms a hairpin that coincides with the shape of

the Ω1 field. As was emphasized in the 2D views, the magnitude of
Ω1 within the hairpin is not different than the magnitudes of the Ω2
and Ω3 fields that compose supporting parts of the overall structure.
It is not evident why the subjective isolation of the hairpin region
due to its rotational properties is suitable justification for calling this
a structure in its own right. The vortical structure that is present in
the flow here, viewed as an entire entity, is the raised fold in the sur-
face vorticity that culminates in the mushroom-like vorticity field
containing a hairpin.

The type of event illustrated in Figs. 6–10 is found to be com-
monplace along low-speed streaks in the simulation. This fits in
with the fact that 2D views similar to those shown previously occur
widely in the flow and the suggestion in Fig. 5 that the trend in
Ω2 occurring along streaks is ubiquitous throughout the flow field.
Some indication of the frequency of occurrence of the vortical events
may be gleaned from Figs. 11 and 12 showing the Ω2 and Ω3 fields
along a typical low-speed streak in the simulation. Here, there is
a sequence of four events wherein the spanwise vorticity is rising
above the streak, with the wall-normal vorticity aligned as in Fig. 6.
Each of these four events can be expected to culminate in the forma-
tion of streamwise vorticity associated with a mushroom-like shape
containing hairpin-shaped rotation.

The rotation field corresponding to the events in Figs. 11
and 12 is shown in Fig. 13 where an attempt has been made to
link specific rotational regions to specific events. The identification
scheme used here is based on examining simultaneous plots of the
Ω2 field in Fig. 11 with that of λ2 in order to see where the latter has
emerged from the former. It is evident that, apart from the first of
the four structures where a somewhat clearly identifiable hairpin is
present, the rotation fields produced by the other ejection events fall
into the category of deformed hairpins and may be easily overlooked
in taking an inventory of events near the boundary in the simulation.

The difficulties in finding hairpins via swirling strength as in
Fig. 13 are common to any turbulent flow simulation. In prac-
tice, there is generally a wide latitude in the way that hairpins are
selected out of the visible rotational regions. In some cases, events as
well-organized as that in Fig. 10 are selected.9 In others, arch vortices
are taken to be hairpins,24 and in others, the requirement for being

FIG. 9. Isosurfaces of Ω1 = ±14 for the event in Fig. 6.

Phys. Fluids 31, 035107 (2019); doi: 10.1063/1.5089883 31, 035107-5

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 10. Isosurfaces of λ2 = −20 for the event in Fig. 6.

a hairpin is merely the presence of streamwise rotational motion.21

It should be clear from the present analysis that visualizations of
Ω2 and Ω3 that are the upstream precursors to the hairpins have a
considerably less chaotic and more repeatable pattern than does the
rotation field spawned from them. Thus, beside their essential role as
part of the vortical structures, there is clearly value in visualizing the

entire vorticity field along streaks in the search for coherent vortices
in the buffer layer.

The relative lack of organization in the hairpins, as against the
Ω2 and Ω3 fields, is likely due to them being the last part of the
structures to fully emerge as well as the fact that they are furthest
from the wall. For both reasons, they are likely to be more influenced

FIG. 11. Wall-normal vorticity signatures
of four hairpins along a single, low-
speed streak at t = 10. Contour plot of
0 ≤ U ≤ 0.4 in the ground plane.
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FIG. 12. Spanwise vorticity isosurfaces
Ω3 = −18 corresponding to the same
events as in Fig. 11.

by the fundamental randomness of the flow field, than the emerg-
ing and ejecting vorticity that creates a pattern in Ω2 and Ω3. Other
nearby vortices have a greater opportunity to influence the shape of
the developing structure as it ejects further from the wall over an
extended time period. In order for the nascent hairpins to maintain

the shapes that are commonly seen in transition requires the relative
absence of nearby distorting structures. The presence of events such
as that in Fig. 10 testifies to the fact that such conditions, more or
less, do occur from time to time and from place to place in the fully
turbulent region.

FIG. 13. Isosurfaces of λ2 = −25 for the
same sequence of events as in Fig. 11.
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The repeatable patterns in Ω2 and Ω3 that are associated with
hairpin development can also be used to advantage in tracing the
dynamics of the flow field that produces hairpin-like rotational
regions. Thus, while the vorticity field satisfies a conservation law
that allows the dynamics of vorticity to be understood, the rotational
motion obeys no such law so that its identification and evolution
in the flow is almost entirely an exercise in subjectivity. For exam-
ple, thresholds have to be set that define the size and shape of the
hairpin and these must change in time in order to trace their prior
history. Similarly, the connection between individual hairpins that
may form groups known as packets4 requires the arbitrary identifi-
cation of a series of rotational regions. By contrast, the vorticity field
can be used to objectively tie together multiple structures and follow
their mutual dynamics.

V. CONCLUSIONS
It has been shown that a consequence of defining the turbulent

structure according to the magnitude of the swirling strength is that
an inherent bias is created in what kinds of structures can be found.
Strong non-rotational effects of the same magnitude of the rotation
field are routinely set aside as being of secondary importance because
of the focus on rotation. If all vorticity in a structure is judged to be
equally important in defining the structure, then it is seen through
the examples taken from DNS data in the buffer layer of a chan-
nel flow that ejecting spanwise vorticity leading to a mushroom-like
shape is the predominant coherent structure in the flow. Hairpin-
shaped regions develop within the mushroom-like structures but do
not well characterize the actual objects in the flow field.

An important advantage in using the entire vorticity field in
defining the structure is that this leads to a means of understanding
the dynamics and history of structure that is not possible from the
swirling strength. In particular, relatively clearly observable patterns
in the wall-normal and spanwise vorticities sitting over low-speed
streaks provide an unambiguous entry into locating and tracking
the development of coherent vortical events that would otherwise be
difficult or impossible to study from the rotation field. The swirling
strength is seen to be more susceptible to the distorting effects of
the random flow field than the non-rotational parts of the vortic-
ity, presumably due to its position at the end-development of the
structures.

Note added in proof. The MATLAB codes used in producing
the figures in this paper from the data at JHU are available from the
author upon request.
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