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Abstract—We revisit the problem of detecting greedy behavior
in the IEEE 802.11 MAC protocol by evaluating the performance
of two previously proposed schemes: DOMINO and the Sequential
Probability Ratio Test (SPRT). Our evaluation is carried out in four
steps. We first derive a new analytical formulation of the SPRT that
considers access to the wireless medium in discrete time slots. Then,
we introduce an analytical model for DOMINO. As a third step, we
evaluate the theoretical performance of SPRT and DOMINO with
newly introduced metrics that take into account the repeated na-
ture of the tests. This theoretical comparison provides two major
insights into the problem: it confirms the optimality of SPRT, and
motivates us to define yet another test: a nonparametric CUSUM
statistic that shares the same intuition as DOMINO but gives better
performance. We finalize the paper with experimental results, con-
firming the correctness of our theoretical analysis and validating
the introduction of the new nonparametric CUSUM statistic.

Index Terms—IEEE 802.11 MAC, SPRT, DOMINO, CUSUM,
misbehavior, intrusion detection.

I. INTRODUCTION

M OST COMMUNICATION protocols were designed
under the assumption that all parties would obey the

given specifications; however, when these protocols are imple-
mented in an untrusted environment, a misbehaving party can
deviate from the protocol specification and achieve better per-
formance at the expense of honest participants (e.g., changing
congestion parameters in TCP, free-riding in P2P networks and
so on).

In this work we derive new analytical bounds for the
performance of two previously proposed protocols for de-
tecting random access misbehavior in IEEE 802.11 net-
works—DOMINO [18], [17] and robust SPRT tests [16],
[15]—and show the optimality of SPRT against a worst-case
adversary for all configurations of DOMINO. Following the
main intuitive idea of DOMINO, we also introduce a nonpara-
metric CUSUM statistic that shares the same basic concepts
of DOMINO but gives better performance. Our results are
validated by theoretical analysis and experiments.
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A. Related Work

The current literature for preventing and detecting MAC layer
misbehavior can be classified in two: (1) design of new MAC-
layer protocols that discourage misbehavior, and (2) detection
of misbehaving parties.

The design of MAC-layer protocols to discourage misbe-
havior is generally done with the help of game-theoretic ideas.
The scenario usually includes a set of selfish nodes that want to
maximize their access to the medium, and goal of the protocol
is to motivate users to achieve a Nash equilibrium (no party
will have a motivation to deviate from the protocol) [9], [12],
[2], [7], [13]. Because game theoretic protocols assume that all
parties are willing to deviate from the protocol (the worst case
scenario), the throughput achieved is substantially less than in
protocols where the honest majority cooperates with the design.

In protocols where we assume that an honest majority coop-
erates, we are interested only in detecting the misbehaving par-
ties. The current literature offers two major apporaches: (1) the
modification of current protocols to facilitate the detection of
misbehavior, and (2) detection without modifying current pro-
tocols. The first set of approaches provide solutions based on
modification of the current IEEE 802.11 MAC layer protocol.
These schemes may assume a trusted receiver—e.g., an access
point—that assigns back-off values to other nodes [11], or a
negotiation of the backoff value among neighboring nodes [6],
[14]. In these protocols it is easy to detect misbehavior because
the detection agent knows the back-off time assigned to each
party.

The second set of approaches attempt to detect misbehavior
without modifying the underlying MAC-layer protocol. This is
the most viable solution for widely deployed MAC-layer pro-
tocols (such as IEEE 802.11). Detecting misbehavior in IEEE
802.11 is, however, very challenging because each node se-
lects their back-off value independently, and the detection agent
cannot determine—with complete certainty—if a series of sus-
piciously small back-off values by one party was the result of
chance, or if the party has deviated from the protocol specifica-
tion.

In DOMINO [18], [17], the authors focus on multiple misbe-
havior options in IEEE 802.11, and put emphasis on detection
of back-off misbehavior. The detection algorithm computes an
estimate of the mean average back-off time, and raises an alarm
if this estimate is suspiciously low.

A more technical approach was introduced by Rong et.al.
[19], where the detection algorithm relies on the Sequential
Probability Ratio Test (SPRT). The observations of the de-
tection agent are not the back-off times of the stations, but
the inter-delivery time distribution. To use the SPRT test, the
authors estimate a normal inter-delivery distribution and an
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attack inter-delivery distribution. The proposed scheme does
not address scenarios that include intelligent adaptive cheaters.
In particular, it does not consider the flexibility that an attacker
may have when designing its attack distribution.

The robust SPRT [15], [16] addresses the detection of
an adaptive intelligent attacker by casting the problem of
misbehavior detection within the min-max robust detection
framework. The key idea is to optimize the performance of
the detection algorithm for the worst-case attacker strategy.
This process is characterized by identifying the least favorable
operating point of the detection algorithm, and by deriving the
strategy that optimizes the performance of the detection algo-
rithm when operating in that point. The detection performance
is measured in terms of number of required observation samples
to derive a decision (detection delay) subject to a constant rate
of false alarms.

B. Contributions

DOMINO and (robust) SPRT were presented independently,
and without direct comparison or performance analysis. Addi-
tionally, both approaches evaluate the detection scheme perfor-
mance under unrealistic conditions, such as probability of false
alarm being equal to 0.01, which in our simulations results in
roughly 700 false alarms per minute (uder saturation condi-
tions), a rate that is unacceptable in any real-life implementa-
tion. In this work we address these concerns by providing a the-
oretical and experimental evaluation of these tests.

Our work contributes to the current literature by: (i) deriving a
new strategy (in discrete time) for the worst-case attack using an
SPRT-based detection scheme, (ii) providing new performance
metrics that address the large number of alarms in the evalu-
ation of previous proposals, (iii) providing a complete analyt-
ical model of DOMINO in order to obtain a theoretical compar-
ison to SPRT-based tests, and (iv) proposing an improvement to
DOMINO based on the CUSUM test.

The rest of the paper is organized as follows. Section II out-
lines the general setup of the problem. In Section III we propose
a min-max robust detection model and derive an expression for
the worst-case attack in discrete time. In Section IV we pro-
vide extensive analysis of DOMINO, followed by the theoretical
comparison of two algorithms in Section V. Motivated by the
main idea of DOMINO, we offer a simple extension to the algo-
rithm that significantly improves its performance in Section VI.

In Section VII we present the experimental performance
comparison of all algorithms. Finally, Section IX concludes our
study. In subsequent sections, the terms “attacker” and “adver-
sary” will be used interchangeably with the same meaning.

II. PROBLEM DESCRIPTION AND ASSUMPTIONS

An adversary has no need to cheat—i.e., misbehave—for
accessing the wireless medium when no one else attempts
to transmit. Therefore, in order to minimize the probability
of detection, an attacker will choose legitimate over selfish
behavior when the level of congestion in the network is low.
Similarly, the attacker will choose an adaptive selfish strategy
in congested environments.

For these reasons we assume a benchmark scenario where
all the participants are backlogged—i.e., have packets to send

at any given time—in both, our theoretical analysis and exper-
imental evaluations. We assume that the attacker will employ
the worst-case misbehavior strategy in this setting, and conse-
quently the detection system can estimate the maximal detection
delay. Notice also that the backlogged scenario represents the
worst-case scenario with regard to the number of false alarms
per unit of time (because the detection algorithm is forced to
make a maximum number of decisions per unit of time).

To formalize these assumptions we assume that each station
generates a sequence of random back-offs over
a fixed period of time: the back-off values , of
each legitimate protocol participant are distributed according
to the probability mass function (pmf) .
The pmf of the misbehaving participants is unknown to the
detection algorithm and is denoted as , where

represent the sequence of back-off values
generated by the misbehaving node over the same period of
time.

We assume that a detection agent—e.g., the access
point—monitors and collects the back-off values of a given
station, and is asked to make a decision based on these obser-
vations. The question we face is how to design a good detection
scheme based on this information.

In general, detection systems used in computer security can
be classified in three approaches: (1) signature-based detection
schemes, (2) anomaly detection schemes, and (3) specifica-
tion-based detection schemes [20]. Signature-based detection
scheme is based on the recognition of attack signatures. In
our case, however, this is not a viable solution since there is
no unique signature a misbehaving station will follow when
deviating from the MAC protocol. Anomaly detection schemes
consist on two phases: in the first phase, the system learns
the normal behavior of the protocol and creates a model; in
the second phase, the observations are compared with the
model and flagged as anomalous if they deviate from it. The
problem with anomaly detection schemes is that they tend to
generate a large number of false alarms: and in general, it is
very difficult to learn the normal behavior of a network. Finally,
specification-based approaches attempt to capture abnormal
behavior—like anomaly detection schemes—but instead of
learning the “normal” model, the model is specified manually.
This reduces the number of false alarms in practice, since
a manual specification tries to capture all possible normal
behaviors. We follow this paradigm in our work.

Since the IEEE 802.11 access distribution is known, it
should—in principle—be the best manual specification for
the normal access pmf . However, the back-off observations
seen by the monitoring agent cannot be perfect: not only
can they be hindered by concurrent transmissions or external
sources of noise, but it is impossible for a passive monitoring
agent to know the back-off stage of a given monitored station
because of collisions, and because in practice, nodes might
not be constantly backlogged. Consequently, in our setup
we identify “normal” (i.e., a behavior consistent with the
802.11 specification) profile of a backlogged station in the
IEEE 802.11 without any competing nodes, and notice that
its back-off process can be characterized with
pdf for and zero
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otherwise. It should be clear that this assumption minimizes the
probability of false alarms due to imperfect observations. At
the same time, we maintain a safe upper bound on the amount
of damaging effects a misbehaving station can cause to the
network.

Although our theoretical results utilize the above expression
for , the experimental setting utilizes the original implemen-
tation of the IEEE 802.11 MAC. In this case, the detection
agent needs to deal with observed values of larger than

, which can be due to collisions or due to the exponential
back-off specification in IEEE 802.11. We further discuss this
issue in Section VII.

III. SEQUENTIAL PROBABILITY RATIO TEST (SPRT)

A monitoring station observing the sequence of backoffs
will have to determine how many samples

it is going to observe before making a decision . It
is therefore clear that two quantities are involved in decision
making: a stopping time and a decision rule which, at
the stopping time, decides between hypotheses (legitimate
behavior) and (misbehavior). We denote the above combi-
nation with .

In order to proceed with our analysis we first define the prop-
erties of an efficient detector. Intuitively, we want to minimize
the probability of false alarms , and also, the prob-
ability of deciding that a misbehaving node is acting normally

(missed detections). Additionally, each detector
should be able to derive the decision as soon as possible; so we
would like to minimize the number of samples we collect from
a misbehaving station before calling the decision func-
tion.

Therefore , form a multi-cri-
teria optimization problem. Since not all of the above quantities
can be optimized at the same time, a natural approach is to define
the accuracy of each decision a priori and minimize the number
of samples collected:

(1)

where

The solution (optimality is assured when the data is i.i.d.
in both classes) to the above problem is the SPRT [21]. Let

The SPRT decision rule is defined as

(2)

where and .
The performance of the SPRT can be formally analyzed by

Wald’s identity:

(3)

where and
; furthermore, the coefficients in (3) correspond

to whether our observations are distributed with the legitimate
distribution or the adversarial behavior (respectively).

A. Adversary Model

In this section we find the least favorable for the SPRT.
We begin by stating our assumptions on the adversary class we
consider.

Capabilities of the Adversary: We assume the adversary
has full control over the probability mass function and the
back-off values it generates.

Knowledge of the Adversary: We assume the adversary knows
everything the detection agent knows and can infer the same
conclusions as the detection agent. In other words, we assume
there is no secret information for the adversary.

Goal of the Adversary: We assume the objective of the adver-
sary is to design in order to obtain access to the medium with
probability , while at the same time, minimizing the proba-
bility of being detected.

Theorem 1: The probability that the adversary accesses the
channel before any other terminal when competing with
neighboring (honest) terminals for channel access in saturation
condition is

(4)

Note that when the probability of access is
equal for all competing nodes (including the adversary).
More specifically, all of them will have access probability equal
to .

The proof of the theorem can be found in Appendix I.
Because we want to prevent a misbehaving station from

stealing bandwidth unfairly from the contending honest nodes,
we consider “worthy” of detection only those adversarial
strategies that cause enough “damage” to the network (when

), where “damage”—quantified by —denotes a
lower bound on the probability of access by the adversary
under saturation conditions. In practice, if the real gain of the
adversary is greater than , then our detection mechanism
will detect faster this misbehavior. If is less than , then we
expect that the effect of this type of adversary is not damaging.

An example of this last case is an adversary that never fires
an alarm because it selects such that the detection statistic
never reaches the upper bound . However, under these condi-
tions we know that is asymptotically no different than the
probability of access by a legitimate node, and thus there is no
need to detect this type of misbehavior.

1) Finding : Now we turn our attention to finding the
least-favorable distribution .

Let . Solving for we obtain

(5)

Notice that when , so corre-
sponds to complete misbehavior and correspond to legit-
imate behavior.
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Now, for any given must belong to the following class
of feasible probability mass functions:

(6)

The first two constraints guarantee that is a probability mass
function. The last constraint guarantees that belongs to the
class of “dangerous” probability distributions—the ones we are
interested in detecting, as previously explained.

Knowing , the objective of the attacker is to maximize the
amount of time it can misbehave without being detected. As-
suming that the adversary has full knowledge of the employed
detection test, it attempts to find the access strategy that
maximizes the expected duration of misbehavior before an
alarm is fired. By looking at (3), we conclude that the attacker
needs to minimize the following objective function:

(7)

Theorem 2: The pmf that minimizes (7) is

,
(8)

where is the solution to

(9)

Proof: We use variational methods for the derivation of .
First, notice that the objective function is convex in . Now

let and construct the Lagrangian of the
objective function and the constraints:

(10)

Next we take the derivative of the Lagrangian with respect
to . Then we evaluate this quantity at , for all possible
sequences :

(11)

and obtain:

(12)

Therefore, the optimal has to be of the form:

(13)

where .

Fig. 1. Form of the least favorable pmf p for two different values of g. When
g approaches 1, p approaches p . As g decreases, more mass of p is concen-
trated towards the smaller backoff values.

In order to obtain the values of the Lagrange multipliers
and we utilize the fact that . Additionally,
we utilize the constraints in . One constraint states that
must add up to 1, and therefore, by setting (13) equal to one and
solving for we obtain the following expression:

(14)

where . Replacing this solution in (13) we obtain

(15)

Now we need to find the value of the other Lagrange multi-
plier: , or alternatively, the value of . To solve for this value
we use the constraint on the mean for . Notice that this
constraint must be satisfied with equality. Rewriting this con-
straint in terms of (15) we obtain

(16)

from where (9) follows.
Fig. 1 illustrates the optimal distribution for two values of

the parameter .

B. SPRT Optimality for any Adversary in

Let . The previously-discussed solution
was obtained in the form

(17)

In other words, we first minimized by using the SPRT
(minimization for any ) and then found the that maximizes

.
This solution, however, puts the misbehaving station at a dis-

advantage, since it is implicitly assumed (by the optimization
ordering) that the detecting algorithm knows and then mini-
mizes the number of samples by using the SPRT on this .
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In practice, however, it is expected to be easier for a misbe-
having station to learn which detection algorithm we use, rather
than the detection algorithm learning the attack distribution a
priori. We are therefore interested in finding a detection algo-
rithm resistant to adaptive attackers—those who can select their
response based on our defenses.

Formally, the problem we are interested in solving must re-
verse the ordering from maximin to minimax:

(18)

Fortunately, our solution also satisfies this optimization problem
since it forms a saddle point equilibrium, resulting in the fol-
lowing theorem:

Theorem 3: For every and every

(19)

We omit the proof of this result; the details can be found in
[15].

As a consequence of this theorem, there is no incentive for
deviation from for any of the players (the detection
agent or the misbehaving node).

C. A Less Powerful Adversary Model

So far we have assumed that the adversary has the knowledge
of the detection algorithm used (the SPRT in our case) in order
to find the least favorable distribution . Nevertheless, can
be argued to be a good adversarial strategy against any detector
(in the asymptotic observation case ).

Information theory has given bounds on the probability of
detection and false alarm for an optimal detector in terms of
the Kullback-Leibler divergence between the distribution of the
two hypothesis [8], [3].

In our case, the Kullback-Leibler divergence between and
,denoted as , is given by (7) (up to a scaling factor).

Applying the results from information theory, the probability
of detection of the optimal decision algorithm (when the false
alarm rate tends to zero, and is large enough) is lower bounded
by .

It is now clear that an adversary that tries to minimize the
probability of detection, under these conditions, will attempt to
minimize (7), leading to the same we obtained in (8)

D. Evaluation of Repeated SPRT

The original setup of SPRT-based misbehavior detection pro-
posed in [16] was better suited for on-demand monitoring of
suspicious nodes (e.g., when a higher layer monitoring agent re-
quests the SPRT to monitor a given node because it is behaving
suspiciously, and once it reaches a decision it stops monitoring)
and was not implemented as a repeated test.

On the other hand, the configuration of DOMINO is suited for
continuous monitoring of neighboring nodes. In order to obtain
fair comparison of both tests, a repeated SPRT algorithm is im-
plemented: whenever , the SPRT restarts with .
This setup allows a detection agent to detect misbehavior for
both short and long-term attacks. Monitoring transmitting sta-
tions continuously, however, can raise a large number of false
alarms if the parameters of the test are not chosen appropriately.

Fig. 2. Tradeoff curve between the expected number of samples for a false
alarm E[T ] and the expected number of samples for a detection E[T ]. For
fixed a and b, as g increases the time to detection or to false alarms increases
exponentially.

In this section we propose a new evaluation metric for con-
tinuous monitoring of misbehaving nodes. We believe that the
performance of the detection algorithms is appropriately cap-
tured by employing the expected time before detection
and the average time between false alarms as the evalu-
ation parameters.

The above quantities are straightforward to compute for the
SPRT: each time the SPRT stops, the decision function
can be modeled as a Bernoulli trial with parameters and ,
and the waiting time until the first success is then a geometric
random variable. Therefore,

(20)

Fig. 2 illustrates the tradeoff between these variables for dif-
ferent values of the parameter . It is important to note that the
chosen values of the parameter in Fig. 2 are small. We claim
that this represents an accurate estimate of the false alarm rates
that need to be satisfied in actual anomaly detection systems [5],
[1], a fact that was not taken into account in the evaluation of
previously proposed systems.

IV. PERFORMANCE ANALYSIS OF DOMINO

We now present the general outline of the DOMINO de-
tection algorithm. The first step of the algorithm is based on
computation of the average value of back-off observations:

. In the next step, the averaged value is
compared to the given reference back-off value: ,
where the parameter is a threshold that controls
the tradeoff between the false alarm rate and missed detections.
The algorithm utilizes the variable which stores
the number of times the average back-off exceeds the threshold

. DOMINO raises a false alarm after the threshold is ex-
ceeded more than times. A forgetting factor is considered for

if the monitored station behaves normally in the
next monitoring period. That is, the node is partially forgiven:
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Fig. 3. For K = 3, the state of the variable cheat count can be represented
as a Markov chain with five states. When cheat count reaches the final state
(4 in this case) DOMINO raises an alarm.

(as long as
remains greater than zero).

More specifically, let be defined as
and let the algorithm be initialized with

. After collecting samples, the following
routine is executed:

if

if

elseif

It is now easy to observe that DOMINO is a sequential test
, with stopping time equal to (where rep-

resents the number of steps takes to exceed )
and the decision rule each time DOMINO stops is .

In order to compare the performance of this sequential
test with our SPRT, we need to derive new expressions for
DOMINO; mainly, the average time between false alarms

and the average waiting time for a detection .
However, unlike the SPRT case, where these expressions
are easy to derive, in DOMINO we need to do some more
work because (1) we are not aware of an analytical model for
DOMINO, and (2) the parameters , and in DOMINO
are difficult to tune because there has not been any analytical
study of their influence on and . The correlation
between DOMINO and SPRT parameters is further addressed
in Section VII.

In order to provide an analytical model for the performance of
the algorithm, we model the detection mechanism in two steps:

1) We first define
2) We define a Markov chain with transition probabilities

and . The absorbing state represents the case when
misbehavior is detected (note that we assume is fixed,
so does not depend on the number of observed back-off
values). A Markov chain for is shown in Fig. 3.

A. Computing the Transition Probabilities: and

We can now write

(21)

when the samples are generated by a legitimate station. Oth-
erwise, if the samples are generated by we need to
compute:

(22)

In the remainder of this section we assume .
We now derive the expression for for the case of a legitimate

monitored node. Following the reasoning from Section II, we
assume that each is uniformly distributed on .
Therefore, the mean of is and its variance

. Recall that this analysis provides a
lower bound on the probability of false alarms when the min-
imum contention window (of size ) is assumed. Using
the definition of we derive the following expression:

(23)

where the last equality follows from the fact that the are
i.i.d with pmf for all .

In general, there are three ways of obtaining the value for
(23): (1) we can try to derive an analytical expression via a com-
binatorial formula, (2) we can use the moment generating func-
tion for obtaining the exact numerical value for , or (3) we
obtain an approximate value by using the Central Limit The-
orem.

Following the combinatorial approach, the number of ways
that integers can sum up to is

and therefore,

An additional constraint is, however, imposed by the fact that
can only take values up to , which is in general smaller than

, and thus the above combinatorial formula cannot be applied.
Furthermore, a direct computation of the number of ways

bounded integers sum up to is very expensive. As an example,
let and . A direct summation needed
for calculation of yields at least iterations.
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Fig. 4. Exact and approximate values of p as a function of m.

Fortunately, using the moment generating function we
can obtain an efficient alternative way for computing

. We first define . It
is well known that the moment generating function of

, can be computed as follows:

where is the multinomial coefficient

.
By comparing terms with the transform of we observe

that is the coefficient that corresponds to the term
in (24). This result can be used for the efficient computation of

by using (23).
Alternatively, we can approximate the computation of for

large values of . The approximation arises because as in-
creases, converges to a Gaussian random variable by the Cen-
tral Limit Theorem. Thus,

where

and is the error function:

Fig. 4 illustrates the exact and approximate calculation of as
a function of , for and . This shows the
accuracy of the above approximation for both small and large
values of .

The computation of follows the same steps (although
the moment generating function cannot be easily expressed in
analytical form, it is still computationally tractable) and is there-
fore omitted.

B. Expected Time to Absorption in the Markov Chain

We now derive the expression for the expected time to absorp-
tion for a Markov Chain with states. Let be the expected
number of transitions until absorption given that the process
starts at state . In order to compute the stopping times
and , it is necessary to find the expected time to absorp-
tion starting from state zero, . Therefore,
(computed under ) and (computed
under ).

The expected times to absorption, repre-
sent the unique solutions of the equations

where is the transition probability from state to state . For
any , the equations can be represented in matrix form:

...
...

...

For example, for we obtain

and the solution we are interested is

V. THEORETICAL COMPARISON

In this section we compare the tradeoff curves between
and for both algorithms. We compare both algorithms
for an attacker with . Similar results were observed for
other values of .

For the SPRT we set arbitrarily and vary from
up to (motivated by the realistic low false alarm

rate required by actual intrusion detection systems [5]). How-
ever, in DOMINO it is not clear how the parameters , , and

affect our metrics, so we vary all the available parameters to
explore and find the best possible performance of DOMINO.

Fig. 5 illustrates the performance of DOMINO for
(the default value used in [18]). Each curve for has ranging
between 1 and 60. Observing the results in Fig. 5, we conclude
that the best performance of DOMINO is obtained for ,
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Fig. 5. DOMINO performance for K = 3;m ranges from 1 to 60. 
 is shown
explicitly. As 
 tends to either 0 or 1, the performance of DOMINO decreases.
The SPRT outperforms DOMINO regardless of 
 and m.

regardless of . Therefore, this value of is adopted as an op-
timal threshold in further experiments.

Fig. 6 represents the evaluation of DOMINO for
with varying threshold . For each value of ranges from
1 to 60. In this figure, however, we notice that with the increase
of , the point with forms a performance curve that is
better than any other point with .

Consequently, Fig. 7 represents the best possible performance
for DOMINO; that is, we let and change from 1 up
to 100. We again test different values for this configuration,
and conclude that the best is still close to the optimal value
of 0.7 derived from experiments in Fig. 5 Even with the optimal
setting, DOMINO is outperformed by the SPRT.

Since was not considered as a tuning parameter in the orig-
inal DOMINO algorithm ( was random in [18], depending
only on the number of observations in a given unit of time), we
refer to the new configuration with as O-DOMINO, for
Optimized-DOMINO, since according to our analysis, any other
value of is suboptimal. Notice that O-DOMINO can be ex-
pressed as

(24)

where is the indicator random variable for event (
if the outcome of the random experiment is event , and
otherwise), and if and 0 otherwise.

VI. NONPARAMETRIC CUSUM STATISTIC

As concluded in the previous section, DOMINO exhibits sub-
optimal performance for every possible configuration of its pa-
rameters. However, the original idea of DOMINO is very intu-
itive and simple: it compares the observed backoff of the moni-
tored nodes with the expected backoff of honest nodes within a
given period of time.

In this section we extend the above idea by proposing a test
that exhibits better performance than O-DOMINO, while still
preserving its simplicity.

By looking at O-DOMINO’s behavior (24), we were re-
minded of quickest change-detection nonparametric statistics.
One particular nonparametric statistic that has a very similar

Fig. 6. DOMINO performance for various thresholds K; 
 = 0:7 and m in
the range from 1 to 60. The performance of DOMINO decreases with increase
of m. For fixed 
 , the SPRT outperforms DOMINO for all values of parameters
K and m.

Fig. 7. The best possible performance of DOMINO is when m = 1 and K

changes in order to accommodate for the desired level of false alarms. The best

 must be chosen independently.

behavior to DOMINO is the nonparametric cumulative sum
(CUSUM) statistic [4]. Nonparametric CUSUM is initialized
with and updates its value as follows:

(25)

An alarm is fired whenever , where is a threshold that
can be used as a parameter to control the tradeoff between the
rate of false alarms and the rate of missed detections.

A. Properties of the Nonparametric CUSUM Statistic

Assuming and —i.e., the expected
back-off value of an honest node is larger than a given threshold
(and vice versa)— the properties of the CUSUM test with regard
to the expected false alarm and detection times can be captured
by the following theorem.

Theorem 4: The probability of firing a false alarm decreases
exponentially with . Formally, as

(26)
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Fig. 8. Simulations: two legitimate participants compete with the adversary.

Furthermore, the delay in detection increases only linearly with
. Formally, as

(27)

The proof is a straightforward extension of the case originally
considered in [4].

B. Relationship Between Nonparametric CUSUM and
DOMINO

It is easy to observe that the CUSUM test is similar to
O-DOMINO; in CUSUM being equivalent to the upper
threshold in DOMINO, and the statistic in CUSUM being
equivalent to the variable in O-DOMINO.

The main difference between O-DOMINO and the CUSUM
statistic, is that every time there is a “suspicious event” (i.e.,
whenever ), is increased by one,
whereas in CUSUM, is increased by an amount propor-
tional to the level of suspected misbehavior. Similarly, when

is decreased only by one (or main-
tained as zero), while the decrease in can be expressed as

(or a decrease of if ); in other
words, it is proportional to the amount of time the station did
not attempt to access the channel.

VII. EXPERIMENTAL RESULTS

A. Assumptions and Experimental Setup

We now proceed to experimental evaluation of the analyzed
detection schemes. It has already been mentioned that we as-
sume existence of an intelligent adaptive attacker that is able
to adjust its access strategy depending on the level of conges-
tion in the environment. Namely, we assume that, in order to
minimize the probability of detection, the attacker chooses le-
gitimate over selfish behavior when the congestion level is low,
and an adaptive selfish strategy in congested environments. Due
to these reasons, when constructing the experiments, we assume

that all stations have packets to send at any given time. We as-
sume that the attacker will employ the least-favorable misbe-
havior strategy for our detection algorithm, enabling us to es-
timate the maximal detection delay. It is important to mention
that this setting also represents the worst-case scenario with re-
gard to the number of false alarms per unit of time because the
detection algorithm is forced to make a maximum number of
decisions per unit of time. (We expect the number of alarms to
be smaller in practice.)

The back-off distribution of an optimal attacker was im-
plemented in the network simulator Opnet1 and tests were
performed for various levels of false alarms. We note that the
simulations were performed with nodes that followed the stan-
dard IEEE 802.11 access protocol (with exponential back-off).
The results presented in this work correspond to the scenario
consisting of two legitimate and one selfish node competing
for channel access. The corresponding scenario is presented in
Fig. 8. We consider the scenario where one adaptive intelligent
adversary competes with two legitimate stations for channel
access. Consequently, in a fair setting, each protocol participant
should be allowed to access the medium for 33% of time
under the assumption that each station is backlogged and has
packets to send at any given time slot. The detection agent was
implemented such that any observed back-off value
was set up to be W. Our experiments show that it works well
in practice.

The resulting comparison of DOMINO, CUSUM and SPRT
does not change for any number of competing nodes: SPRT al-
ways exhibits the best performance. In order to demonstrate the
performance of all detection schemes for more aggressive at-
tacks, we choose to present the results for the scenario where
the attacker attempts to access channel for 60% of the time (as
opposed to 33% if it was behaving legitimately).

The backlogged environment in Opnet was created by em-
ploying a relatively high packet arrival rate per unit of time: the
results were collected for the exponential(0.01) packet arrival
rate and the packet size was 2048 bytes. The results for both
legitimate and malicious behavior were collected over a fixed
period of 100s.

The evaluation was performed as a tradeoff between the av-
erage time to detection and the average time to false alarm. It
is important to mention that the theoretical performance eval-
uation of both DOMINO and SPRT was measured in number
of samples. Here, however, we take advantage of the experi-
mental setup and measure time in seconds—a quantity that is
more meaningful and intuitive in practice.

B. Results

1) Testing the Detection Schemes: The first step in our ex-
perimental evaluation is to test the optimality of the SPRT, or
more generally, the claim that O-DOMINO performs better than
the original DOMINO, that the nonparametric CUSUM statistic
performs better than O-DOMINO and that the SPRT performs
better than all of the above.

We first compare O-DOMINO with the original configura-
tion suggested for DOMINO. The original DOMINO algorithm,

1http://www.opnet.com/products/modeler/home.html
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Fig. 9. Tradeoff curves for the original DOMINO algorithm with K = 3; 
 =

0:9 and different values of m versus O-DOMINO with 
 = 0:7 and different
values of K .

Fig. 10. Comparison of the SPRT test against DOMINO using the optimal (ex-
ponential) attack. The gain of the attacker is identical in both cases.

as suggested in [18], assumes and . Further-
more, as we have already mentioned, the original DOMINO
takes the back-off averages over a fixed unit of time, so the
number of observed samples for taking the average is dif-
ferent for every computed average backoff. Therefore, we first
compare DOMINO with and varying (repre-
senting the fact that the performance of the original DOMINO
algorithm can be any point on that tradeoff curve, depending on
the number of samples observed ), versus O-DOMINO with

(the suggested optimal performance achievable by the
O-DOMINO algorithm according to our analysis). This com-
parison can be seen in Fig. 9; similar performance was also ob-
served for other configurations of and in DOMINO. In par-
ticular, we noticed that as long as DOMINO takes averages of
the samples, i.e., as long as , DOMINO is outperformed
by O-DOMINO, even if they assume the same . Therefore, our
experiments suggest that having close to 0.7 is the optimal
setting for DOMINO; a result that coincides with our analytical
derivations.

We also test the performance of DOMINO and the SPRT in
the presence of the worst-case attack strategy . Fig. 10 shows
that SPRT significantly outperforms DOMINO in the presence
of an optimal attacker.

Fig. 11. Tradeoff curves for SPRT with b = 0:1 and different values of a
versus nonparametric CUSUM and O-DOMINO with 
 = 0:7 and different
values of K .

We now test how our three proposed algorithms compare to
each other. Fig. 11 provides experimental evidence confirming
our predictions. In general, since the SPRT is optimal, it per-
forms better than the nonparametric CUSUM statistic, and be-
cause the nonparametric CUSUM statistic takes into account
the level of misbehavior observed (or normal behavior) for each
sample, then it outperforms the restricted addition and substrac-
tion in O-DOMINO.

2) Testing the Optimality of : We have therefore shown
how SPRT is the best test when the adversary selects . We now
show that if the adversary deviates from it will be detected
faster.

In order to come up with another strategy , we de-
cided to use the attack distribution considered in [18]; a uniform
distribution with support between 0 and , where denotes
the misbehavior coefficient of the adversary and is the con-
tention window size. We call this pmf . In order to make a fair
comparison, we require , and thus we set .

Fig. 12 shows the performance of SPRT when the adversary
uses and . In our mathematical analysis we proved that
is the worst possible distribution our detection algorithm (SPRT)
can face, i.e., any other distribution will generate shorter detec-
tion delay. The results presented in Fig. 12 support this state-
ment, since is detected faster than when the SPRT is used
as detection algorithm.

Note that the same phenomenon happens for DOMINO. As
can be seen in Fig. 13, an adversary using against DOMINO
can misbehave for longer periods of time without being detected
than by using . Notice, however, that we did not derive the op-
timal adversarial strategy against DOMINO, and therefore there
might be another distribution which will yield a better gain
to the adversary when compared to using against DOMINO.

As we described before, however, can be argued to be a
good adversarial strategy against any detector in the asymptotic
observation case because it minimizes the Kullback-Leibler di-
vergence between and . On the other hand we could not
find any theoretical motivation for the definition of .

We now test the performance of our algorithms against
. Fig. 14 compares the performance of DOMINO and

O-DOMINO with respect to . When compared to Fig. 9, it is



CÁRDENAS et al.: EVALUATION OF DETECTION ALGORITHMS FOR MAC LAYER MISBEHAVIOR: THEORY AND EXPERIMENTS 11

Fig. 12. Tradeoff curves for SPRT with b = 0:1 and different values of a. One
curve shows its performance when detecting an adversary that chooses p and
the other is the performance when detecting an adversary that chooses p .

Fig. 13. Comparison of the DOMINO test against p versus the optimal attack
p . The gain of the attacker is identical in both cases.

Fig. 14. Tradeoff curves for DOMINO and O-DOMINO with the same pa-
rameters as in Fig. 9. However this time instead of detecting an adversary that
chooses p we measure their performance against an adversary that chooses p .

evident that DOMINO and O-DOMINO perform better when
the adversary chooses .

We also compare the performance of SPRT and DOMINO
when the adversary chooses . The results are presented in

Fig. 15. Comparison of the SPRT against DOMINO, using the optimal attack
from DOMINO paper. The gain of the attacker is identical in both cases.

Fig. 16. Comparison between theoretical and experimental results: theoretical
analysis with linear x axis closely resembles the experimental results.

Fig. 15. As expected, a sub-optimal attack is detected with
a substantially smaller detection delay with the SPRT. More
specifically, we observe that the detection delay for a sub-op-
timal strategy is more than 10 times larger than the one for the
optimal strategy.

Note also how close the theoretical shape of the tradeoff
curves is to the actual experimental data. Fig. 16 supports the
correctness of our theoretical analysis since if the logarithmic x
axis in the tradeoff curves in Section V is replaced with a linear
one, our theoretical curves closely resemble the experimental
data.

VIII. DISCUSSION ON PARAMETRIC, NONPARAMETRIC,
AND ROBUST STATISTICS

Tests based on nonparametric statistics do not consider the
distribution itself, but only certain parameters that characterize
it, such as mean, median or variance. Since such tests consider
only certain parts of distribution, they allow a very large class
of probability distributions. Furthermore, nonparametric tests
let us deal with unknown probability distributions. The disad-
vantage is that they throw away a lot of information about the
problem that can help improve the performance of the detection
test.
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On the other hand, tests based on parametric statistics assume
precise knowledge of the distributions. The advantage is that
if we know the distributions precisely, parametric statistics are
optimal in the sense that they perform better (in general) than
nonparametric tests. The disadvantage is that if our knowledge
of the distributions is incorrect, then there is no guarantee that
the test will perform well.

With this definitions it might be intuitive to think of our
problem of detecting misbehavior as a nonparametric problem,
since the distribution of the adversary is unknown. This was
the approach followed by DOMINO (and by the nonparametric
CUSUM statistic): although DOMINO does not specify the
exact distribution of the adversary, it specifies a test that com-
pares the sample mean of the observed process to a constant,
and is thus specifying a constraint on the mean for the adversary
distribution.

Our SPRT formulation attempts to use the precision given by
parametric tests while avoiding the specification of the distribu-
tion of the adversary. We achieve this by using robust statistics:
a collection of related theories on the use of approximate para-
metric models [10].

The usual problem with robust statistics is that even simple
problems can become intractable very easily, and thus, finding
a solution to the robust formulation is usually hard.

The main advantage of robust statistics is that they produce
estimators that are not excessively affected by small departures
from model assumptions. By defining a class of adversary distri-
butions and then selecting the saddle point strategy between
the detector and the least-favorable conditions, we are guaran-
teed that we can tolerate any deviation of the adversary distri-
bution (since by the saddle point condition any other adversary
distribution will make our test perform better than with ).
At the same time we are incorporating more information about
the problem than with nonparametric statistics, and thus we ex-
pect our system to perform better than nonparametric tests.

IX. CONCLUSION

In this work, we performed an extensive analytical and ex-
perimental comparison of the existing misbehavior detection
schemes in the IEEE 802.11 MAC. We confirmed the optimality
of the SPRT-based detection schemes and provided an analyt-
ical and intuitive explanation of why the other schemes exhibit
suboptimal performance when compared to the SPRT schemes.
In addition to that, we offered an extension to DOMINO: pre-
serving its original idea and simplicity, while significantly im-
proving its performance.

Our results show the value of doing a rigorous formulation
of the problem and providing a formal adversarial model since
it can outperform heuristic solutions. We believe our model ap-
plies not only to MAC-layer problems, but to a more general ad-
versarial setting. In several practical security applications such
as in biometrics, spam filtering, watermarking etc., the attacker
has control over the attack distribution and this distribution can
be modeled in similar fashion as in our approach: with the use
of robust statistics and minimax games.

An issue of further study concerns the response mechanisms.
When an alarm is raised, we must consider the effects of our re-
action, such as, denying access to the medium for a limited pe-
riod of time. If we observe constant misbehavior (even after pe-
nalizing the station), we might consider more severe penalties,
such as revocation of the station from the network. Alternatively,
our misbehavior detection algorithm might be part in a larger
misbehavior detection engine. In this case the problem is one of
combining and correlating alerts from different nodes. Finding
a way to integrate our detection algorithm to larger alarm sys-
tems, and testing the effects of our response mechanisms is an
area of research that must be explored further.

APPENDIX I

In IEEE 802.11 protocol, the back-off counter of any node
freezes during the transmissions and reactivates during free pe-
riods. We observe the back-off times during a fixed period
that does not include transmission intervals. Consider first the
case of one misbehaving and one legitimate node and assume
that within the time period , we observe sam-
ples of the attacker’s back-off and samples of
the legitimate node’s back-offs. The attacker’s percentage of ac-
cessing the channel during the period is . In order to
obtain we need to compute the limit of this ratio as .
Notice that

which yields the following two equations:

Letting results in and from the previous
double inequality, by applying the Law of Large Numbers, we
conclude that for the case of one misbehaving node against
legitimate ones
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