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Abstract—Memory access violations are a leading source of
unreliability in C programs. As evidence of this problem, a vari-
ety of methods exist that retrofit C with software checks to detect
memory errors at runtime. However, these methods generally
suffer from one or more drawbacks including the inability to
detect all errors, the use of incompatible metadata, the need for
manual code modifications, and high runtime overheads.

In this paper, we present a compiler analysis and transforma-
tion for ensuring the memory safety of C called MemSafe. Mem-
Safe makes several novel contributions that improve upon previ-
ous work and lower the cost of safety. These include (1) a method
for modeling temporal errors as spatial errors, (2) a compati-
ble metadata representation combining features of object- and
pointer-based methods, and (3) a data-flow representation that
simplifies optimizations for removing unneeded checks.

Experimental results indicate MemSafe is capable of detect-
ing real errors with lower overhead than previous efforts. Mem-
Safe detects all memory errors in 6 programs from BugBench
[1]. It ensures complete safety with an average overhead of 87 %
on 30 large programs widely-used in evaluating error detection
tools. Finally, MemSafe’s average overhead on the Olden bench-
marks [2] (31%) is 1/4 that of MSCC [3] (133%), the tool with
the lowest overhead among all existing complete and automatic
methods that detect both spatial and temporal errors.

1. INTRODUCTION

Use of the C programing language remains common despite
the well-known memory errors it allows. The features that
make C desirable for many system-level programing tasks—
namely its weak typing, low-level access to computer mem-
ory, and pointers—are the same features whose misuse cause
the variety of difficult-to-detect memory access violations
common among C programs. Although these violations of-
ten cause a program to crash immediately, their symptoms
frequently go undetected long after they occur, resulting in
data corruption and incorrect results while making software
testing and debugging particularly onerous.

A commonly cited memory error is the buffer overflow,
where data is stored to a memory location outside the bounds
of the buffer allocated to hold it. Although these errors have
been understood as early as 1972 [4], they and other memory
access violations still plague modern software and are a major
source of recently reported security vulnerabilities. For ex-
ample, according to the United States Computer Emergency
Readiness Team, 67 (29%) of the 228 vulnerabilities from
2008-2009 were due to buffer overflow errors alone [5].

Several safety methods [3, 6-8] have characterized mem-
ory access violations as either spatial or temporal errors. A
spatial error is a violation caused by dereferencing a pointer
that refers to an address outside the bounds of its “referent.”
Examples include indexing beyond the bounds of an array;

dereferencing pointers obtained from invalid pointer arith-
metic; and dereferencing uninitialized, NULL or “manufac-
tured” pointers.! A temporal error is a violation caused by
using a pointer whose referent has been deallocated (e.g. with
free) and is no longer a valid object. The most well-known
temporal violations include dereferencing “dangling” point-
ers to dynamically allocated memory and freeing a pointer
more than once. Dereferencing pointers to automatically allo-
cated memory (stack variables) is also a concern if the address
of the referent “escapes” and is made available outside the
function in which it was defined. A program is memory safe
if it does not commit any spatial or temporal errors.

Safe languages, such as Java, ensure memory safety with
a combination of syntax restrictions and runtime checks, and
are widely-used when security is a major concern. Others,
like Cyclone [9] and Deputy [10], preserve many of the low-
level features of C, but require additional programmer an-
notations to assist in ensuring safety. Although the use of
these languages may be ideal for safety-critical environments,
the reality is that many of today’s applications—including
operating systems, web browsers, and database management
systems—are still typically implemented in C or C++ be-
cause of its efficiency, predictability, and access to low-level
features. This trend will likely continue into the future.

An alternative to safe languages, sophisticated static anal-
ysis methods for C [e.g. 11-13] can be used alone, or in
conjunction with other systems, to ensure the partial absence
of spatial and temporal errors statically. However, while these
techniques are invaluable for software verification and debug-
ging, they can rarely prove the absence of all memory errors.

A growing number of methods rely primarily on runtime
checks to detect memory errors. However, of the methods
capable of detecting both spatial and temporal errors [3, 6,
7, 14-21], they generally suffer from one or more practical
drawbacks that have thus far limited their widespread adop-
tion. These drawbacks (detailed in Section II) can be summa-
rized with the following:

e Completeness. Methods that associate metadata (the base
and bound information required for checks) with objects
[e.g. 14—19]—rather than pointers to objects—cannot de-
tect all spatial and temporal errors.

e Compatibility. The use of inline pointer metadata, such
as multi-word “fat-pointers” [e.g. 6, 20] to store metadata
breaks many legacy programs—and requires implicit lan-

' A manufactured pointer is a pointer created by means other than explicit
memory allocation (e.g., malloc) or taking the address of a variable using
the address-of operator. Incorrect pointer type-casting is a common example.



guage restrictions for new ones—because it changes the
memory layout of pointers.

o Code Modifications. Some methods [e.g. 20] require non-
trivial source code modifications to avoid the above com-
patibility issues or to prevent an explosion in runtime.

o Cost. Methods that are complete often suffer from high
performance overheads [e.g. 3, 6, 7, 21]. This is com-
monly due to the cost of maintaining the required meta-
data and the use of a garbage collector.

In this paper, we describe an approach for ensuring both the
spatial and temporal memory safety of C programs, which
we call MemSafe. MemSafe is a whole-program compiler
analysis and transformation that, like other runtime methods,
utilizes a limited amount of static analysis to prove mem-
ory safety whenever possible, and then inserts checks to en-
sure the safety of the remaining memory accesses at runtime.
MemSafe is complete, compatible, requires no code modifi-
cations, and generally has lower cost than other complete and
automatic methods achieving the same level of safety.

MemSafe makes the following novel contributions to lower
the runtime cost of dynamically ensuring memory safety:

e MemSafe uniformly handles memory violations by mod-
eling temporal errors as spatial errors. Therefore, the use
of separate mechanisms for detecting temporal errors (e.g.
garbage collection and “temporal capabilities” [3, 6, 7,
19]) is no longer required.

o MemSafe captures the most salient features of object- and
pointer-based spatial metadata in a hybrid representation
that ensures its compatibility while allowing for the detec-
tion of temporal errors as well.

e MemSafe uniformly handles pointer data-flow in a rep-
resentation that simplifies several performance-enhancing
optimizations. Unlike previous methods that require run-
time checks for all dereferences and the expensive prop-
agation of metadata at every pointer assignment [e.g. 3,
6, 7, 21], MemSafe eliminates redundant checks and the
propagation of unused metadata. This capability is further
enhanced with whole-program analysis.

We have evaluated our implementation of MemSafe in terms
of its completeness and cost. MemSafe was able to success-
fully detect all previously reported memory errors in 6 pro-
grams from the BugBench [1] benchmark suite. In terms of
cost, MemSafe’s average overhead was 87% on 30 large pro-
grams widely-used in evaluating error detection tools. As ev-
idence of its compatibility, MemSafe compiled each program
without requiring code modifications.

Table I summarizes previous software approaches for en-
suring both spatial and temporal safety.> Each method is eval-
uated on its completeness, compatibility, lack of code modi-
fications, use of whole-program analysis, and cost. For con-
sistency, slowdown is reported for the Olden benchmarks [2]
where results are available. MemSafe compares favorably in
each category and has the lowest overhead among all exist-
ing complete and automatic methods. This result is primarily

2We exclude from Table I other methods (e.g, CIT [22], DFI [23], WIT
[24], SoftBound [8], SafeCode [25], “baggy” bounds checking [26], etc.)
since they either are not software-only or do not aim to ensure complete
spatial and temporal safety. However, we discuss these in Section VI.

Approach Complete Compat. Code Whole Slowdown
Mods. Prog.
Purify [18] no yes yes yes 148.44*
Patil, Fischer [7] yes yes yes no 6.38"
Safe C [6] yes no yes no 4.887
Fail-Safe C [21] yes yes yes no 4,64
MSCC [3] yes yes yes no 2.33
Yong, Horwitz [19] no yes yes no 1.37%
CCured [20] yes no no yes 1.30
MemSafe yes yes yes yes 131

Table I: Related Work. A comparison of methods providing both
spacial and temporal memory safety is given. Slowdown is reported
for the Olden benchmarks [2] unless otherwise noted.

*Checks are only inserted for heap objects.
"Slowdown is the average of all results reported by the authors.
*Checks are only inserted for store operations.

due to MemSafe’s novel contributions based on the above
insights. We describe our evaluation in Section V.

Since MemSafe’s performance overheads cannot be con-
sidered “low” at this point, we recommend it be deployed
only in situations where safety is a primary concern. In our
experience, many checks can be avoided with our simple op-
timizations, and for safety-critical applications, MemSafe’s
moderate overheads can be an acceptable trade-off compared
to redesigning systems using a safe language. However, for
performance-critical applications, MemSafe should primarily
be used as a dynamic bug detection tool.

II. BACKGROUND

As evidence of the drawbacks mentioned above, the instru-
mentation of C programs to ensure memory safety remains an
actively researched topic. In this section, we review previous
approaches, primarily focussing on their use of metadata.

A. Spatial Safety

The goal of spatial safety is to ensure every memory access
occurs within bounds of a known object. Safety is typically
enforced by inserting checks before pointer dereferences. Al-
ternatively, checking for bounds violations after pointer arith-
metic is also possible [e.g. 14—16, 26], but requires care since
pointers in C are allowed to be out-of-bounds so long as they
are not dereferenced. The metadata required for safety checks
can be associated either with objects or pointers, and there are
strengths and weaknesses of each approach.

Object Metadata  Methods that utilize object metadata usu-
ally record the base and bound information of objects as they
are allocated in a global database that relates every address
in an allocated region to the metadata of its corresponding
object. Advantages of this approach include efficiency, since
it avoids propagating metadata at every pointer assignment,
and compatibility, since it does not change the layout of mem-
ory or prohibit the use of precompiled libraries. Prominent
methods employing this strategy include the work by Jones
and Kelly [14], Ruwase and Lam [15], Dhurjati and Adve
[16], Akritidis et al. [26], SafeCode [25] and SVA [17].
However, the use of object metadata results in several draw-
backs. First, this approach prevents complete safety. Since
nested objects (e.g., an array of structures) are assigned a
base and bound that span the entire allocated region, it is



impossible to detect sub-object overflows if an out-of-bounds
pointer to an inner object remains within bounds of the outer
object. Second, this approach requires a runtime lookup to
retrieve metadata from the object database.

Pointer Metadata  An alternative to using object metadata
is to associate metadata with pointers. When a new pointer is
created (withmalloc or the address-of operator), its metadata
is initialized to the bounds of its referent, and when a pointer
definition uses the value of another pointer (e.g., pointer arith-
metic), its metadata is inherited from the original pointer.
Advantages of this approach include avoiding costly database
lookups and the ability to ensure complete safety, since sub-
object overflows can be detected by giving each pointer a
unique base and bound. Prominent methods employing this
strategy include Safe C [6], Fail-Safe C [21] and CCured [20].
However, the use of pointer metadata also results in sev-
eral drawbacks. First, this approach is often not compatible
with and breaks many programs. A common implementation
of pointer metadata relies on multi-word blocks of memory,
called fat-pointers, that record base and bound information
inline with pointers. Since this increases a pointer’s size be-
yond that of the word size of the target architecture, many
programming idioms no longer work as expected. Addition-
ally, interfacing with external libraries becomes difficult and
requires wrapper functions to pack and unpack fat-pointers
at boundaries with uninstrumented code. A second drawback
is cost: while avoiding expensive database lookups, pointer
metadata must be propagated at every pointer assignment.

MemSafe’s Approach ~ MemSafe captures the most salient
features of object and pointer metadata in a hybrid representa-
tion. To ensure complete and compatible spatial safety, Mem-
Safe maintains disjoint pointer metadata in an approach sim-
ilar to that of SoftBound [8]. However, to lower cost, Mem-
Safe propagates pointer metadata only when needed for run-
time checks. Additionally, MemSafe maintains some object
metadata but performs lookups only when pointer metadata
is insufficient for ensuring temporal safety.

B. Temporal Safety

The goal of temporal safety is to ensure every memory ac-
cesses refers to an object that has not been deallocated. Vi-
olations occur when dereferencing pointers to stack objects
if their function has exited and when dereferencing point-
ers to heap objects if they have been freed. Temporal safety
is typically enforced with garbage collection or by software
checks. Like the methods for ensuring spatial safety, there are
strengths and weaknesses of each approach.

Garbage Collection  Methods using garbage collection to
prevent dangling pointers to heap objects ignore free and re-
place malloc with the Boehm-Demers-Weiser conservative
collector [27]. To prevent dangling pointers to stack objects,
local variables can be “heapified” and moved to the heap to
be managed by the collector. This is the approach taken by
CCured [20] and Fail-Safe C [21].

However, garbage collection negates several of C’s primary
benefits, including its predictability and low-level access to
memory. Garbage collection voids real-time guarantees [28],

if(r) {b} else {b} | return r; | free(r);
e x € variables

y € structure field identifiers

neN

Atomic Types @ = int | 7%
Types 7 = a | struct{d*} | 7[n]
Declarations d = 7 x;
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Figure 1: Syntax for a simple SSA[30] language with pointers,
control flow and manual memory management.

increases address space requirements, reduces reference lo-
cality, and increases page fault and cache miss rates [29].
Moreover, since the garbage collector must be conservative,
some memory may never be reclaimed, resulting in memory
leaks. Finally, heapifying stack objects increases cost since
dynamic allocation is slower than automatic allocation.

Temporal Checks  An alternative to garbage collection is to
insert explicit software checks to test the temporal validity
of referenced objects. To achieve this, a “capability store” is
commonly used to record the temporal capability of objects as
they are created and destroyed. Additional metadata created
and propagated with spatial metadata links a pointer to the
temporal capability of its referent. Methods employing this
strategy include Safe C [6], MSCC [3], and the work by Patil
and Fischer [7] and Yong and Horwitz [19].

There are advantages and disadvantages of explicit tempo-
ral checks. The primary strength of this approach is that it re-
tains C’s memory allocation model and avoids the drawbacks
of garbage collection. However, the inclusion of additional
checks and metadata significantly increases runtime beyond
that of spatial safety alone.

MemSafe’s Approach ~ Since MemSafe models temporal er-
rors as spatial errors, it does not require garbage collection
or explicit temporal checks. Instead it relies on spatial safety
checks to ensure temporal safety, which avoids the drawbacks
of both approaches.

III. MEMSAFE

In this section, we describe MemSafe’s approach for ensuring
the memory safety of C at runtime. MemSafe is a compiler
analysis and transformation that inserts software checks be-
fore memory accesses to detect spatial and temporal viola-
tions. It requires a limited amount of static analysis (a flow-
and context-insensitive alias analysis) to avoid unnecessary
checks and metadata propagation for memory accesses that it
can statically verify to be safe.

Figure 1 defines a small SSA[30] intermediate language
capturing the relevant pointer-related portions of C. We will
use it in describing MemSafe’s translations for check inser-
tion and metadata propagation. Without loss of generality, we
assume memory is only accessed with explicit load (x=*ptr)
and store (*ptr=x) operations, and an unlimited number of
“virtual” registers exist for holding temporary values. The
following discussion presents (1) syntax extensions for Mem-
Safe’s data-flow representation, (2) MemSafe’s checks and



metadata, (3) program translations for propagating metadata,
and (4) optimizations for reducing cost.

A. A Data-flow Graph for Pointers

MemSafe represents memory deallocation and pointer store
operations as explicit assignments. The advantage of this ap-
proach is that it enables MemSafe to ensure complete safety
by reasoning solely about pointer definitions, which elimi-
nates the need for separate mechanisms for detecting spatial
and temporal errors and reveals optimization opportunities.
We describe these abstractions below.

First, we assume all temporary in-register pointers have
been demoted to memory such that references of an in-register
pointer g become references of *p. In-memory pointers are
promoted back to registers following MemSafe’s analysis.?

Memory Deallocation ~ MemSafe models both explicit and
automatic memory deallocation as in-memory pointer assign-
ments. For example, the statement free (*p) is represented
as *p=invalid, where invalid is a special untyped pointer
constant that points to an “invalid” region of memory. We
define the base and bound of this region to be the impossible
address range [1, 0]. Since the size of this block is —1, spatial
checks involving the base and bound of invalid are guaran-
teed to report a violation. Therefore, temporal errors can be
detected with spatial safety checks.

MemSafe inserts stores of invalid after calls to free and
at the end of every function for each of its stack-allocated
variables. MemSafe removes these stores after instrumenting
the program with the required safety checks.

Pointer Stores  MemSafe models in-memory pointer assign-
ments (including those induced for invalid) as explicit reg-
ister assignments using alias analysis and a ¢-like SSA ex-
tension called the o-function. For example, assume the state-
ment *p=ptr0 (so) is the only direct reaching definition of
ptri=*p (s;). The statement *q=ptr2 (s;) may indirectly
redefine ptr; if p and ¢ may alias and control flow may reach
statement s; from s,. Therefore, we can model ptril=*p as
ptri=p(ptr0,ptr2), meaning ptr; may equal ptry or ptry
but only these two values. In this way, all indirect pointer
assignments and object deallocations are represented as direct
assignments of the pointers that are potentially modified.

Figure 2(a) shows an example code fragment with our syn-
tax extensions. At the call to free in line 7, we insert a store
of invalid to indicate p’s referent has been deallocated. Since
p and g may alias, this store and the ones in lines 3 and 5 may
define the pointer loaded in line 9. Therefore, pointers a, b
and invalid are added to the o-function for pointer ¢, meaning
¢ may equal any of these values.

MemSafe inserts o-functions after all pointer loads, and
like the inserted stores of invalid, they are removed after in-
serting the required checks. Crucially, MemSafe does not in-
sert o-functions for loads of non-pointer values since they are
not required for our analysis and could potentially lead to a
large increase in code size.

3Demotion is required so that o-functions will propagate invalid to point-
ers that may refer to to deallocated objects (discussed later).

1: int *a, *b, *c;

2: int *xp, *xq;

> assume p and q may alias

*q = a;

if (condition) {
*p = b;

} else {
free(*p) ;
*p = invalid;

@\

~N o oW

o]

}
9: c0
cl

*q
o(a, b, invalid);

(a) Example p-extension (b) DFPG

Figure 2: DFPG Construction. (a) A code fragment with the o-
extension is shown with (b) its corresponding DFPG. Numbered
lines indicate original code.

The DFPG  Utilizing the above abstractions, MemSafe cre-
ates a whole-program Data-Flow for Pointers Graph (DFPG).
The DFPG is a simple def-use graph for all in-register point-
ers: if the definition of pointer p uses the value of pointer g,
there is an edge from ¢ to p in the graph. Since the o-function
encodes alias information as direct pointer definitions, con-
nected components represent disjoint alias sets. Figure 2(b)
shows the DFPG for 2(a).

B. The Required Checks and Metadata

MemSafe utilizes a unique combination of object and pointer
metadata to ensure both spatial and temporal memory safety.

Pointer Metadata  For every pointer definition, MemSafe
creates a 3-tuple (base, bound, id) of intermediate values. To-
gether, base and bound indicate the sub-range of memory the
pointer is permitted to access, and id associates the pointer
with the object metadata of its referent (to be discussed).

Pointer Bounds Check (PBC) MemSafe inserts a Pointer
Bounds Check before pointer dereferences (*ptr) that cannot
be verified safe statically. PBC is defined by:

1: inline void PBC(ptr, base, bound, size) {

2: if ((ptr < base) or (ptr + size > bound))
3: signal_safety_violation();
4:

For example, MemSafe utilizes the pointer metadata of ptr
(base, bound, id),;, to ensure its safe dereference.

1: PBC(ptr, basepy, bound,,, sizeof(*ptr));
. *ptr ...
> some load or store operation involving ptr

Here, MemSafe signals a safety violation if *ptr will access
a location outside the range specified by [base,., bound,,).
No costly database lookup is required for base,,, and bound,,,,
since they are uniquely named symbols in the inserted code.
This procedure is capable of not only ensuring complete
spatial safety, but also temporal safety with a single check.
Temporal safety is enforced because, had ptr’s referent been
deallocated, ptr’s metadata would have been set to that of
invalid, which will always cause the PBC to signal a safety
violation. However, the PBC is insufficient for ensuring com-
plete temporal safety. Since a nested object is deallocated us-
ing its base address, only object-level references are assigned
invalid, and the metadata of sub-object references will not



be updated. Thus, object metadata is required to associate
pointers to inner objects with the base and bound of their
outer objects. We introduce it below.

Object Metadata  For every object allocation, MemSafe cre-

ates and assigns a unique id to the object and records a tuple
(base, bound% for the allocated region in a global metadata
facility. MemSafe removes entries for objects from the meta-
data facility when they are deallocated. "l‘he object metadata
facility maps an object’s id to its base and bound address and
is defined by the partial function:

omd:I— O
id — (base, bound);y

where [ is the set of ids and O is the set of object metadata.
For convenience, we can also represent omd as the relation
Ro, where (id, {base, bound);;) € Ro.

Object Bounds Check (OBC) If a pointer may refer to a
sub-object (determined by traversing the DFPG), MemSafe
inserts an Object Bounds Check for temporal safety in addi-
tion to the PBC for spatial safety. 0BC is defined by:

1: inline void OBC(ptr, id, size) {

2 (base, bound);; = omd(id)

3: if ((ptr < basejy) or (ptr + size > bound;y))
4 signal_safety_violation();

5

Here, the OBC uses ptr’s id to retrieve the object metadata of
ptr’s referent: (base, bound);;. Temporal safety is enforced
because, had ptr’s referent been deallocated, it would have
been unmapped in the object metadata facility Ry, causing
omd(id) to fail and MemSafe to signal a violation. If the de-
tection of sub-object overflows is not a requirement, the PBC
can be eliminated since the OBC also verifies ptr is within
bounds of its outer object.

C. Metadata Propagation

Having presented the safety checks MemSafe inserts before
pointer dereferences, in this section we describe MemSafe’s
translations for creating and propagating the required meta-
data. In doing so, we assume the program has already been
transformed to include our extensions for deallocation and
pointer stores (Section III-A).

Allocation MemSafe creates entries in the object metadata
facility as objects are allocated. Since the number and size of
global objects are known statically, Ro is initialized with their
metadata. For stack-allocated objects, MemSafe generates a
new id and maps it to their base and bound address:

1: struct { ... int array[100]; ... } s;
Ro = Ro U {(id € I,{&s, &s + sizeof(s)))}

For heap-allocated objects, MemSafe updates Rp as before
but also sets the pointer metadata of the pointer returned by
malloc since malloc creates a new pointer as well as an ob-
ject. (If the pointer returned by malloc is NULL, its metadata
1s set to that of invalid):

1: p0 = malloc(size);

. _ J(base,bound, id)inyaiia
(base, bound, id),, = {(po, Do + size,id € Iy

Ro =Ro U {(idpo, (base, bound)ig,, )]

if po = null,
otherwise

Deallocation  When the referent of a pointer to a heap- or
stack-allocated object is deallocated (e.g., with free), I\Eem—
Safe removes its entry from Ry, and sets the pointer’s meta-
data to that of invalid (“\” denotes set difference):

1: p0 = *ptr

Ro = Ro \ {(idp, omd (idp, ))}

(base, bound, id),, = (base,bound, id)inyaiia
2: free(p0); > MemSafe models deallocation as an in-
3: *ptr = invalid; memory pointer assignment of “invalid”

Recall that if id,, has been unmapped in Ro, omd (id ,,0> will
fail, causing MemSafe to signal a safety violation that, in this
example, would indicate a double free error.

Address-of  Like malloc, the address-of operator (&) cre-
ates a pointer to a new location, so MemSafe sets the pointer
metadata of the newly created pointer:

1: struct { ... int array[100]; ... } s;

2: p0= &(s.array[42]);
(base, bound, id),, = (idy, &s.array[0], sizeof (s.array))

This example demonstrates MemSafe’s ability to detect sub-
object overflows. Note that pg inherits the id of the outer
object s, yet its base and bound are associated with array.

Pointer Arithmetic  Pointers defined using simple assign-
ments or in terms of arithmetic (e.g., array and structure in-

dexing) inherit the pointer metadata of the original pointer:*

1: pl = p0 + x;
(base, bound, id),, = (base,bound,id)y,,

o-functions  Since the value produced by a p-function is
not known statically, MemSafe must “disambiguate” it for
the returned pointer to inherit the correct metadata. Thus,
MemSafe requires an additional metadata facility. Like the
object metadata facility, the pointer metadata facility maps
the address of an in-memory pointer to its pointer metadata
and is defined by the partial function:

pmd: M — P
ptr v (base, bound, id).

where M is the set of addresses and P is the set of pointer
metadata. For convenience, we also use the relation Ry to
represent pmd, where (ptr, (base, bound, id).,.) € Rp. Mem-
Safe retrieves metadata for the result of a p-function:

1: p0 *ptril;
2: pl = p(a0, b0, ...);
(base, bound, id),, = pmd(ptry)

> MemSafe models in-memory data-
flow with the o-function

For each argument of the p-function (including invalid), Mem-
Safe updates Ry at the location it is stored to memory:
1: *ptr2 = a0; > ptry may alias ptry above
Rp = (Rp \ {(ptr2, pmd(ptry))}) U [(ptrz, {base, bound, id)ao)]

Pointer Casts  Pointer casts and unions do not require any
additional metadata propagation. The new pointer simply in-
herits the metadata of the original one. Pointers defined as
NULL or as a cast from an integer to a pointer inherit the base
and bound of invalid. Although this may result in false posi-
tives, we have observed this to be rare. For memory-mapped
I/O, MemSafe requires a target’s backend to specify the base
and bound of valid address ranges.

Function Calls MemSafe requires an additional metadata
facility in order to propagate pointer metadata for pointers

4¢-functions are no different than other pointer assignments. For example,
p = ¢(a, Db) assigns a to p at the end of the basic block producing a and b
to p at the end of the basic block producing b.



passed as arguments to functions. The function metadata fa-
cility maps a formal argument to the pointer metadata of its
actual argument and is defined by the partial function:

fmd:A— P
formal — (base, bound, id)yc1yq1

where A is the set of arguments and formal is a tuple (&f, i)
specifying the argument of function f at offset i. For conve-
nience, we can also represent find as the relation R¢, where
%formal, (base, bound, id)y1uq)) € Ry. MemSafe updates the
unction metadata facility before function calls:

Ry = (Rg \ {((&func, 0), fmd({&func, 0)))})
U{(<&finc, 0), (base, bound, id) , )}
1: func(pO);

Similarly, in the body of func MemSafe retrieves the metadata
for py with fimd({&func,0)). This approach is sufficient for
handling function pointers, variable-argument functions, and
interfacing with precompiled libraries. For complete safety,
libraries must be compiled with MemSafe’s checks. However,
since MemSafe adheres to calling conventions, a safe appli-
cation can interface with both safe and unsafe libraries.

D. Optimizations of the Basic Approach

MemSafe utilizes the DFPG to perform several optimizations
that reduce the cost of memory safety. Since the DFPG blurs
the distinction between spatial and temporal errors, Mem-
Safe’s optimizations (described below) affect aspects of both.

Dominated Dereferences ~ Multiple dereferences of the same
pointer require safety checks only for the dereference that
dominates the others.

Temporally Safe Dereferences 1If a pointer p is not reach-
able from invalid in the DFPG, then it must refer to a tem-
porally valid object. Therefore, a dereference of p does not
require an OBC. Recall that since MemSafe models temporal
errors as spatial errors, the PBC ensures spatial and temporal
safety for object-level references. However, if p may refer to
a sub-object, its dereference requires the OBC in addition to
the PBC to ensure temporal safety. p’s potential referents are
represented by the set of nodes in DFPGT that are reachable
from p and have no children. DFPGT is the transpose of the
DFPG (i.e., the DFPG with its edges reversed).

Non-incremental Dereferences If a pointer p must refer to
a temporally valid object and is not reachable from a path in
the DFPG representing pointer arithmetic, then p must refer
to the base of a valid object or sub-object. If p is physically
sub-typed [31] with each of its potential referents (i.e., their
types are compatible for assignment), p’s dereference does
not require a PBC. If p is reachable from only constant in-
crements (e.g., structure field accesses), MemSafe performs
static checks instead of inserting the PBC.

Monotonically Addressed Ranges A pointer whose value is
a monotonic function of a loop induction variable refers to a
monotonically addressed range of memory. If the pointer is
dereferenced in a loop having a computable number of iter-
ations, MemSafe inserts a Monotonically Addressed Range
Check (MARC) in the loop preheader, and eliminates the check
within the loop. For the sake of discussion, we assume loops
have been transformed to have a single canonical induction
variable that is initialized to zero and incremented by one.

For example, MemSafe inserts the following code to ensure
the safety of a pointer dereference within a loop:
1: MARC(ptr, basep,, boundy,, sizeof(xptr), N);
for (i = 0; i < N; i++) {
ox(ptr + 1) ...
> some store or load operation involving ptr

where MARC is the forcibly inlined procedure defined by:

1: inline void MARC(ptr, base, bound, size, trip_count) {
2 ptr_max = ptr + trip_count;

3: if ((ptr < base) || (ptr_max + size > bound))

4: signal_safety_violation();

5: }

In this example, MemSafe signals a safety violation if the
dereference * (ptr+i) will access a location outside the range
specified by (base, bound, id),, on any iteration of the loop
and eliminates ptr’s PBC within the loop. However, the MARC
is incapable of ensuring the temporal safety of ptr if it may
refer to a sub-object. Thus, MemSafe hoists an 0BC within the
loop to before the MARC in the loop preheader.’

Unused Metadata  Since o-functions incorporate aliasing
effects in the DFPG, connected components represent dis-
joint alias sets. Therefore, if MemSafe eliminates checks for
all pointers in a connected component, then their metadata
is unused, and MemSafe eliminates it as well. This is more
aggressive than dead code elimination since MemSafe not
only removes unused metadata, but also code that updates the
object and pointer metadata facilities.

IV. IMPLEMENTATION

Having described MemSafe’s approach for inserting and op-
timizing checks and metadata, in this section we describe the
prototype implementation of MemSafe and its limitations.

A. MemSafe’s analysis and transformation

MemSafe is implemented in the LLVM [32] compiler infras-
tructure. LLVM’s intermediate form is a low-level, typed SSA
form that is both ISA- and language-independent. Thus, Mem-
Safe’s transformation is not specific to a particular architec-
ture and can be used to ensure safety for languages other than
C, but we have not tested this. Our implementation requires
Andersen’s alias analysis [33], but MemSafe can be used with
any analysis compatible with LLVM.

MemSafe consists of a collection of analysis and transfor-
mation passes that each contribute to the overall approach
described in Section III. These include passes to (1) insert
assignments of invalid, (2) insert p-functions with the aid of
alias analysis, (3) construct the DFPG, and (4) insert opti-
mized safety checks and code for metadata propagation de-
termined by traversing the DFPG.

B. Metadata Facilities

The facilities MemSafe requires for maintaining object and
pointer metadata (Rp, Rp and R#) are implemented as dy-
namically resized hash tables for efficiency. Collisions are
resolved using separate chaining and a simple move-to-front

3 Although MemSafe uses the MARC to essentially hoist checks out of loops,
array bounds check elimination could be used with MemSafe to completely
eliminate some of these checks.



Benchmark Size Detected All
Suite Program LOC  Derefs
BugBench  099.go 29246 16632 yes
129.compress 1934 232 yes
be-1.06 14288 2474 yes
gzip-1.2.4 9076 1722 yes
ncompress-4.2.4 1922 838 yes
polymorph-0.4.0 716 65 yes

Table II: Detected Violations. MemSafe’s ability to detect memory
errors is shown for BugBench [1] programs.

heuristic favoring reference locality. Hash functions are the
modulo of the key with the size of the table, which becomes
an efficient bitwise and operation by restricting table sizes to
powers of two. The unique object ids used as keys for Rp are
generated using a global counter for simplicity.

C. Limitations

Although MemSafe’s approach is complete and compatible
with most C programs, in practice MemSafe is not without
limitations. MemSafe’s most significant limitation is its use
of whole-program analysis to remove unnecessary checks and
metadata propagation. While whole-program analysis is used
to enhance the effectiveness of MemSafe’s optimizations, it
negates the advantages of separate compilation and can be
difficult in common build environments. However, the use
of whole-program analysis is not required for MemSafe to
ensure safety, and it can be turned off when not desirable.

V. REesurrs

In this section, we describe the evaluation of our prototype
implementation of MemSafe. We investigate (1) MemSafe’s
completeness by applying our approach to programs with
known memory errors, (2) MemSafe’s cost by comparing its
runtime overhead to that of related methods, and (3) results
related to MemSafe’s static analysis. In doing so, we will
demonstrate that MemSafe is compatible with a variety of
C programs and does not require code modifications. Addi-
tionally, we will show that MemSafe’s key contributions—
modeling temporal errors as spatial errors, hybrid metadata,
and our data-flow representation—are effective tools for re-
ducing the cost of dynamically ensuring memory safety.

A. Effectiveness in Detecting Errors

We have used MemSafe to detect real errors in a variety of
programs including the Apache HTTP server, GNU Coreutils,
and programs from Bugbench [1]. BugBench is a collection
of programs containing various documented software bugs
that was expressly created to evaluate the effectiveness of
error detection tools. Table I shows that MemSafe is capable
of detecting all known memory errors in 6 programs from
BugBench. We excluded programs that only contain errors
not related to spatial or temporal safety (e.g., memory leaks).
The size of each program is given in lines of code (LOC) and
the number of static dereferences.

B. Runtime Performance

We measured MemSafe’s runtime overhead on 30 programs
from the Olden [2], PtrDist [6] and SPEC [34] suites. Pro-
grams from Olden and PtrDist are known for being allocation

intensive, while those from SPEC are larger and more com-
putation intensive. The programs were executed on a 3GHz
Pentium 4 processor with 2GB of memory. Execution times
were obtained by taking the lowest of three runtimes obtained
using the time command. Due in part to LLVM’s research-
quality implementation of Andersen’s analysis, our current
implementation of MemSafe is not yet robust enough to com-
pile all the SPEC programs, and we present results in this
section for the subset that compiles correctly.

Overheads  The “Runtime” and “Slowdown” columns of
Table III summarize the runtime performance of MemSafe’s
fully optimized approach. MemSafe ensured complete spatial
and temporal safety for all 30 programs with an average over-
head of 87%. In general, we observed MemSafe’s overhead
to be comparable to that of CCured[20]: On the allocation
intensive Olden benchmarks, MemSafe’s overhead was 31%
versus CCured’s 30%, and on CCured’s entire set of reported
benchmarks, MemSafe overhead was 59% versus CCured’s
80%. Not including bc (on which CCured’s overhead was par-
ticularly high) reduces these to 54% and 30%, respectively.
Due to CCured’s need for manual code modifications, we did
not obtain results for CCured on additional programs.

Additionally, MemSafe demonstrated a significant and con-
sistent improvement over MSCC [3], the tool with the lowest
overhead among all existing complete and automatic methods
that detect both spatial and temporal errors. On the Olden
benchmarks, MemSafe’s average overhead was 1/4 that of
MSCC (133%) and on the entire set of MSCC’s reported
benchmarks, MemSafe’s average overhead (57%) was less
than 1/2 that of MSCC (137%). We present comparisons with
other methods in Table I of Section 1.

MemSafe is able to improve cost for the following reasons:
(1) MemSafe’s data-flow representation enables performance-
enhancing optimizations that reduce overhead from 236% to
87% (explained later). (2) MemSafe’s modeling of tempo-
ral errors as spatial errors, combined with a hybrid metadata
representation, enables MemSafe to ensure temporal safety
with only a 24% increase in the overhead of spatial safety
alone (also explained later). In particular, MemSafe’s large
improvement versus MSCC on the Olden benchmarks is due
to the fact that these programs postpone deallocating memory
until terminating. Thus, MemSafe eliminates the propagation
of invalid and all 0BC checks. This is a common programming
style when reallocation is not needed.

Optimizations  Figure 3 shows that MemSafe’s optimiza-
tions are effective tools for reducing cost. By observing the
“Average” histogram, we see that MemSafe’s optimizations
reduced the average runtime overhead from 236% to 87%.
Since the optimization for dominated dereferences (DDO) is
minimally effective, we present it as a baseline. The optimiza-
tion for temporally-safe dereferences (TDO) reduced over-
head by 38%, and the optimization for non-incremental deref-
erences (NDO) reduced overhead by 23%. Combined with
the optimization for unused metadata, which we include with
both, NDO and TDO accounted for the greatest reduction
in overhead. The optimization for monotonically addressed
ranges (MRO) reduced overhead by 2%.



Benchmark Size Runtime (s) Slowdown Checks (%) Opts. (%) DFPG

Suite Program LOC Derefs Base MemSafe MemSafe CCured MSCC PBC OBC MARC DDO TDO NDO Inv. (%) of/Store
Olden bh 2073 284 4.68 5.34 1.14 144 282 493 0.00 1.76 27.11 2.11 43.31 0.00 7.19
bisort 350 76 1.32 1.66 1.26 145 176 395 0.00 0.00 35.53 0.00 32.89 0.00 9.93
em3d 688 187 5.14 7.92 1.54 1.87  1.79 1551 0.00 321 749 0.00 4492 0.00 1.84
health 502 236 047 0.81 1.72 129 272 085 0.00 0.00 1525 0.00 37.29 0.00 3.42
mst 428 57 0.31 0.36 1.15 1.06  1.76 1228 0.00 5.26 12.28 0.00 42.11 0.00 0.24
perimeter 484 258 0.36 0.54 1.50 1.09 3.37 853 0.00 0.00 0.00 0.00 59.30 0.00 142.61
power 622 285 4.09 4.62 1.13 1.07 122 351 0.00 0.00 2246 1.75 25.61 0.00 0.00
treeadd 245 26 0.38 0.46 1.20 1.10 323 1842 0.00 0.00 0.00 0.00 47.37 0.00 5.33
tsp 582 194 3.83 4.37 1.14 1.15 228 515 000 0.00 31.96 0.00 51.03 0.00 31.07
average 716 178 2.29 2.90 1.31 1.30 2.33 813 0.00 1.14 16.90 0.43 42.65 0.00 2240
PurDist  anagram 650 113 1.57 2.87 1.83 1.43 - 2566 0.00 0.00 21.24 11.50 23.89 0.00 0.29
be 7297 3927 1.34 3.18 2.37 9.91 - 13.09 341 1.12 32.85 0.03 13.01 8.99  43.62
ft 1766 246 2.07 3.48 1.68 1.03 - 528 0.00 0.00 24.80 3.66 24.80 392 15543
ks 782 239 152 2.99 1.97 1.11 - 2427 0.00 0.00 27.62 19.67 18.83 0.00 13.71
yacr2 3986 1000 1.96 3.65 1.86 1.56 - 33.80 4.00 390 34.60 1.80 11.20 4.85 6.15
average 2896 1105 1.69 3.23 1.94 3.01 - 2042 148 1.00 2822 7.33 1835 3.55  43.84
SPEC’95 099.go 29246 16632 0.62 1.26 2.03 122 2.60 53.76 0.00 5.96 2544 52.18 3.94 0.00 -
129.compress 1934 232 0.01 0.02 1.60 1.17  1.85 12.07 0.00 4.74 4095 5.17 11.21 0.00 4.13
130.1i 7597 4905 0.06 0.11 1.89 1.70 - 828 0.00 0.06 27.26 0.06 21.06 0.00 694.18
147 .vortex 67202 25135 0.00 0.00 - - - 640 0.72 0.04 3436 0.00 5.32 13.18 1511.59
average 26495 11726 0.17 0.35 1.84 1.36 - 20.13 0.18 270 32.00 14.35 10.38 3.30 736.63
SPEC’00 164.gzip 8605 1499 20.62 62.68 3.04 — 146 1835 1548 434 4470 0.00 594 0.96 3.79
175.vpr 17729 5386 8.35 14.70 1.76 - 353 2092 3.08 232 2208 0.09 14.17 7.07  14.52
181.mef 2412 534 11.22 20.20 1.80 - 285 7.2 150 1.31 23.60 2.06 38.01 9.61 2574
186.crafty 24975 7579 14.93 44.34 2.97 - - 36.09 21.04 0.01 1564 0.04 3.81 2377 29.08
255.vortex 67213 25134 3.95 8.18 2.07 - - 640 0.72 0.04 3437 0.00 532 13.18 1511.61
256.bzip2 4649 1254 22.32 59.37 2.66 - - 37.88 3.03 3.03 41.23 19.94 4.78 1.12 316.95
300.twolf 20459 11741 7.53 14.01 1.86 - - 1410 3.67 025 20.82 0.00 24.21 9.39 3.71
average 20863 7590 12.70 31.92 2.31 — - 20.12 6.93 1.61 2892 316 13.75 9.30 54.72
SPEC’06 401.bzip2 8293 4013 6.23 13.58 2.18 - - 1440 2.09 120 12.09 0.07 4.73 27.83 440438
445.gobmk 197215 27614 0.29 0.55 1.90 - — 3731 2354 196 1949 0.00 13.87 1270 209.98
456.hmmr 35992 7582 7.82 16.89 2.16 - - 2379 125 1.58 1840 0.00 19.11 14.21 108.66
458.sjeng 13847 5832 10.13 28.36 2.80 - - 2498 18.66 0.22 2821 0.19 6.28 1837 80.29
473.astar 5842 1873 0.00 0.00 - - - 790 1.17 032 1938 0.00 1495 1891 39.38
average 52238 9383 4.89 11.88 2.26 - - 21.68 934 1.06 19.51 0.05 11.79 1840 133.89
Average 18394 5136 4.77 10.88 1.87 - - 16.83 345 142 24.04 4.01 2241 648 177.68

Table III: Summary of Results. Program size is measured in lines of code and the number of static dereferences. Slowdown is shown in
comparison with CCured [20] and MSCC [3] where results are available. The static number of required checks and optimizations are measured
as a percentage of dereferences. The DFPG is measured by the percentage of nodes reachable from invalid and the average number of p-nodes
modifiable by each pointer store.
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Figure 3: Optimizations. Slowdown is shown for spatial and temporal and spatial-only safety. Optimizations include dominated dereferences
(DDO), temporally-safe dereferences (TDO), non-incremental dereferences (NDO), and monotonically addressed ranges (MRO).



Without utilizing whole-program analysis, MemSafe’s op-
timizations reduced the overhead from 236% to 209%. TDO
reduced overhead by 3%, NDO reduced overhead by 6%,
and MRO reduced overhead by 2%. (For clarity, we omit the
histograms for separate compilation from Figure 3.) Hence,
MemSafe’s average overhead with separate compilation was
209% versus 87% with whole-program analysis. Though it
seems much of MemSafe’s improvement stems from our in-
terprocedural optimizations, this is not by chance: By rep-
resenting memory deallocation and pointer stores as direct
assignments, MemSafe improves the effectiveness of whole-
program optimization. Thus, Memsafe’s overheads are lower
than those of existing methods that cannot benefit in this way.

Cost of Temporal Safety  Figure 3 also quantifies the addi-
tional cost required to ensure temporal safety. Observing the
last bar in the “Average” histogram, we see that MemSafe’s
overhead for spatial and temporal safety (87%) is comparable
to that of just spatial safety (70%). Thus, MemSafe ensured
complete temporal safety with a modest 24% increase in the
overhead of spatial safety alone.

Comparing the additional cost of ensuring temporal safety
with MemSafe versus that of MSCC on MSCC'’s set of re-
ported benchmarks, MemSafe’s overhead for spatial and tem-
poral safety (57%) is a 19% increase in that of spatial safety
(48%), whereas MSCC’s overhead for spatial and temporal
safety (137%) is an 83% increase in that of spatial safety
(75%) [3]. While the overheads for spatial safety are com-
parable, this result demonstrates that by modeling temporal
errors as spatial errors, MemSafe’s optimizations are effective
tools for reducing the additional cost of temporal safety.

C. Static Analysis

The “Checks,” “Opts.,” and “DFPG” columns of Table III
describe results related to MemSafe’s static analysis. First, we
show the static number of required and optimized checks as a
percentage of total dereferences. Second, we summarize the
DFPG by the percentage of nodes reachable from invalid, and
o/ store. The former indicates the portion of pointers that may
refer to temporally invalid objects, and the latter indicates the
average number of loaded memory locations that each pointer
store may potentially modify.

VI. RELATED WORK

We have already described many methods related to memory
safety in Section II. In this section, we will not repeat that
content but present additional details for particular methods.

Complete Safety  Several methods are capable of detecting
both spatial and temporal errors. Purify [18] operates on bi-
naries, but only ensures the safety of heap-allocated objects.
Yong and Horwitz [19] present a similar approach and im-
prove its cost with static analysis, but this method only checks
store operations. Safe C [6] ensures complete safety but is
incompatible due to its use of fat-pointers. Patil and Fischer
[7] address these issues by maintaining disjoint metadata and
performing checks in a separate “shadow process,” but this
requires an additional CPU. CCured [20] utilizes a type sys-
tem to eliminate checks for safe pointers and reduce metadata
bookkeeping. However, CCured’s use of fat-pointers causes

compatibility issues, and some programs require code mod-
ifications to lower cost. MSCC [3] is highly compatible and
complete but is unable to handle some downcasts. Fail-Safe
C [21] maintains complete compatibility with ANSI C but
incurs significant runtime overhead. Finally, Clause et al. [35]
describe an efficient technique for detecting memory errors,
but it requires custom hardware.

Spatial Safety Methods that primarily detect bounds viola-
tions are numerous. Notable is the work by Jones and Kelly
[14] since it maintains compatibility with precompiled code.
However, this method has high overhead and results in false
positives. Ruwase and Lam [15] extend this method to track
out-of-bounds pointers to avoid false positives. Additionally,
Dhurjati and Adve [16] utilize Automatic Pool Allocation
[36, ch.5] to improve cost, and Akritidis et al. [26] constrain
the size and alignment of allocated regions to further improve
cost. However, these methods do not detect temporal viola-
tions and are unable to detect sub-object overflows.

HardBound [37] is a hardware-assisted approach for ensur-
ing spatial safety with low overhead. This method encodes
fat-pointers in a special “shadow space” and provides archi-
tectural support for checking and propagating metadata. Soft-
Bound [8] is a related technique that records pointer meta-
data in disjoint data structures similar to our representation.
However, while these methods ensure complete spatial safety,
they do not ensure temporal safety, and HardBound requires
custom hardware to achieve low overhead.

Temporal Safety ~Few methods are designed primarily for
the detection of temporal violations. Dhurjati and Adve [38]
describe a technique based the Electric Fence [39] malloc
debugger: Their system assigns a unique virtual page to ev-
ery dynamically allocated object and relies on hardware page
protection to detect dangling pointer dereferences. This ap-
proach is improved with Automatic Pool Allocation [36, ch.
5] and a customized address mapping. However, this method
does not detect spatial violations and only detects temporal
violations of heap objects.

Other Approaches  Several methods utilize software checks
to enforce various security-related policies. Abadi et al. [22]
describe a technique to prevent software attacks by enforcing
control-flow integrity. Similarly, Castro et al. [23] enforce
data-flow integrity with an analysis based on reaching def-
initions, and WIT [24] enforces write-integrity by ensuring
each write operation accesses an object from a static set of
legally modifiable objects. Although these techniques are ca-
pable of preventing many memory access violations, they do
not ensure complete spatial and temporal safety.

DieHard [40] is a memory allocator capable of preventing
many heap-related errors. It uses random object placement
within a larger-than-normal heap to prevent invalid frees and
probabilistically avoid heap buffer overflows. However, this
method cannot ensure complete spatial and temporal safety.

VII. ConNcLusIoN

MemSafe is a compiler analysis and transformation for ensur-
ing the spatial and temporal memory safety of C at runtime.
MemSafe builds upon previous work to enable its complete-
ness and compatibility, capturing the most salient features of



object and pointer metadata in a new hybrid representation.
To improve cost, MemSafe exploits a novel mechanism for
modeling temporal errors as spatial errors, and a new data-
flow representation that simplifies optimizations for removing
unneeded checks and metadata.

We verified MemSafe’s ability to detect real errors with
lower overhead than previous methods. MemSafe detected
all documented memory errors in 6 programs with known
bugs. Additionally, it ensured complete safety with an aver-
age overhead of 87% on 30 programs widely-used in evaluat-
ing error detection tools. Finally, MemSafe’s average runtime
overhead on the Olden benchmarks was 1/4 that of the tool
with the lowest overhead among all existing complete and au-
tomatic methods that detect both spatial and temporal errors.
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