2003 Conference on Information Sciences and Systems, The Johns Hopkins University, March 12-14, 2003

Detection and Classification of Network Intrusions
Using Hidden Markov Models !

Svetlana Radosavac
Electrical and Computer Engineering Department
and the Institute for Systems Research
University of Maryland
College Park, MD 20742

e-mail: svetlana@isr.umd.edu

Abstract — This paper demonstrates that it is pos-
sible to model attacks with a low number of states
and classify them using Hidden Markov Models with
very low False Alarm rate and very few False Nega-
tives. We also show that the models developed can
be used for both detection and classification. We put
emphasis on detection and classification of network
intrusions and attacks using Hidden Markov Models
and training on anomalous sequences. We test sev-
eral algorithms, apply different rules for classification
and evaluate the relative performance of these. Sev-
eral of the attack examples presented exploit buffer
overflow vulnerabilities, due to availability of data for
such attacks. We emphasize that the purpose of our
algorithms is not only the detection and classification
of buffer overflows; they are designed for detecting
and classifying a broad range of attacks.

I. INTRODUCTION

With the increased use of networked computers for critical
systems, computer network security is attracting increasing
attention and network intrusions have become a significant
threat in recent years. The number of intrusions is dramat-
ically increasing and so are the costs associated with them.
With an increased understanding of how systems work in-
truders have become more skilled at determining weaknesses
in systems and exploiting them to obtain increased privileges
and at the same time the knowledge necessary to carry out an
attack is decreasing, resulting in a rapid increase of attempted
attacks on various systems and networks.

The primary sources of information for intrusion detection
systems are network activity and system activity. Network-
based systems look for specific patterns in network traffic and
host-based systems look for those patterns in log files. We can
group intrusion detection systems into two classes: anomaly
detection systems and signature based systems. Anomaly de-
tection systems attempt to model the usual or acceptable be-
havior. They have high false positive rates and usually have
detection delay. Misuse detection refers to intrusions that fol-
low well-defined patterns of attack that exploit weaknesses in
the system. Misuse detection techniques have high detection
rate for already known attacks but even the slightest variation
of an attack signature may cause the system not to recognize
the attack.

Attack detection can be done by observing sequences of
system calls. In [5] Hofmeyr uses the rule of r contiguous

1Research partially supported by the U.S. Army Research Office
under grant No DAAD19-01-1-0494

John S. Baras
Electrical and Computer Engineering Department
and the Institute for Systems Research
University of Maryland
College Park, MD 20742
e-mail: baras@isr.umd.edu

bits on sequences of system calls and in [6] Warrender et al
models normal behavior of data sets using stide, ¢-stide, RIP-
PER and HMMs. Her experiments proved that HMMs have
the best performance, but when normal behavior is modelled
training of HMMs is not time efficient. Sekar et al [7] intro-
duced a fast-automation based method for detecting program
behaviors. Irregular behavior is flagged as potentially intru-
sive. All those methods are based on anomaly detection. The
approach presented in this paper is based on misuse detection
and the training sequences are represented in the form of short
sequences of system calls.

We are aware of the existence of tools for static code check-
ing and their advantages over Intrusion Detection Systems
[8, 9]. If implemented correctly and in all programs all buffer
overflows would be detected. However, they also have some
disadvantages (high false alarms, high false negatives, cannot
detect all network attacks etc.) and are not applied in all
programs.

The paper is organized as follows. In section II we present
2 methods of attack modelling and present models for sev-
eral attacks using one of the representations. In section IIT
we present the problem of detection and classification using
Hidden Markov Models. In section IV we present the algo-
rithm for detection and classification. In section V we state
the main results and in section VI we present the conclusions
and possible extensions of the stated work.

II. ATTACK REPRESENTATION AND MODELLING

The most comprehensive way of representing an attack is in
the form of an attack tree. An attack tree [2] is a Directed
Acyclic Graph (DAG) with a set of nodes and associated sets
of system calls for those nodes. Attack trees provide a formal,
methodical way of describing the security of systems, based
on various attacks. They give a description of possible sets of
subactions that an attacker needs to fulfill in order to achieve a
goal and bring the network to an unsafe state. The individual
goals can be achieved as sets of OR and AND sets of actions and
subactions.

However, in order to check every possible subset of attacks
we need to run the check exponential number of times to the
number of attacks and another difficulty is represented in the
form of interleaved attacks. Therefore, instead of representing
each attack with the subset of all possible actions we use the
Finite State Machine (FSM) approach where each attack is
represented with a very low number of states and we show the
method is highly efficient in both detection and classification
of attacks.

The attacks studied in this paper are: eject, ps,
ffbconfig and fdformat and all of them belong to the class

of User to Root exploits. User to Root exploits belong to the
class of attacks where the attacker gains the access to a normal
user account on the system and by exploiting some vulnerabil-
ity obtains the root access. The model for ftp-write attack
was also developed but due to the lack of data the tests could
not be performed using the developed model. Certain regu-
larities were captured in behavior of exploited programs by
comparing them against normal instances of those programs,
other instances of attacks detected at different periods of time
and by searching for certain events in the behavior of a pro-
gram that were expected to happen by using the knowledge
about the mechanism of those attacks and their goals.

The most common User to Root attack is buffer overflow
attack, which enables the attacker to run personal code on a
compromised machine once the boundary of a buffer has been
exceeded, giving him the privileges of the overflowed program
(which in most cases is root). This type of attacks usually
tries to execute a shell with the application’s owner privi-
leges. Some examples of those attacks are eject, ffbconfig,
fdformat, loadmodule, perl, ps, xterm etc.

The studied examples show that each attack is character-
ized with a very simple distinguishing sequence of system calls
and accompanying parameters (like size, PID, path, etc.),
which can be used for recognition and identification of dif-
ferent attacks.

Due to unavailability of data for other types of attacks we
present the results only for several buffer overflow attacks.

A Eject attack - U2R

The eject attack exploits a buffer overflow vulnerability in
eject program. If exploited, this vulnerability can be used to
gain root access on attacked systems.

We extracted numerous instances of both normal and
anomalous sequences of eject program and noted regulari-
ties in program behavior. We also examined one instance of
stealthy eject attack and noted the same regularities in pro-
gram behavior as in clear instances of that attack. That can be
explained with the fact that the stealthy part of the attack was
performed in the login part and file transport to the exploited
machine (i.e. encrypted file, scheduled exploit execution etc.)
The attack traces consist of hundreds or thousands lines of
system calls. However, there are only a couple of system call
sequences that are sufficient to completely define the attack.
Another identifying string that characterizes the eject exploit
is usr/bin/eject or existence of string ./ejectexploit or
./eject. We will see that similar sequences characterize the
other buffer overflow exploits. Buffer overflow is detected by
observing large value of header and a sequence of symbols such
as! Q#3$% & . This may not be the case at all times be-
cause a skilled attacker may use a combination of letters and
non-repeating patterns instead of repeating a short sequence
of patterns.

The diagram of eject attack is presented in figure 1.

Another serious problem in attack detection is globbing
which is used to avoid detection of suspicious commands. For
example, instead of typing command /bin/cat/etc/passwd
the attacker will use /[r,s,t,b]?[1,w,n,m]/[c,d]?t
/7t [c,d,e]l/*a?s*. The shell will replace the glob characters
and will find that the only valid match for this string is
/bin/cat/etc/passwd. None of the attacks from the MIT
data set [1] had examples of globbing.

stat

R OROBORCRCRS

1. Start

2. Eject program starts

3. Buffer overflow finished
4. Polling devices

5. Shell executed

6. Child process created

1->2: [ejectexploit

2->3: large header, execution of \usr\bin\ejer
3->4: stat(2)

4->5; Jusr/bin/ksh

5->6: pipe, fork

Figure 1: Eject attack.

B Fifbconfig - U2R

This attack is another example of a buffer overflow attack that
has signature very similar to the signature of eject attack.
There is one state less in the equivalent representation than
in the state diagram constructed for eject attack.

The equivalent state diagram is represented in Figure 2.

1. Start

2. Ffbconfig program starts
3. Buffer overflow finished
4. Shell executed

5. Child process created

Figure 2: Ffbconfig attack.

1->2: [ffhconfig
2->3: large header, execution
of Jusr/bin/ffbconfig
3->4: shell execution: /usr/bin/ks

4->5: pipe, fork

C Fdformat - U2R

Fdformat attack is another example of buffer overflow attack.
The Fdformat attack exploits a buffer overflow in the ’fdfor-
mat’ program distributed with Solaris 2.5.

This exploit is almost identical to ffbconfig attack. The
only differences are in the path of the attack which is in this
case /usr/bin/fdformat and in the file that is executed (if it
is named by the attack) ./formatexploit or ./format.

The equivalent state diagram is represented on Figure 3

1. Start 1->2: /fdformat
2. Fdformat program starts, 7_>3- large header and
loading libraries execution of/usr/bin/fdformat
3. Buffer overflow finished
4. Shell executed

5. Child process created

3->4: shell execution: /usr/bin/ksh
4->5: creating a child process

Figure 3: Fdformat attack.

D Ps attack - U2R

The typical form of ps attack involves both buffer overflow
and race condition. The instances of ps attacks given in the
MIT Lincoln Labs data set contain ps attacks that contain
buffer overflow without race condition.

The ps attack takes advantage of a race condition in the
version of 'ps’ distributed with Solaris 2.5 and allows an at-
tacker to execute arbitrary code with root privilege. This race
condition can only be exploited in order to gain root access if
the user has access to the temporary files.

The attacker needs to write an exploit program that deletes
the /tmp/ps/data file. That action forces the ps program to
create a new file and look in the /tmp directory for a file start-
ing with ps. When it finds the file, it deletes and replaces it
with a symbolic link to another file. The attacker will proba-
bly be forced to run the exploit many times before a success
occurs. When the exploit is successful the ps will perform
chown command on the symbolic link. The result is that the
file the link points to is owned by root.

Ps attack included in the MIT Lincoln Labs data set is
based on buffer overflow and has signature almost identical
to previously described attacks. It can also be detected by
looking at large values of header and path of execution which
is /usr/bin/ps in this case.

The resulting diagram is represented on Figure 4.

execve execve . exit

1. Start 1->2: ./ps_expl
2. Ps program starts, 2->3: large header, execution
loading libraries of /usr/bin/ps

3. Buffer overflow finished 3—>4: executing /usr/bin/ksh
4, Shell executed lusr/bin/ksh
5. System compromised ~ 5->5: new child process

Figure 4: Ps attack.

III. DETECTION AND CLASSIFICATION ALGORITHMS

wITH HIDDEN MARKOV MODELS

‘We need to recognize a malicious user who executes system
calls in certain order in attempt to break into the computer
system. In most cases of high-level attacks, sequences of sys-
tem calls can be interleaved within normal system behavior in
numerous ways.

Our goal is to detect when a particular sequence of harmful
instructions that could compromise security of our system has
been performed. To be able to recognize malicious activity we
need to have a database of malicious actions and convert those
actions in a set of HMMs, where each HMM is trained to rec-
ognize the attack pattern from which it was generated. Using
the obtained information the IDS should perform matching
of HMMs against possible attack sequences and find the like-
lihoods of the attacker’s actions that were generated. The
obtained likelihoods should be compared to obtain the infor-
mation about the likelihood of attack or the likelihood that
the given attack belongs to a specific class of attacks.

Before proceeding to our problem formulation and pro-
posed solutions we present the overview of notation used for
HMMs. The notation in this paper corresponds to the nota-
tion used in [3].

A discrete HMM is specified by the triple A\ = (4, B, 7).
A represents the state transition matrix of the underlying
Markov chain and is defined as (where s; denotes the state
of the Markov chain at time t):

A:[aij} = [p(SH_l :j‘StIi)],i,jIL...,N.

B is the observation matrix and is defined as (where xz; is the
output (observation) at time t):

B=lb|=[pzt=37]se=19)],i=1,...,N;5=1,..., K.

7 is the initial state probability distribution of the underlying
Markov states and is defined as

7T:[7I'7; :p(sl :Z)},Z:L,N

Given appropriate values of N, K, A, B and m the HMM can
be used as a generator for an observation sequence. In our
case we suppose that the number of states N and alphabet of
observations K are finite.

To be able to use the algorithm that is presented next we
need to compute the likelihood of a sequence of HMM obser-
vations given A, P(X | A), which is done by using the forward
variable. According to definitions in [3] the forward variable
of an HMM is defined as

a(i) = p(z1,22, ..., T, Se =1 | A) (1)
Hence, P(X | A) is the sum of a.(i)’s. Recalling the solution
of the forward part of the forward-backward procedure [3],
at(i) can be computed recursively. The initial condition in
the forward procedure is

ar(j) = 7(i)by(a1);1 <i < N (2)

and accordingly the recursive step [3] is

N
ap1(j) = [Zat(zﬁau] bi(we1);i1<t<T-1L1<j< N
=1

®3)
where b;(.) is the conditional density function given the un-
derlying Markov state at time ¢ is j.

We suppose that we have M HMMs as possible models for
the observed data and we need to test which of the M HMMs
matches the incoming sequence. In the framework of intrusion
detection the problem can be formulated as follows: given
M attack models in the form of Hidden Markov Models with
known parameters, detect the one that matches the incoming
sequence with the highest probability. However, in the case of
detecting an attack the incoming sequence may or may not
match one of the HMM models of attack. In case it does
not match one of the attack models we need to consider two
cases: either the incoming sequence is not an attack or it is an
unknown attack that we don’t have in our database. In this
report we assume that the incoming HMM matches one of M
HMMs in the system.

The problem of M-ary detection is solved with calculating
log-likelihoods for each of the possible models given the ob-
served sequence and finding the maximum. The model with
the maximal log likelihood (closest to zero) wins and the at-
tack is classified accordingly.

IV. ALGORITHM

Experiments are performed using the 1998 and 1999
DARPA/LL offline evaluation data. Both data sets had to
be used due to the fact that there are no examples of ps at-
tack in the 1998 data set. Lincoln Labs recorded program
behavior data using the Basic Security Module (BSM) of So-
laris. We used BSM audit records that correspond to system
calls. Each record provides information like name of the sys-
tem call, a subset of arguments, return value, process ID, user
ID etc. We used the system call information and information
about the payload size associated with each system call.

We developed an environment that would parse the BSM
audit logs into a form that can later be used for detection and
classification of attacks. The information about payload size
and execution of an unexpected program was used for attack
detection. Hypotheses testing was used for attack classifica-
tion.

A Data processing phase

Step 1 The initial step deals with the whole BSM file that
contains the daily activity performed on machine pascal and
contains both normal and abnormal activity. We divide the
whole BSM file into chunks of length of 100 system calls. Each
system call is assigned a number according to the order of
appearance in the BSM sequence.

Denote one randomly chosen system call number as k. The
algorithm observes the payload size associated with each sys-
tem call. If the system call has payload greater than 300, the
program outputs 2xk. Otherwise, it outputs 2xk—1. The pro-
gram lists the system calls with high payload that appeared
in the BSM file. The algorithm also monitors for violations
in the form of shell execution. If both conditions are fulfilled
(oversized argument and execution of unexpected program)
there is an ongoing attack.

Step 2 This step takes the original BSM file as an input
and looks for instances of each attack. It produces meta-files
containing line numbers of system calls issued by observed
programs and the actual system calls with all parameters from
the original BSM file.

Step 3 We extract sequences of system calls of length 100
and labels files that contain bad sequences. The resulting file
contains system calls issued by the attacked program and some
other system calls from other programs due to interleaving.

It may happen that the testing files (first and last) contain
a large portion of normal sequences, which causes that the
structure of training and testing file may significantly differ.
That problem may be solved by a sliding window approach on
training sequences.

B Training

In this paper we assume that the attack models are already
known. The goal is to detect and classify the incoming se-
quence using the models generated on already known attacks.
We trained the HMMSs on attack sequences generated in the
previous step. Each of the sequences is sequentially loaded
and HMM parameters are generated. Each attack is repre-
sented with 4-6 sequences of length 100 but only one or two of
them contain the actual attack (depends on whether the same
sequence contains oversized argument and shell executions or
not).

After sequentially loading the attack sequences and training
parameters on them in 10 iterations we get log likelihoods for
each model. After several iterations the parameters of trained
HMM are found and A, B and 7 matrices don’t change any
more.

The training procedure consists of training each of mali-
cious sequences on the same input parameters A;,, Bi, and
Tin, producing an output HMM with parameters 7;, A; and B;
that characterize that specific malicious sequence (i denotes
one of possible HMM models and varies in different training
sets, but is usually less than 10). This property of HMMs
that each set of parameters m;, A; and B; fits a specific mali-
cious sequence is used in the testing phase for classification of
attacks in two levels: normal/abnormal and attackl/attack2.

C Detection

We concentrated on four programs: ffbconfig, format,
eject and ps. The goal was to create hypotheses for each

of the attacks and classify the attacks in the appropriate cat-
egory. The classical rule for hypothesis testing when we set a
threshold for each of the hypotheses could not be used. The
hypothesis testing algorithm is based on the winning score
rule, where winning score is the log-likelihood that is clos-
est to zero. We denote the winning hypothesis with Hyw .
Hence, the hypothesis testing procedure is as follows:

H, if loglik, = max;{loglik;},i € {1,2,3,4}
H, if logliks = max;{loglik;},i € {1,2,3,4}
Hs if logliks = max;{loglik;},i € {1,2,3,4}
Hy if logliks = max;{loglik;},i € {1,2,3,4}
(4)
The first hypothesis, Hy corresponds to normal behavior
and that hypothesis is not used in the classification algo-
rithm. The detection algorithm loads every sequence ¢, where
i = {1,...,N} and N is the total number of sequences of
length 100 in the given BSM sequence and tests whether the
sequence has either shell execution or oversized argument. In
either case, the sequence is classified as anomalous. The test-
ing in this phase is performed between hypothesis Hp, that
corresponds to normal sequence and H 4 that corresponds to
anomalous sequence. Hence, if the sequence contains either
shell execution or has payload greater than 300, the winning
hypothesis is Ha and the sequence is processed to the clas-
sification step. Otherwise, the winning hypothesis is Hp and
the sequence is declared to be normal and is not considered in
further steps.

Hwin =

D Classification

This section tests on hypotheses H;, ¢ = {1,2, 3,4}, that cor-
respond to different types of attacks. In case of 4 buffer over-
flows the hypotheses are: Hp (ffbconfig), Hs (fdformat), Hs
(eject) and Hy (ps).

Hypothesis testing was preformed on BSM chunks that
were labelled as anomalous. The sequences were loaded into
a matrix which was used for hypothesis testing. We created
a number of HMMs fitted to ffbconfig, format, eject and
ps testing sequences. Parameters obtained during training
(mi, A; and B;) were used as input parameters for testing.
We calculated the log-likelihood for each of testing sequences
using each of the models obtained by training as input param-
eters. If the tested sequence does not fit the malicious model,
the log likelihood ratio converges to -oo after the first itera-
tion. Each sequence that had log likelihood greater than a
certain (system-defined) threshold was classified as malicious.
If a sequence is classified as both attack 1 and attack 2, two
algorithms can be applied to avoid misclassification among the
attacks.

Algorithm 1: This algorithm uses the property that the
more similar two models are, the log-likelihood ratio is closer
to zero. Hence, if a sequence is classified as both attack 1 and
attack 2, the testing algorithm compares the log-likelihoods of
the sequences and the one with larger log likelihood wins. This
algorithm performed correct classification in the majority of
cases.

Algorithm 2: This algorithm classifies sequences according
to the program that is being executed in the sequence that was
marked as anomalous. For example, is a certain sequence is
classified as both attack 1 (attack on program 1) and attack
2 (attack on program 2) and our program determines that

program 1 is being executed in that sequence, the sequence is
classified as attack 1. When we used this criterion there was
no misclassification among the attacks. However, if we need
to classify between a buffer overflow on eject program and
some other type of attack on eject program this algorithm
will not be of any use. The classification rate of this algorithm
is 100%.

V. RESULTS

All test performed on data sets include hypothesis test-
ing. Only testing among ffbconfig and eject attacks and
ffbconfig and format attacks is performed using 3 hypothe-
ses: Ho for normal, H; for ffbconfig and H, for fdformat
and Hs for eject. Week 6 Thursday contained 3 ffbconfig
and 12 eject attacks. Week 5 Monday contained only one
ffbconfig and one fdformat attack. Because of that, we
performed training and testing on all possible combination of
sequences and the results obtained were almost identical. Hy-
pothesis testing using 5 hypotheses was not possible due to the
fact that the testing data set does not contain any fdformat
or ps attacks. For testing those attacks we trained each of
those attacks on data from 2 days and tested it on data from
the third day. For ps attack we used 1999 data.

A Detection of ffbconfig and eject at-
tacks

Due to already presented difficulties, the hypothesis testing
was performed using 3 hypotheses. Hypothesis Hy corre-
sponds to normal sequences, Hi to ffbconfig attack and
H3 to eject attack. Testing was performed only on those
sequences that had shell execution or even number (the se-
quences that were extracted in Step 1 of the algorithm). The
results obtained in testing phase are first presented in the form
of graphs and tables and then discussed.

199,643 100

£2% of normal instances
classified correctly

£% of normal instances
70 misclassified as flbconfig
i £3% of normal instances
50 misclassified as eject

40 8% of ffbeonfig instances
20 20| classified correctly
2 8% of eject instances
10 classified correctly
0 : . Mm% of eject misclassified as
Normal fibconfig eject ffbconfig

Fig. 5: Ffbconfig and eject tested on Week 6 Thursday.

Normal Anomalous
Normal 99.643% 0.357%
Anomalous | 0% 100%

Tab. 1: Confusion matrix for the case of testing between 3 hypothe-

ses: normal, ffbconfig and eject

Input parameters for tested sequences were HMM parame-
ters obtained during the training phase. No eject attacks were
classified as normal and no ffbconfig attacks were classified as
normal. The only misclassification that happened was that
some sequences were classified as both ffbconfig and eject at-
tacks. There was a total of 9251 sequences. 9233 were normal,

Normal Ffbconfig | Eject
Normal 9200 14 19
Ffbconfig | 0 6 0
Eject 0 3 9

Tab. 2: Detection and misclassification rates for the case of testing

between normal, fibconfig and eject

6 sequences characterized ffbconfig attack and 12 sequences
characterized eject attack. When Algorithm 1 was applied to
the sequences it led to the misclassification rate of 20% for
eject attacks (8 out of 10 attacks were classified correctly)
and 0% misclassification rate for flbconfig. When Algorithm
2 was applied it led to misclassification rate of 0%. There
were 0.368% of false positives and no false negatives. Hence,
the only imperfection of the algorithm reflects in misclassifica-
tion among different types of attacks, not among normal and
anomalous. The results are presented in Figure 5 and Tables
1 and 2.

B Detection of ffbconfig and format at-
tacks

Since there are no instances of format attack in weeks 6 and 7,
we had to use two weeks from weeks 1-5 for training and one
for testing. Applying the same procedure as in the previous
case, the false alarm rate was 0.3% and misclassification rate
was 0% using either of criterions presented in the previous
section.

lihte0

% of normal instances
classified correctly

3% of normal instances
misclassified as fibconfig

1% of normal instances
misclassified as fdformat

[% of fihconfig instances
classified correctly

% of fdformat instances
classified correctly

format

Normal

ffbeonfig
Fig. 6: Ffbconfig and format detection on Week 5 Monday.

False positive rate was 0.319% and there were no false neg-
atives. No format or ffbconfig attacks were misclassified. The
same results were obtained using both algorithms. The results
are presented in Figure 6 and Tables 3 and 4.

Normal Anomalous
Normal 99.68% 0.3198%
Anomalous | 0% 100%

Tab. 3: Confusion matrix in case of multiple hypothesis testing

C Detection and classification of ps at-
tacks
Due to the fact that ps attack appears only in 1999 data, we

could not test detection of ps attacks using any other hypothe-
ses except Ho (normal) and Hs (ps). The false alarm rate was

Normal Ffbconfig | Format
Normal 99.68% 0.046% 0.24%
Fibconfig | 0 100% 0
Format 0 0 100%

Tab. 4: Detection and misclassification rates in case of detection

and classification of multiple types of attacks

0.3% and there was no misclassification, all instances of ps
attacks were detected.

Normal Ps
Normal 99.53% 0.47%
Ps 0% 100%

Tab. 5: Confusion matrix for detection of Ps attack

There were 0.47% false positives and no false negatives.
The results are presented in Table 5.

The misclassification among the attacks is due to the facts
that all buffer overflows have very similar structure and that
chunking of BSM files does not always give us the whole at-
tack, but instead includes parts of normal sequences. When
we trained data for a specific attack and then used the data for
detection of only that attack the detection rate was more than
99%. In table 6 we present tabular results in the form of con-
fusion matrices for eject attack (trained on 3 weeks and tested
on the fourth one), fdformat attack (trained on two weeks and
tested on Weekbd Monday) and ffbconfig attack (trained on 3
weeks and tested on Week5 Monday).

Normal Eject
Normal 99.577% 0.433%
Eject 0% 100%

Normal Fdformat
Normal 99.685% 0.0.315%
Fdformat | 0% 100%

Normal Ffbconfig
Normal 99.577% 0.433%
Ffbconfig | 0% 100%

Tab. 6: Confusion matrix for detection of Eject, Fdformat and
Ffbconfig attacks respectively

VI. CONCLUSION

This paper demonstrated that it is possible to model net-
work attacks with models that consist of small finite number
of states. These models can be used for both detection and
classification of attacks. Current results through our methods
and algorithms do not display any False Negatives, but we
cannot claim that False Negatives will not appear in future
applications. The attacks for which we had most instances
and associated data were attacks exploiting buffer overflows
and that is the reason why our experimental results and appli-
cations of our algorithms presented in this paper are for such

attacks. We developed models for other attacks and we be-
lieve that they are applicable for detection and classification
of other attacks, not only buffer overflows. The algorithm can
also be applied for detecting race condition attacks since they
add additional loops in program behavior, that do not exist in
normal behavior. The method presented in this paper can be
used in combination with static analysis tools to achieve even
higher detection rate and classify the attacks that the static
analysis tools may have missed. The results obtained prove
that the behavior of attacks can be completely captured by
HMMs.

The contribution of this paper is reflected in the area of
classification. There are numerous publications that use dif-
ferent models for detection between normal and anomalous.
None of them puts emphasis on automatic classification of at-
tacks. This paper uses an approach that is based on training
on anomalous sequences. Training is performed on a couple
of files, each of length 100 system calls. Testing is performed
on around 2-4% of the total number of sequences of the initial
data set. The strength of this approach is that it chooses only
potential attacks in both the training and testing sets.

This method cannot be applied for detection of attacks that
are performed over a long period of time. The strength of this
approach is that the attacker cannot change the behavior of
normal over time by slowly adding more and more abnormal
sequences since we are using anomalous sequences for training.

This algorithm is used for detection of already known at-
tacks. However, it can always classify the sequence as normal
or anomalous. If the sequence is classified as anomalous and
it does not fit any of the existing models, it can be named
as unknown attack and passed on to another system that will
determine if the attack is an already known attack that has
been altered or a completely new attack.

REFERENCES

[1] R. P. Lippmann et. al. “Analysis and Results of the 1999
DARPA Off-Line Intrusion Detection Evaluation”, Recent Ad-
vances in Intrusion Detection 2000: 162-182

[2] B. Schneier, “Attacks Trees”, Dr. Dobb’s Journal, Dec. 1999.

[3] L. R. Rabiner “ A tutorial on Hidden Markov Models and se-
lected applications in speech recognition,” Proc. IEEE, 77(2),
257-286.

[4] R. P. Lippmann, Robert K. Cunningham “Guide to Creating
Stealthy Attacks for the 1999 DARPA Off-Line Intrusion De-
tection Evaluation”, MIT Lincoln Laboratory. 24. April 2000.

[5] S. A. Hofmeyr, S. Forrest, A. Somayaji “Intrusion detection
using sequences of system calls” Journal of Computer Security
Vol. 6, pp. 151-180 (1998).

[6] C. Warrender, S. Forrest, B. Pearlmutter “Detecting Intrusions
Using System Calls: Alternative Data Models”, 1999 IEEE
Symposium on Security and Privacy, May 9-12, 1999.

[7] R. Sekar, M. Bendre, D. Dhurjati, P. Bollineni, “A Fast
Automation-Based Method for Detecting Anomalous Program
Behaviors”, IEEE Symposium on Security and Privacy, Oak-
land, California,May 2001.

[8] D. Wagner, H. Chen "MOPS: an Infrastructure for Examining
Security Properties of Software”, 9th ACM Conference on com-
puter and communications security, Washington DC, November
2002.

[9] D. Evans, D. Larochelle ”Improving Security Using Extensible
Lighweight Static Analysis”, IEEE Software, January/February
2002.

