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The widespread deployment of wireless networks and hot spots that employ the IEEE 802.11
technology has forced network designers to put emphasis on the importance of ensuring efficient
and fair use of network resources. In this work we propose a novel framework for detection of
intelligent adaptive adversaries in the IEEE 802.11 MAC by addressing the problem of detection
of the worst-case scenario attacks. Utilizing the nature of this protocol we employ sequential
detection methods for detecting greedy behavior and illustrate their performance for detection
of least favorable attacks. By using robust statistics in our problem formulation, we attempt to
utilize the precision given by parametric tests, while avoiding the specification of the adversarial
distribution. This approach establishes the lowest performance bound of a given Intrusion Detec-
tion System (IDS) in terms of detection delay and is applicable in online detection systems where
users who pay for their services want to obtain the information about the best and the worst
case scenarios and performance bounds of the system. This framework is meaningful for studying
misbehavior due to the fact that it does not focus on a specific adversarial strategies and therefore
is applicable to a wide class of adversarial strategies.
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1. INTRODUCTION

Deviation from legitimate protocol operation in wireless networks has received con-
siderable attention from the research community in recent years. The pervasive
nature of wireless networks with devices that are gradually becoming essential com-
ponents in our life-style justifies the rising interest on that issue. In addition, the
architectural organization of wireless networks in distributed secluded user commu-
nities raises issues of compliance with protocol rules. More often than not, users are
clustered in communities that are defined on the basis of proximity, common ser-
vice or some other common interest. Since such communities are bound to operate
without a central supervising entity, no notion of trust can be presupposed.

Furthermore, the increased level of sophistication in the design of protocol compo-
nents, together with the requirement for flexible and readily reconfigurable protocols
has led to the extreme where wireless network adapters and devices have become
easily programmable. As a result, it is feasible for a network peer to tamper with
software and firmware, modify its wireless interface and network parameters and
ultimately abuse the protocol. This situation is referred to as protocol misbehav-
ior. The goals of a misbehaving peer range from exploitation of available network
resources for its own benefit up to network disruption. The solution to the prob-
lem is the timely and reliable detection of such misbehavior instances, which would
eventually lead to network defense and response mechanisms and isolation of the
misbehaving peer. However, two difficulties arise: the random nature of some pro-
tocols (such as the IEEE 802.11 medium access control one) and the nature of the
wireless medium with its inherent volatility. Therefore, it is not easy to distin-
guish between a peer misbehavior and an occasional protocol malfunction due to a
wireless link impairment.

Protocol misbehavior has been studied in various scenarios in different commu-
nication layers and under several mathematical frameworks. The authors in [Raya
et al. 2004] focus on MAC layer misbehavior in wireless hot-spot communities.
They propose a sequence of conditions on some available observations for testing
the extent to which MAC protocol parameters have been manipulated. The ad-
vantage of the scheme is its simplicity and easiness of implementation, although
in some cases the method can be deceived by cheating peers, as the authors point
out. A different line of thought is followed by the authors in [Kyasanur and Vaidya
2003], where a modification to the IEEE 802.11 MAC protocol is proposed to fa-
cilitate the detection of selfish and misbehaving nodes. The approach presupposes
a trustworthy receiver, since the latter assigns to the sender the back-off value to
be used. The receiver can readily detect potential misbehavior of the sender and
accordingly penalize it by providing less favorable access conditions through higher
back-off values for subsequent transmissions. A decision about protocol deviation
is reached if the observed number of idle slots of the sender is smaller than a pre-
specified fraction of the allocated back-off. The sender is labeled as misbehaving
if it turns out to deviate continuously based on a cumulative metric over a sliding
window. This work also presents techniques for handling potential false positives
due to the hidden terminal problem and the different channel quality perceived by
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the sender and the receiver. The work in [Cárdenas et al. 2004] attempts to prevent
scenarios of colluding sender-receiver pairs by ensuring randomness in the course
of MAC protocol.

A game-theoretic framework for the same problem at the MAC layer is provided
in [Čagalj et al. 2005]. Using a dynamic game model, the authors derive the strategy
that each node should follow in terms of controlling channel access probability
by adjustment of contention window, so that the network reaches its equilibrium.
They also provide conditions under which the Nash equilibrium of the network with
several misbehaving nodes is Pareto optimal for each node as well. The underlying
assumption is that all nodes are within wireless range of each other so as to avoid
the hidden terminal problem.

Misbehavior detection has been studied at the network layer for routing protocols
as well. The work in [Marti et al. 2000] presents the watchdog mechanism, which
detects nodes that do not forward packets destined for other nodes. The pathrater
mechanism evaluates the paths in terms of trustworthiness and helps in avoiding
paths with untrusted nodes. The technique presented in [Buchegger and Boudec
2002] aims at detecting malicious nodes by means of neighborhood behavior mon-
itoring and reporting from other nodes. A trust manager, a reputation manager
and a path manager aid in information circulation throughput the network, evalua-
tion of appropriateness of paths and establishment of routes that avoid misbehaving
nodes. Detection, isolation and penalization of misbehaving nodes are also attained
by the technique above.

Node misbehavior can be viewed as a special case of denial-of-service (DoS)
attack or equivalently a DoS attack can be considered as an extreme instance of
misbehavior. DoS attacks at the MAC layer are a significant threat to availability
of network services. This threat is intensified in the presence of the open wireless
medium. In [Gupta et al. 2002], the authors study simple DoS attacks at the MAC
layer, show their dependence on attacker traffic patterns and deduce that the use of
MAC layer fairness can mitigate the effect of such attacks. In [Bellardo and Savage
2003] the focus is also on DoS attacks against the 802.11 MAC protocol. They
describe vulnerabilities of 802.11 and show ways of exploiting them by tampering
with normal operation of device firmware.

The nature of wireless networks operation dictates that decisions about the oc-
currence or not of misbehavior should be taken on-line as observations are revealed
and not in a fixed observation interval. This gives rise to the sequential detection
problem. A sequential decision rule consists of a stopping time which indicates
when to stop observing and a final decision rule that indicates which hypothesis
(i.e, occurrence or not of misbehavior) should be selected. A sequential decision rule
is efficient if it can provide reliable decision as fast as possible. It has been shown
by Wald [Wald 1947] that the decision rule that minimizes the expected number
of required observations to reach a decision over all sequential and non-sequential
decision rules is the sequential probability ratio test (SPRT).

The basic feature of attack and misbehavior strategies is that they are entirely
unpredictable. In the presence of such uncertainty, it is meaningful to seek models
and decision rules that are robust, namely they perform well for a wide range
of uncertainty conditions. One useful design philosophy is to apply a min-max

ACM Journal Name, Vol. V, No. N, February 2008.



4 · Svetlana Radosavac et. al.

formulation and identify the rule that optimizes worst-case performance over the
class of allowed uncertainty conditions. The min-max design principle has been
successfully applied in signal processing and control systems, where the goal is to
design receiver filters of optimal performance with respect to a certain measure
(e.g. signal-to-noise-ratio) in the presence of system modeling uncertainties and
background noise [Kassam and Poor 1985; Verdu and H.V.Poor 1984].

In a wireless network, information about the behavior of nodes can become read-
ily available to immediate neighbors through direct observation measurements. If
these measurements are compared with their counterparts for normal protocol op-
eration, it is then contingent upon the detection rule to decide whether the protocol
is normally executed or not. A min-max formulation translates to finding the de-
tection rule with the minimum required number of observations to reach a decision
for the worst instance of misbehavior. Clearly, such a scheme would guarantee a
minimum level of performance which is the best minimum level possible over all
classes of attacks. In this work, we address the problem of MAC protocol misbe-
havior detection at a fundamental level and cast it as a min-max robust detection
problem. Our work contributes to the current literature by: (i) formulating the
misbehavior problem at hand as a min-max robust sequential detection problem
that essentially encompasses the case of a sophisticated attacker, (ii) quantifying
performance losses incurred by an attack and defining an uncertainty class such
that the focus is only on attacks that incur ”large enough” performance losses,
(iii) obtaining an analytical expression for the worst-case attack and the number
of required observations, (iv) establishing an upper bound on number of required
samples for detection of any of the attacks of interest, (v) extending the basic model
to scenarios with interference due to concurrent transmissions. Our work consti-
tutes a first step towards understanding the structure of the problem, obtaining
bounds on achievable performance and characterizing the impact of different sys-
tem parameters on it. Although we do mention the impact of interference on the
performance of the IDS and perform initial evaluation to illustrate its impact on
detection delay, we do not perform extensive analysis and performance evaluation
of the system in the presence of interference in the remainder of this article.

Compared to our preliminary work in [Radosavac et al. 2005], in this work we
introduce a more sophisticated adversary model that captures the behavior of an
adversary in the IEEE 802.11 MAC in a more precise manner. Namely, the work
in [Radosavac et al. 2005] assumed that the back-off counters never freeze due to a
perceived busy channel. However, according to the IEEE 802.11 MAC specification,
each node freezes its back-off counter when the channel is busy. Consequently, the
above assumption lead to a heavily approximated adversarial model. In this work,
we improved the adversary model from [Radosavac et al. 2005] by assuming that the
back-off counters freeze due to a perceived busy channel. More specifically, we used
asymptotic theory to derive an expression of the attacker percentage of channel ac-
cess and to define the attack classes of interest. We also extend this framework and
generalize our treatment for multiple competing nodes and asses the performance
of both the detection scheme and the adversary for such scenario. In particular, we
incorporated terminology and derivations that apply to quickest change detection
theory. The improved and precise version for the worst-case adversarial strategy
ACM Journal Name, Vol. V, No. N, February 2008.
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enabled us to provide rigorous proofs for the structure of the optimal attack and for
the properties of the saddle point of the IDS-attacker game. In order to provide a
more sophisticated and realistic simulation scenario, we implemented a misbehav-
ing node model in the network simulator Opnet and evaluated the performance of
both the adversary and the IDS in terms of trade-off between the expected time to
False Alarm and the expected time to detection.

The rest of the paper is organized as follows. In Section 2.1, we discuss the issue
of misbehavior in IEEE 802.11 MAC protocol. In Section 3 we introduce the min-
max robust detection model with the underlying assumptions; and present our main
results regarding misbehavior detection. Section 5 contains a number of numerical
results; further issues are discussed in Section 4 and we conclude our study in
Section 6.

In subsequent discussion, the terms “misbehavior” and “attack”, as well as, “mis-
behaving node” and “attacker” will be used interchangeably.

2. IEEE 802.11 MAC DCF: OVERVIEW OF THE PROTOCOL

The most frequently used MAC protocol for wireless networks is the IEEE 802.11
MAC protocol, which uses a distributed contention resolution mechanism for shar-
ing the wireless channel. Its design attempts to ensure a relatively fair access to the
medium for all participants of the protocol. In order to avoid collisions, the nodes
follow a binary exponential back-off scheme that favors the last winner amongst
the contending nodes.

In Distributed Coordinating Function (DCF) of the IEEE 802.11 MAC proto-
col, coordination of channel access for contending nodes is achieved with Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA) [IEEE 1999]. A node
with a packet to transmit selects a random back-off value b uniformly from the
set {0, 1, . . . , W − 1}, where W is the (fixed) size of the contention window. The
random back-off selected corresponds to the number of slots a station needs to wait
in addition to the mandatory Distributed Interframe Space (DIFS) interval before
attempting to transmit. The back-off counter decreases by one at each time slot
that is sensed to be idle and the node transmits after b idle slots. In case the
channel is perceived to be busy in one slot, the back-off counter stops momentar-
ily. After the back-off counter is decreased to zero, the transmitter can reserve the
channel for the duration of data transfer. First, it sends a Request-To-Send (RTS)
packet to the receiver, which responds with a Clear-To-Send (CTS) packet. Thus,
the channel is reserved for the transmission. Both RTS and CTS messages contain
the intended duration of data transmission in the duration field. Other hosts over-
hearing either the RTS or the CTS are required to adjust their Network Allocation
Vector (NAV) that indicates the duration for which they will defer transmission.
This duration includes the Short Interframe Space (SIFS) intervals, data packets
and acknowledgment (ACK) frame following the transmitted data frame. An un-
successful transmission instance due to collision or interference is denoted by lack
of CTS or ACK for the data sent and causes the value of contention window to
double. If the transmission is successful, the host resets its contention window to
the minimum value W .

Fig. 1 illustrates the scenario of contending nodes using the protocol. In this
ACM Journal Name, Vol. V, No. N, February 2008.
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Fig. 1. Nodes A and C contend for accessing node B. In the first attempt A reserves the channel
followed by successful access by node C.

specific scenario nodes A and C contend for accessing node B. In the first attempt,
after waiting for the fixed interval DIFS, node A senses the channel idle and sends
an RTS to node B. Consequently, node C overhears the RTS, which also contains
the duration of the intended data exchange between A and B (d), and defers its
transmission for the time interval equal to d (i.e. sets its NAV to d). After waiting
for SIFS, node B senses the channel idle and responds with an CTS. After success-
fully exchanging the data, all participating stations wait for a fixed interval equal to
DIFS followed by a back-off interval b, uniformly chosen within the interval [0,W ].
In this scenario, node C chooses smaller back-off value and accesses the channel,
forcing node A to defer its transmission. Typical parameter values for the MAC
protocol depend on the physical layer that IEEE 802.11 uses. Table I shows the
parameters used when the physical layer is using direct sequence spread spectrum
(DSSS).

DIFS 50µs

SIFS 10µs

SlotTime 20µs

ACK 112bits+PHY header=203µs

RTS 160bits+PHY header=207µs

CTS 112bits+PHY header=203µs

DATA MAC header (30b)+DATA(0-2312b)+FCS(4b)

Timeouts 300-350µs

CWmin 32 time slots

CWmax 1024 time slots

Table I. Parameters for DSSS

2.1 Misbehavior in the IEEE 802.11 MAC protocol

The scenario provided in Fig. 1 illustrated the the IEEE 802.11 DCF favors the
node that selects the smallest back-off value among a set of contending nodes. This
opens space for misbehavior of protocol participants if no detection system is em-
ployed. More specifically, a malicious or selfish node may choose not to comply
to protocol rules by selecting small back-off intervals, thereby gaining significant
advantage in channel sharing over regularly behaving, honest nodes. Due to the
exponential increase of the contention window after each unsuccessful transmission,
non-malicious nodes are forced to select their future back-offs from larger intervals
ACM Journal Name, Vol. V, No. N, February 2008.
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Fig. 2. Observer nodes and effect of interference due to concurrent transmissions.

after every access failure. Therefore the chance of their accessing the channel be-
comes even smaller. Apart from intentional selection of small back-off values, a
node can deviate from the MAC protocol in other ways as well. He can choose
a smaller size of contention window or he may wait for shorter interval than Dis-
tributed Interframe Space (DIFS), or reserve the channel for larger interval than
the maximum allowed network allocation vector (NAV) duration. In this work, we
will adhere to protocol deviations that occur due to manipulation of the back-off
value.

The nodes that are instructed by the protocol to defer transmission are able to
overhear transmissions from nodes whose transmission range they reside in. There-
fore, silenced nodes can observe the behavior of transmitting nodes. The question
that arises is whether there exists a way to take advantage of this observation capa-
bility and use it to identify potential misbehavior instances. If observations indicate
a misbehavior event, the observer nodes should notify the rest of the network about
this situation or could launch a response action in order to isolate the misbehav-
ing nodes. Detecting misbehavior is not straightforward even in the simplest case,
namely that of unobstructed observations. The difficulty stems primarily from the
non-deterministic nature of the access protocol that does not lead to a straight-
forward way of distinguishing between a legitimate sender, that happens to select
small back-offs, and a misbehaving node that maliciously selects small back-offs.
The open wireless medium and the different perceived channel conditions at differ-
ent locations add to the difficulty of the problem. Additional challenges arise in
the presence of interference due to ongoing concurrent transmissions.

Fig. 2 depicts a scenario where node A or B is malicious. At this stage, we assume
that A is the only misbehaving node and that no other node in its vicinity transmits.
We defer discussion about the collusion between nodes A and B for a subsequent
section. We assume that nodes have clocks that are synchronized through the use of
GPS devices. Additional issues arising from errors in clock synchronization will be
investigated elsewhere. Node A accesses the channel by using a randomly selected
back-off value within its contention window. When the back-off counter decreases
to zero, A sends an RTS to B, which replies with a CTS. Node A’s RTS message
silences nodes 1 to 7, which are in A’s transmission radius. Similarly, node B’s CTS
silences nodes 4 to 10. Following the RTS-CTS handshake, A sends a data segment
to B. After the transmission is over, A attempts to access the channel anew by
selecting a back-off value again and the procedure repeats. Nodes 1-10 can hear
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the transmissions of nodes A or B, or of both, depending on whose transmission
radius they reside in. Consider the i-th transmission of node A. A node in its
transmission range finds time point ti of RTS packet reception from

ti = Ti−1 + TDIFS + bi, i > 1, (1)

where Ti−1 denotes the end time point of reception of the previous data segment
and bi is the random back-off value. Thus, the back-off values can be easily derived.
Note that the back-off value before transmission of the first data segment cannot
be found since there does not exist any previous reference point to compare it to.
A node within transmission range of B can also compute the back-off used by A by
using as a reference the time point of reception of the overheard ACK from node
B for the previous data segment. Then, a node can measure time point t′i of CTS
packet reception and compute the back-off of node A by using

t′i = TACK,i−1 + TDIFS + bi + TRTS + TSIFS, i > 1. (2)

Similarly with the RTS, the first back-off value cannot be found. Clearly, the entire
sequence of back-offs of node A is observable in this fashion. It should also be noted
that the identity of the node who uses those back-offs (which could be potentially a
misbehaving one) is revealed in the corresponding fields of RTS or CTS messages.

We now proceed to describe two scenarios in which observations of nodes 1-3 and
8-9 are hindered by interference and hence correctness of observations is influenced.

(1) Interference due to concurrent transmissions. Assume that node C has obtained
access to the channel and therefore node 2 is silenced. Node C is in the process of
transmitting data packets to node D. If observer node 2 is within transmission
range of C, C’s transmission is overheard by node 2. Clearly, the ongoing
transmission of C is experienced as interference at node 2 and obstructs node
2’s observations. In case of significant interference level, node 2 may not be
able to obtain the timing of received RTS of node A and find the back-off
value. Additional ongoing transmissions increase the perceived interference
level. Evidently, obstructed measurements due to interference create additional
problems in detecting misbehavior, as will be seen in the sequel. The extent
to which observations of node 2 are influenced by interference depends on the
relative proximity of 2 to nodes A and to the interfering nodes, since the received
signal strength of the RTS packet and the interference is a function of signal
strength decay with distance.

(2) Interference due to simultaneous channel access. Node 2 that is silenced by A’s
RTS observes the sequence of back-offs of node A. If node 2 is in the interference
range of node C and C is out of the interference range of A, C may attempt
to access the channel at the same time. If the RTS packets from nodes A and
C overlap in time when received at node 2, node 2 receives a garbled packet
and cannot distinguish neither the transmitter identity nor the packet reception
time.

Interference from concurrent data transmissions and simultaneous channel access
also affects measurements of nodes within the transmission range of node B. Both
types of impairments lead to difficulties in misbehavior detection because they cause
corruption of measurements. The probability of the second type of impairment is
ACM Journal Name, Vol. V, No. N, February 2008.
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admittedly much lower than that of the first type, since it requires that nodes A and
C access the channel almost at the same time. Although this problem is different
from the first one, we will elaborate on obstruction of observations owing only to
the first scenario.

A comment about the effect of misbehavior in a network-wide scale is in place
here. Each node within transmission range of a malicious node increases its con-
tention window exponentially after each unsuccessful transmission attempt. The
same holds for nodes which are located out of the transmitter’s range but are able
to transmit to nodes that are silenced by the transmitter (in our case, nodes C and
E). They may constantly attempt to communicate with silenced nodes and conse-
quently increase their contention windows. In that respect, the effect of a malicious
node spreads in an area much larger than their transmission range and may affect
channel access of nodes throughout that area.

Another arising issue is the notification of the rest of the network about the
misbehavior. Although all nodes within transmission range of nodes A and B
above can deduce potential misbehavior, the nature of IEEE 802.11 MAC protocol
prohibits them from obtaining access to the channel and transmitting notification
information. In a subsequent section, we present a practical method to achieve this
goal.

3. MIN-MAX ROBUST MISBEHAVIOR DETECTION

In this section we present our approach for misbehavior detection when observa-
tions are not obstructed by interference. In Sect. 4, we analyze the scenario in the
presence of interference due to ongoing concurrent transmissions.

3.1 Problem motivation and sequential detection

We focus on monitoring the behavior of node A for the single-hop communication
with node B in Fig. 2. Our work assumes a stationary network where the node
relative positions do not change with time. We assume that any node within the
transmission range of A or B observes the same sequence of measurements of back-
off values used by A. Since the sequence of observations is the same, the procedure
that will be described in the sequel can take place in any of these observer nodes.
Since the back-off measurements are enhanced by an additional sample each time
A attempts to access the channel, an on-line sequential scheme is suitable for the
nature of the problem. The basis of such a scheme is a sequential detection test that
is implemented at an observer node. The objective of the detection test is to derive
a decision as to whether or not a misbehavior occurs as fast as possible, namely with
the least possible number of observation samples. Since the observation samples
are random variables, the number of required samples for taking a decision is a
random variable as well.

A sequential detection test is therefore a procedure which with every new in-
formation that arrives asks the question whether it should stop receiving more
samples or continue sampling. If the answer to the first question is to stop (be-
cause sufficient information has been accumulated) then it proceeds to the phase
of making a decision on the nature of the data. It is therefore clear that there
are two quantities involved: a stopping time N which is a random variable taking
positive integer values and denoting the time we decide to stop getting more data;
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and a decision rule dN which at the time of stopping N decides between the two
hypotheses H0,H1,where H0 denotes legitimate behavior and H1 denotes selfish
behavior, and therefore assumes the values 0,1. For simplicity let us denote with
D the combination D = (N, dN ) of the stopping time N and the decision rule dN .

The probability of false alarm and the probability of missed detection constitute
inherent tradeoffs in a detection scheme. Clearly we can obtain small values for both
of these two decision error probabilities by accumulating more information, that is,
at the expense of larger detection delay. A logical compromise would therefore
be to prescribe some maximal allowable values for the two error probabilities, and
attempt to minimize the expected detection delay. Expressing this problem under
a more formal setting, we are interested in finding a sequential test D = (N, dN )
that solves the following constraint optimization problem

inf
N,dN

E1[N ], under the constraints P0[dN = 1] ≤ α; P1[dN = 0] ≤ β; (3)

where Pi, Ei denote probability and expectation under hypothesis Hi, i = 0, 1,
and 0 < α, β < 1 are the prescribed values for the probability of false alarm and
miss respectively.

This interesting mathematical setup was first proposed by [Wald 1947] where he
also introduced the Sequential Probability Ratio Test (SPRT) for its solution. The
SPRT test is defined in terms of the log-likelihood ratio Sn

Sn = ln
f1(x1, . . . , xn)
f0(x1, . . . , xn)

, (4)

of the two joint probability density functions fi(x1, . . . , xn) of the data {x1, . . . , xn}
under hypothesis Hi, i = 0, 1. The corresponding stopping time N and decision
rule dN are then given by

N = inf
n
{n : Sn /∈ [A,B]} (5)

dN =
{

1 if SN ≥ B
0 if SN ≤ A,

(6)

where A < 0 < B thresholds selected so as SPRT satisfies the two decision error
probability constraints with equality. We can see that the SPRT test continues sam-
pling as long as the log-likelihood ratio takes values within the interval (A,B) and
stops taking more samples the first time it exceeds it. Once stopped, the decision
function dN decides in favor of hypothesis H1 when SN exceeds the largest thresh-
old and in favor of H0 when SN is below the smallest threshold. If in particular
the data are independent and identically distributed (i.i.d.) under both hypotheses
then the log-likelihood ratio Sn takes the following simple form

Sn =
n∑

k=1

ln
f1(xk)
f0(xk)

= Sn−1 + ln
f1(xn)
f0(xn)

, S0 = 0. (7)

Here fi(x) is the common probability density function (pdf) of the samples under
hypothesis Hi, i = 0, 1. Notice that the recurrent relation in the right hand side
of (7) allows for an efficient computation of the statistics Sn which requires only
constant number of operations per time step and finite memory (we only need to
store Sn as opposed to the whole sequence {xn, . . . , x1}).
ACM Journal Name, Vol. V, No. N, February 2008.
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Optimality of SPRT in the sense described in (3) is assured only when the data
are i.i.d. under both hypotheses [Wald and Wolfowitz 1948]. For other data models
there exists a very rich literature referring to asymptotic optimality results (see
for example [Dragalin et al. 1999]). Concluding, we should also mention that the
actual optimality of SPRT is significantly stronger than the one mentioned in (3).
The SPRT not only minimizes the average delay under H1 but also simultaneously
minimizes the alternative average delay E0[N ]. This double optimality property is
rather remarkable and not encountered in any other detection scheme.

It is clear from the previous discussion that our intention is to follow a sequential
approach for the detection of attacks. Notice however that in order to be able
to use the SPRT test it is necessary to specify both probability density functions
fi(x), i = 0, 1 under the two hypotheses. Although the pdf f0(x) of a legitimate
node is known, this is not the case for an attacker. Furthermore, specifying a
candidate density f1(x) for an attacker without some proper analysis may result
in serious performance degradation if the attacker’s strategy diverges from our
selection.

In order to be able to propose a specific detection rule we need to clarify and
mathematically formulate the notion of an “attack”. We should however place
our main emphasis to attacks that incur large gains for the attacker (result in
higher chances of channel access). An attack will then have devastating effects for
the network, in the sense that it would deny channel access to the other nodes
and would lead to unfair sharing of the channel. Besides, if we assume that the
detection of an attack is followed by communication of the attack event further in
the network so as to launch a network response, it would be rather inefficient for
the algorithm to consider less significant (and potentially more frequent) attacks
and initiate responses for them. Instead, it is meaningful for the detection system
to focus on encountering the most significant attacks and at the same time not to
consume resources of any kind (processor power, energy, time or bandwidth) for
dealing with attacks whose effect on performance is rather marginal.

3.2 Min-max robust detection approach : Definition of uncertainty class

Previously, we stressed the sequential nature of our approach and the implicit need
to consider most significant attacks. The approach should also cope with the en-
countered (statistically) uncertain operational environment of a wireless network,
namely the random nature of protocols and the unpredictable misbehavior or attack
instances. Hence, it is desirable to rely on robust detection rules that would perform
well regardless of uncertain conditions. In this work, we adopt the min-max robust
detection approach where the goal is to optimize performance for the worst-case
instance of uncertainty. More specifically, the goal is to identify the least favorable
operating point of a system in the presence of uncertainty and subsequently find
the strategy the optimizes system performance when operating in that point. In
our case, the least favorable operating point corresponds to the worst-case instance
of an attack and the optimal strategy amounts to the optimal detection rule. Sys-
tem performance is measured in terms of number of required observation samples
needed to derive a decision.

A basic notion in min-max approaches is that of a saddle point. A strategy (de-
tection rule) D? = (N?, d?

N ) and an operating point (attack) f?
1 in the uncertainty
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class form a saddle point if:

(1) For the attack f?
1 , any detection rule D other than D? has worse performance.

Namely D? is the optimal detection rule for attack f?
1 in terms of minimum

(average) number of required observations.

(2) For the detection rule D?, any attack f1 from the uncertainty class, other
than f?

1 gives better performance. Namely, detection rule D? has its worst
performance for attack f?

1 .

Implicit in the min-max approach is the assumption that the attacker has full
knowledge of the employed detection rule. Thus, it can create a misbehavior strat-
egy that maximizes the number of required samples for misbehavior detection de-
laying the detection as much as possible. Therefore, our approach refers to the case
of an intelligent attacker that can adapt its misbehavior policy so as to avoid de-
tection. One issue that needs to be clarified is the structure of this attack strategy.
Subsequently, by deriving the detection rule and the performance for that case, we
can obtain an (attainable) upper bound on performance over all possible attacks.

According to the IEEE 802.11 MAC standard, the back-off for each legitimate
node is selected from a set of values in a contention window interval based on
uniform distribution. The length of contention window is 2iW for the ith retrans-
mission attempt, where W is the minimum contention window. In general, some
back-off values will be selected uniformly from [0,W ] and others will be selected
uniformly from intervals [0, 2iW ], for i = 1, . . . , Imax where Imax is the maximum
number of re-transmission attempts. Without loss of generality, we can scale down
a back-off value that is selected uniformly in [0, 2iW ] by a factor of 2i, so that
all back-offs can be considered to be uniformly selected from [0,W ]. This scaling
property emerges from the linear cumulative distribution function of the uniform
distribution. An attack strategy is mapped to a probability density function based
on which the attacker selects the back-off value. Although the possible back-off val-
ues are discrete, for mathematical simplicity, we consider continuous distributions
to represent attacks. The analysis for the discrete value case is very similar and is
therefore omitted. We consider continuously back-logged nodes that always have
packets to send. Thus, the gain of the attacker is signified by the percentage of
time in which it obtains access to the medium. This in turn depends directly on
the relative values of back-offs used by the attacker and by the legitimate nodes.
In particular, the attacker competes with the node that has selected the smallest
back-off value out of all nodes.

Let us first compute the probability P1 of the attacker to access the channel as
a function of the pdfs f1 and f0. Following the IEEE 802.11 protocol, the back-off
counter of any node freezes during the transmissions and reactivates during free
periods. Therefore let us observe the back-off times during a fixed period T that
does not include transmission intervals. Consider first the case of one misbehaving
and one legitimate node and assume that within the time period T , we observe
X1, . . . , XN , N samples of the attacker’s back-off and Y1, . . . , YM , M samples of
the legitimate node’s back-offs. It is then clear that the attacker’s percentage of
accessing the channel during the period T is N/(N + M). In order to obtain the
desired probability we simply need to compute the limit of this ratio as T → ∞.
ACM Journal Name, Vol. V, No. N, February 2008.
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Notice that

X1 + · · ·+ XN ≤ T < X1 + · · ·+ XN+1

Y1 + · · ·+ YM ≤ T < Y1 + · · ·+ YM+1,

which yields

N
X1+···+XN

N
N+1

N+1
X1+···+XN+1

+ M
M+1

M+1
Y1+···+YM+1

≥
N
T

N
T + M

T

≥
N

N+1
N+1

X1+···+XN+1

N
X1+···+XN

+ M
Y1+···+YM

. (8)

Letting T →∞ results in N,M →∞ and from the previous double inequality, by
applying the Law of Large Numbers, we conclude that

P1 = lim
N,M→∞

N

N + M
=

1
E1[X]

1
E1[X] + 1

E0[Y ]

. (9)

Using exactly similar reasoning the probability P1, for the case of one misbehaving
node against n legitimate ones, takes the form

P1 =
1

E1[X]

1
E1[X] + n

E0[Y ]

=
1

1 + nE1[X]
E0[Y ]

=
1

1 + n 2E1[X]
W

, (10)

where in the last equality we have used the fact that the average back-off of a
legitimate node is W/2 (because f0 is uniform in [0,W ]).

If the attacker were legitimate then E1[X] = E0[Y ] and his probability of access-
ing the channel, from Eq. (10), would have been 1/(n+1). It is therefore clear that
whenever

E1[X] = εE0[Y ], with ε ∈ (0, 1) (11)

the attacker enjoys a gain as compared to any legitimate node since then

P1 = η
1

n + 1
>

1
n + 1

, where η =
1 + n

1 + εn
∈ (1, n + 1). (12)

In other words his probability of accessing the channel is greater than the corre-
sponding probability of any legitimate node by a factor η > 1.

Using the simple modeling introduced in the previous paragraph we are now able
to quantify the notion of an “attack”. Let η be a quantity that satisfies 1 < η < n+1
and consider the class Fη of all pdf’s that induce a probability P1 of accessing the
channel that is no less than η/(n + 1). Using (11) and (12) the class Fη can be
explicitly defined as

Fη =

{
f1(x) :

∫ W

0

xf1(x) dx ≤ 1− η
n+1

n η
n+1

W

2

}
, 1 < η < n + 1. (13)

This class includes all possible attacks for which the incurred relative gain exceeds
the legitimate one by (η − 1)× 100%. The class Fη is the uncertainty class of the
robust approach and η is a tunable parameter. Notice from (12) that since P1 is
a probability the gain factor η must not exceed n + 1 in order for the previous
inequality to produce a nonempty class Fη.
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By defining the class Fη, we imply that the detection scheme should focus on
attacks with larger impact to system performance and not on small-scale or short-
term attacks. We define the severity of the attack by changing the gain factor η.
Values of η larger but close to 1 are equivalent to low-impact attacks whereas values
significantly larger than 1 are equivalent to DoS attacks.

3.3 Min-max robust detection approach: Derivation of the worst-case attack

Hypothesis H0 concerns legitimate operation and thus the corresponding pdf f0(x),
as was mentioned before, is the uniform one. Hypothesis H1 corresponds to mis-
behavior with unknown pdf f1(x) ∈ Fη.

The objective of a detection rule is to minimize the number of the required
observation samples N so as to derive a decision regarding the existence or not of
misbehavior. The performance of a detection scheme is quantified by the average
number of samples E1[N ] needed until a decision is reached, where the average
is taken with respect to the distribution f1(x) employed by the attacker. This
expectation is clearly a function of the adopted detection rule D and the pdf f1(x),
that is,

E1[N ] = φ(D, f1). (14)

Let Tα,β denote the class of all sequential tests for which the false alarm and
missed detection probabilities do not exceed some specified levels α and β respec-
tively. Consider also the class Fη of densities f1(x) as in (13) for some prescribed
gain factor η > 1. In the context of the min-max robust detection framework, the
goal is to optimize performance in the presence of worst-case attack, that is, solve
the following min-max problem

inf
D∈Tα,β

sup
f1∈Fη

φ(D, f1). (15)

Solving a min-max problem is usually complicated, unless one can obtain a saddle
point solution.

Definition 3.1. A pair (D?, f?
1 ) is called a saddle point of the function φ if

φ(D?, f1) ≤ φ(D?, f?
1 ) ≤ φ(D, f?

1 ); ∀D ∈ Tα,β , ∀f1 ∈ Fη. (16)

As we can see a saddle point (D?, f?
1 ) of φ consists of a detection scheme D? and

an attack distribution f?
1 . Equation (16) is a formal statement of properties 1

and 2 that were mentioned in Section 3.2. The property that is important here
in connection to the min-max problem (15) is the fact that the saddle point pair
(D?, f?

1 ) also solves the min-max problem, since one can prove that [Bertsekas 2003]

inf
D∈Tα,β

sup
f1∈Fη

φ(D, f1) ≥ sup
f1∈Fη

φ(D?, f1) = φ(D?, f?
1 ). (17)

Saddle point solutions are much easier to obtain than their min-max counterparts.
Unfortunately saddle point solutions do not always exist. In view of (17), instead
of solving (15) it is sufficient to find the saddle point that solves (16). The saddle
point pair (D?, f?

1 ) is specified in the next theorem.
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Theorem 3.2. Let the gain factor η ∈ (1, n + 1) and the maximal allowable
decision error probabilities α, β be given. Then the pair (D?, f?

1 ) which asymptot-
ically (for small values of α, β) solves the saddle point problem defined in (16) is
the following

f?
1 (x) =

µ

W

eµ(1− x
W )

eµ − 1
, (18)

where µ > 0 is the solution to the following equation in µ

2
(

1
µ
− 1

eµ − 1

)
=

1− η
n+1

n η
n+1

. (19)

The corresponding decision rule D? = (N?, dN?) is the SPRT test that discriminates
between f?

1 (x) and f0(x)(the uniform density) and is given by

S?
n = S?

n−1 + ln
f?
1 (xn)

f0(xn)

= S?
n−1 + µ

(
1− xn

W

)
+ ln

(
µ

eµ − 1

)
; S?

0 = 0. (20)

N? = inf
n
{n : S?

n /∈ [A,B]} (21)

dN? =
{

1 if S?
N ≥ B

0 if S?
N ≤ A.

(22)

Proof. We first note that (19) is equivalent to
∫ W

0

xf?
1 (x) dx =

1− η
n+1

n η
n+1

W

2
(23)

which assures that f?
1 (x) defined in (18) is a member of the uncertainty class Fη.

Let us now demonstrate that for any gain factor η ∈ (1, n + 1) there always exists
µ ∈ (0,∞) so that (19) is true. Notice that for η ∈ (1, n + 1) we have that
1/(n + 1) < η/(n + 1) < 1. If we now call Φ(µ) = 2

(
1
µ − 1

eµ−1

)
then Φ(µ) is a

continuous function of µ. Furthermore we observe that Φ(0) = 1 > η/(n+1); while
one can show that limµ→∞ Φ(µ) = 0 < η/(n+1). Since we can find two values of µ
one yielding a smaller and another a larger value than η/(n+1), due to continuity,
we can argue that there exists µ > 0 such that the equality in (19) is assured. In
fact this µ is unique since it is also possible to show that Φ(µ) is strictly decreasing.

Let us now proceed to the saddle point problem (16). We observe that the right
hand side inequality suggests that D? must be the optimum detection structure for
f?
1 (x). Indeed this is how D? is defined, since it is selected as the SPRT test that

optimally discriminates between f?
1 (x) and the uniform f0(x).

In order to show that the left hand side is also true, we adopt an asymptotic
approach. By considering that the two maximal error probabilities α, β are small,
it is possible to use efficient approximations for the two thresholds A,B and the
average detection delay function φ(D?, f1). Specifically from [Wald 1947] we have
that A, B can be approximated as

A = ln
β

1− α
, B = ln

1− β

α
, (24)
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and the expected delay by the expression

φ(D?, f1) =
Aβ + B(1− β)∫ W

0
ln f?

1 (x)
f0(x) f1(x) dx

. (25)

In fact these formulas become exact if the SPRT statistics S?
n hits exactly (does

not overshoot) the two thresholds A,B at the time of stopping. This for example
happens in continuous-time and continuous-path processes.

Since the numerator in the previous formula is constant, the left hand side in-
equality in (16) is true if the denominator in (25) is minimized for f1(x) = f?

1 (x).
Because we consider f1(x) ∈ Fη, inequality (13) applies, therefore we can write

∫ W

0

ln
f?
1 (x)

f0(x)
f1(x) dx = µ

∫ W

0

(
1− x

W

)
f1(x) dx + ln

(
µ

eµ − 1

)

≥ µ

(
1− 1 + n− η

2nη

)
+ ln

(
µ

eµ − 1

)

= µ

∫ W

0

(
1− x

W

)
f?
1 (x) dx + ln

(
µ

eµ − 1

)

=
∫ W

0

ln
f?
1 (x)

f0(x)
f?
1 (x) dx, (26)

where for the first inequality we used (13) and for the last two equalities we used
(18),(23). This concludes the proof.

Regarding Theorem 3.2 we would like to point out that our selection of f?
1 (x) was

in fact the outcome of a rigorous analysis. We basically used the additional property
enjoyed by the saddle point solution to solve not only the min-max problem in (15)
but also its max-min version

sup
f1∈Fη

inf
D∈Tα,β

φ(D, f1). (27)

It turns out that this latter problem can be solved directly (using standard vari-
ational techniques), thus providing us with a suitable candidate pdf f?

1 (x) for the
saddle point problem (17). Of course we then need to go through the preceding
proof in order to establish that f?

1 (x) is indeed the correct pdf.
As was mentioned above, the min-max robust detection approach captures the

case of an intelligent adaptive attacker. The SPRT algorithm is part of the intru-
sion detection system module that resides at an observer node. With the method
outlined in Section 2, an observer node monitors the behavior of another node with
the objective to derive a decision as fast as possible. In other words the observer
(and hence the system) attempts to minimize the number of required samples so
as to improve its payoff in terms of improved chances for channel access. On the
other hand, an intelligent attacker that knows the detection algorithm attempts to
delay this decision as much as possible so as to increase his own benefit in terms of
chances for channel access. The attacker aims at a strategy that causes performance
degradation for other nodes by remaining undetected.
ACM Journal Name, Vol. V, No. N, February 2008.
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4. FURTHER ISSUES

4.1 Colluding nodes

The problem treatment above assumed the existence of a single attacker and did
not include the scenario of colluding nodes. In the communication scenario of Fig.
2, nodes A and B may collude if node B receives the RTS messages from attacker A
and it intentionally delays the CTS message by some amount of time. This scenario
exploits the nature of exponential back-off by choosing small back-off values and
additionally breaks the protocol rules by waiting longer than SIFS between RTS
and CTS signals. In this case, the observer nodes within transmission range of B
perceive erroneous, higher back-off values from node A. As a result, they cannot
detect potential misbehavior of A. They also cannot determine the maliciousness
of receiver B. However, the remaining observes that can overhear both A and B
can detect misbehavior with higher probability since it is not allowed to wait for
periods that are longer than SIFS between RTS and CTS control signals.

In this fashion, a colluding node B decreases the number of observer nodes that
can provide correct measurements. Misbehavior of node A can thus be observed
only by nodes within transmission range of A. On the other hand, only observers
residing within range of both A and B can monitor both A and B and therefore
detect collusion of A and B by using a detection scheme similar to the one outlined in
previous sections. The detection method can have two separate tests: one acting on
the observed back-offs of A and one for measuring timing delays from the receiver in
issuing CTS messages. The latter test should be a threshold rule, since normally the
delay before issuing a CTS is deterministic. The decision about collusion is taken
after combining results from both tests. However, note that in the event of collusion
the mechanism of the previous subsection cannot help in network notification.

4.2 Inaccurate measurements due to interference

The underlying assumption of our approach was that the back-off value observations
were collected in the absence of interference from ongoing concurrent transmissions.
However, observations are affected by interference due to transmission of nodes
that are located out of range of the attacker, but within range of an observer.
For example, in Fig.2, transmission of node C obstructs observations of 2. The
presence of interference may corrupt some measurements and thus it is anticipated
to increase the number of observation samples needed to derive a decision.

Since interference is caused due to ongoing data transmissions that are of much
longer duration than that of an observed RTS or CTS packet, we can assume that
the level of interference due to one such transmission remains constant for the
duration of an observed RTS or CTS packet. Recall that RTS and CTS packets
are sent with the lowest modulation level and coding rate. To enable analytical
tractability, we consider an uncoded transmission and assume the use of BPSK
(which is the lowest modulation level in 802.11a) in RTS/CTS transmission. The
interference conditions during an RTS or CTS observed packet are captured by the
signal-to-interference and noise ratio (SINR) γ. For fixed transmit power levels
and certain variance of Gaussian noise at the receiver, this ratio depends on the
relative proximity of the observer node to the transmitter of RTS or CTS message
as well as to the interferers. The packet start point can be distinguished if the
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packet is received correctly. The bit error rate (BER) in the received RTS or CTS
packet is given by BER = Q(

√
2γ) for BPSK modulation, where Q(·) denotes the

Q-function. The probability of RTS or CTS packet error is the RTS-CTS packet
error rate (PER) as

PER = 1− (1− BER)8m (28)

where m is the number of bytes of the RTS and CTS packets and is 20 and 14
respectively. Since PER gives the percentage of observed packets received in error,
the number of required observations to derive a decision is PER% higher than the
corresponding number without interference. This PER value holds for uncoded
transmission and thus it is an upper bound on PER when a coding scheme is used.

5. NUMERICAL EXAMPLES

The goal of our examples is to assess the performance of our approach and identify
the relative impact of different system parameters on it. The performance is mea-
sured in terms of the average required number of observation samples, E[N ] in order
to derive a decision, which essentially denotes the delay in detecting a misbehavior
instance. In addition to that, we investigate the influence of the number of regular
participants on the form of the least favorable distribution f∗1 (x). In particular, we
evaluate the performance with respect to the following parameters:

—Specified values of Pfa and Pm (or probability of detection, Pd = 1− Pm).
—Perceived interference conditions, reflected in SINR γ.
—The tunable system parameter η.

Parameter η defines the class of attacks of interest since it specifies the incurred
relative gain of the attacker in terms of the probability of channel access. In that
sense, η can be interpreted as a sensitivity parameter of the detection scheme with
respect to attacks, which is determined according to the IDS requirements. IEEE
802.11 MAC is implemented and MATLAB is used to evaluate the performance of
our scheme, taking into account the sequence of observed back-offs.

In Fig.3 we present the form of the least favorable attack pdf f?
1 (x) as a function

of the gain factor η and the number of legitimate nodes n.
Fig. 3a depicts the form of the density for n = 2 legitimate nodes competing

with one attacker for values of the gain factor η = 1, 1.5, 2, 2.5. We observe that as
η → 3 (the maximum possible gain for n = 2) the density tends to a Dirac delta
function at x = 0 which corresponds to DoS attack, representing the extreme case
of misbehavior where the attacker consumes all the available resources.

In Fig. 3b we fix the gain factor to η = 1.5 (the attacker enjoys 50% more access to
the channel than a legitimate node) and plot f?

1 (x) for number of legitimate nodes
n = 1, 2, 5,∞. We observe that as the number n of legitimate nodes increases, the
attacker converges towards a less aggressive strategy. The interesting point is that
the least favorable pdf converges very quickly to a limiting function as the number
of legitimate nodes increases. This example confirms that it is possible to detect
an attacker even if there is a large number of legitimate nodes present, since the
attacker in order to maintain his relative gain must use a pdf which differs from
the nominal uniform.
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Fig. 3. Form of least favorable pdf f?
1 (x): a) number of legitimate nodes n = 2, 1 malicious

node and gain factor η = 1, 1.5, 2, 2.5; b) gain factor η = 1.5 and number of legitimate nodes
n = 1, 2, 5,∞; c) absolute gain η

n+1
= 1

2
and number of legitimate nodes n = 1, 2, 5, 10, 20.

Instead of fixing the attacker’s gain relatively to the gain of a legitimate node,
let us examine what happens when the attacker follows a more aggressive policy
and demands channel access for a constant percentage of time, regardless of the
number of existing nodes. To achieve this goal, the gain factor η must be selected
so that η 1

n+1 is a constant. Fig. 3c depicts this specific scenario for η
n+1 = 1

2 . In
other words, the attacker has access to the channel 50% of the time, regardless of
the number of competing nodes. We can see that when n = 1 the attacker behaves
legitimately, but as the number n of legitimate nodes increases, the attacker quickly
resorts to the strategies that are of DoS type in order to maintain this fixed access
percentage. This is evident from the fact that the least favorable pdf tends to
accumulate all its probability mass at small back-off values.

In order to obtain some intuition from our results, we consider the case of one
attacker competing with n ≥ 1 legitimate nodes. In Fig. 4a we depict the average
required number of observation samples as a function of the parameter η. We fix
the probability of detection and the probability of false alarm to 0.99 and 0.01
respectively and measure the Average Detection Delay E[N ] for 1 < η < n+1. The
graph shows that low values of η prolong the detection procedure, since in that case
the attacker does not deviate significantly from the protocol. On the other hand,
a large η signifies a class of increasingly aggressive attacks for which the detection
is achieved with very small delay. Due to the fact that the value of η is limited
with the number of legitimate nodes, we cannot compare the performance of the
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Fig. 4. Average Detection Delay E[N ] as a function of (a) gain factor η; (b) absolute gain η
n+1

for α = β = 0.01

system for different values of n unless the absolute gain η
n+1 is used. In Fig. 4b

we depict E[N ] as a function of the absolute gain. It can be seen that detection
becomes more efficient as the number of participating legitimate nodes increases.
For example, for an absolute gain of 0.6, the IDS will require 10 times less samples
to detect misbehavior for n = 5, than for the case of n = 1.

The results above provide useful insights about the response of the system with
respect to the attack. A more aggressive attack policy brings significant benefits
each time the attacker accesses the channel, but it allows limited number of channel
uses before it is detected. On the other hand, a milder attack incurs lower benefit
for each channel use but it enables the attacker to access the channel more times
before it is detected. If the policy of a fixed gain is followed, the attackers behavior
converges towards the DoS attack as n increases. The solution to this problem from
the attackers point of view is offered in Section 6.

We now proceed to quantify the impact of interference on performance. Depend-
ing on interference conditions, a percentage of the back-off samples collected by the
observer nodes are corrupted. In that case, the RTS or CTS PER indicates the
amount of additional measurements required for reaching a decision, depending on
whether the observer node resides within range of the attacker or the receiver of
ACM Journal Name, Vol. V, No. N, February 2008.
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Fig. 5. Average detection delay for different values of SNR and n=1, 3, 10

the attack. Fig. 5 shows the average required number of samples needed for de-
tection of an optimal attacker for different intensity of interference, with respect
to the absolute gain η 1

n+1 . System performance is evaluated for n = 1, 3 and 10.
For large values of Pd it can be observed that intense interference conditions (re-
flected in the SINR values of 3-4 dB) can increase the number of required samples
by 85% − 120% compared to the case of no interference. It is also worth men-
tioning that as the aggressiveness of an attacker increases, the number of samples
needed for detection significantly decreases, regardless of the SINR values. More
specifically, for SINR> 8dB, the performance is not affected significantly by inter-
ference. Hence, interference can be viewed as providing additional benefit to the
attacker in the sense that it prolongs detection. Due to different lengths of RTS
and CTS messages, the number of samples needed to detect misbehavior is lower
when CTS messages are used in measurements. For example, for SINR values of 3-4
dB, α = β = 0.01, we observe an increase of 85− 100% in the number of required
samples compared to that with no interference. Therefore, when assigning observer
roles to nodes, emphasis should be given to those nodes that are located within
range of the receiver. The amount of additional measurements needed for detection
expressed in the form of PER for different values of SINR is presented in Fig. 6.

Finally, we implement the worst-case attack pdf characterized by Eq. 18 in the
network simulator Opnet. We take advantage of the experimental setup and per-
form evaluation as a tradeoff between the average time to detection, Td, and the
average time to false alarm,Tfa, a quantity that is more meaningful and intuitive
in practice. It is important to emphasize that the realistic false alarm rate used by
actual intrusion detection systems is much lower than α = 0.01 used in the theoret-
ical analysis. We claim that this false alarm rate leads to an accurate estimate of
the false alarm rates that need to be satisfied in actual anomaly detection systems
[Cárdenas et al. 2006; Axelsson 1999]. Due to that fact we set β = 0.01 and vary
α from 10−2 up to 10−10 (where α = 10−10 corresponds to one false alarm during
the whole simulation period). The back-off distribution of an optimal attacker was
implemented in the network simulator Opnet and tests were performed for vari-
ous levels of false alarms. The backlogged environment in Opnet was created by
employing a relatively high packet arrival rate per unit of time: the results were
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Fig. 6. PER[%] as a function of SINR for RTS and CTS messages

collected for the exponential(0.01) packet arrival rate and the packet size was 2048
bytes. The results for both legitimate and malicious behavior were collected over
a fixed period of 1.5min. We note that the simulations were performed with nodes
that followed the standard IEEE 802.11 access protocol (with exponential back-off).
The system’s performance was evaluated for three values of absolute gain: 0.5, 0.6
and 0.8 and the results are presented in Fig. 7. By observing the tradeoff curves

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

T
fa

T
d

η

n+1
=0.5

η

n+1
=0.6

η

n+1
=0.8

Fig. 7. Tradeoff curves for η
n+1

= 0.5, 0.6, 0.8 and n = 2.

in Fig. 7 we conclude that the system’s detection delay decreases significantly as
the attacker’s absolute gain increases. To illustrate this claim, we observe the best
case system performance, i. e. one false alarm over the whole simulation period of
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1.5min, and note that the detection delay for the absolute gain of 80% is approx-
imately 3.5 times shorter than in the case when the absolute gain is 50%. This
again confirms the efficiency of our proposed detection system against most aggres-
sive worst-case optimal attacks. In order to illustrate the influence of the number

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
fa

T
d

η

n+1
=0.5, n=5

η

n+1
=0.5, n=2

Fig. 8. Tradeoff curve for η
n+1

= 0.5 and n = 2, 5.

of legitimate competing nodes on the detection time, we compare the performance
of the detection system for the case when n = 2 and n = 5. In order to obtain fair
comparison, we use the same value of absolute gain, η

n+1 = 0.5. The results are
presented in Fig. 8. As expected, all nodes experience higher number of collisions in
the congested environment, resulting in delayed detection. It is important to note
that the traffic generation rate used in Fig. 8 is lower than the one used in Fig. 7.
By observing the curves for η

n+1 = 0.5 in both figures, we note that the detection
system experiences larger delay when lower traffic rates are used, which is logical
since all nodes access channel less frequently, generating smaller number of back-off
samples within the same time interval.

Finally, it is important to address the issue of overhead of the proposed detection
algorithm. The SPRT is highly efficient since no observation vectors need to be
stored. The only storage complexity is the one needed for the pdfs f?

1 and f0, the
thresholds “a” and “b” and the current statistic Sn. In addition to that, the SPRT
algorithm is also time-efficient, since in order to compute the log-likelihood we only
need to compute the ratio of two functions (f?

1 and f0, which are very simple to
evaluate) and add this value to the current statistic Sn. Therefore, the overhead of
the proposed algorithm is low and can be obtained by adding the two previously
mentioned values.

6. DISCUSSION

In this work, we presented a framework of study for the problem of MAC misbehav-
ior detection. Our approach encompasses the case of an intelligent attacker that
adapts its misbehavior strategy with the objective to remain undetected as long
as possible. We cast the problem within a min-max robust detection framework,
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characterize the worst-case misbehavior strategy showing that the optimal detec-
tion rule is SPRT. Clearly, if the attacker is ignorant of the detection mechanism,
the number of required observations to detect it under the same values of Pfa and
Pd is lower than the corresponding value for the adaptive attacker. Our results can
thus shed light in the characterization of fundamental performance limits in terms
of accuracy or detection delay for misbehavior detection. They can also serve as
benchmarks for performance evaluation of other detection policies and can provide
useful insights about the effect of interference on performance. Finally, we provided
an instance of a case when cross-layer interaction offers a solution to the issue of
notifying the network about the misbehavior.

Our work constitutes the first step towards building a theoretical framework for
studying the structure of such misbehavior problems. The model can be extended
to include obstruction of observations due to simultaneous channel access attempts.
We now mention some issues for further study. A first issue concerns the exploita-
tion of observations from several observers in order to improve performance. This
amounts to the scenario where observers pass their measurements to a fusion center
which then combines them appropriately and derives a decision as to the occurrence
or not of attack. Due to different perceived channel conditions at different locations
of observer nodes, the amount of interference at their receivers differs. If observers
obtain the same sequence of measurements, different samples of the sequence are
corrupted due to interference. The task of the fusion center is then simply to com-
bine the received sequences of measurements in a fashion very similar to that of
diversity combining. Given that there exists a certain cost (e.g. consumed en-
ergy) in passing measurements to a fusion center, an interesting issue pertains to
the minimum number of observers that are necessary to achieve a certain level of
performance in terms of detection delay or accuracy.

A far more challenging problem arises if each observer does not measure back-offs
accurately but it obtains a sequence of distorted values. This situation may arise
in case of occasional loss of synchronization between nodes or due to hardware (e.g.
counter) malfunction. Another instance in which observers may have distorted
back-off sequences is the following. At the i > 1 transmission, node A selects a
back-off b and starts decrementing his counter. If the medium is sensed busy, the
counter freezes (suppose for duration d) and restarts again when the medium is
idle. When the counter reaches zero, the RTS message is sent. In that case, the
observers perceive a back-off b̂ = b + d.

The results provided in Section 5 confirm the necessity of collaboration among the
attackers if a significant impact on the system is desired. Obviously, the strategy
of an intelligent attacker depends on the number of legitimate nodes he competes
with. As the number of legitimate nodes increases, the gain of the attacker who is
trying to follow the min-max approach decreases. In the case of malicious nodes,
whose main goal is to create disruptions in the network, the goal can be achieved
by increasing the number of colluding attackers. However, this arises a serious
efficiency issues since each level of disruption carries certain costs for malicious
nodes. Therefore, the necessary parameters needed for estimating the efficiency of
the attack can be described as follows:

—What is the minimum number of nodes that need to be involved in each attack
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in order to create major disruption in the MANET functionality?

—What are quantitative metrics and relationships between the number of attack
nodes and the magnitude of the disruption occurred?

In our approach, we have assumed continuously backlogged nodes and have used
channel access probability as a means of measuring the benefit of the attacker and
corresponding performance loss of legitimate nodes. Implicitly, we assumed that
fair sharing of the medium is reflected by this measure. However, fair sharing also
involves the intention of a node to send a packet and therefore it is affected by packet
arrivals from higher layers and backlogs at different nodes. This introduces the issue
of throughput fairness and throughput benefit. The attacker causes more damage
to the system if it prevents legitimate nodes from transmitting their payload.

The treatment of more than one attacker in the network is definitely worth in-
vestigating. It would be interesting to model and compare the case of attackers
that act independently and that of attackers that co-operate. In the first case, the
objectives of attackers may be conflicting in the sense that each of them attempts to
maximize its own benefit. In the latter case, the optimal attack strategy, if it exists,
can aid in quantifying the benefits of co-operation and its effects on performance
degradation of legitimate nodes.

The addition of mobility is a very challenging perspective. Our work assumes a
stationary network where the node relative positions do not change with time. In
a network of mobile nodes, one would expect the detection performance to deteri-
orate since potential attackers move in and out of range of an observer node with
an IDS system, hence the sequence of observations is intermittent. In that case,
interesting topics to consider would be the impact of specific mobility patterns on
the detection performance, how to engineer mobility patterns of defender nodes in
order to alleviate the impact of attacks. Another interesting problem is the extent
to which information can be passed in the system from nodes that have received a
interrupted sequence of backoffs, such that the prior history of the attacker will be
at the disposal of other observers that will apply the detection algorithm. On the
other hand, a spatial dimension of the payoff of the attacker (besides the temporal
one of channel access) might need to be incorporated in the model in order to ac-
count for the spatial pattern of channel denial. Intuitively, the payoff of the attacker
is smaller if it misbehaves at different spatial locations in the network. Nevertheless,
these movements by the attacker might be necessary in order to avoid detection.

Finally, it would be very interesting to extend our approach and obtain results in
the context of more sophisticated MAC protocols such as 802.11e with the special
features regarding back-off control and differentiation in channel access opportuni-
ties that are incorporated in its enhanced DCF (EDCF) operation mode.
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