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Abstract—The performance of the Adaptive RED
scheme is susceptible to bursty web traffic. In this paper
a parallel virtual queue structure is proposed for active
queue management at the bottleneck router. Real time
connections such as web and UDP, and non-real time
connections such as FTP are served in two different
virtual queues with drop-tail and Adaptive RED policies,
respectively. Both queues share the same physical buffer
memory. Simulation shows that file delivery for the web
traffic is greatly improved due to shorter packet delay and
lower packet loss rate, and that the queue length variation
for the FTP traffic is small. To improve the goodput
of the non-real time connections, a modified Adaptive
RED scheme with dynamic queue length thresholds is also
proposed. This scheme is able to keep the packet dropping
probability within a desired small region. Stability of the
queue length under this scheme is studied through analysis
and numerical computation.

Index Terms—Adaptive RED, Active Queue Manage-
ment, Virtual Queue, Scheduling.

I. INTRODUCTION

For small queuing delay, the buffer size in a router
is in general not large. However, a router with small
buffer size often has a high packet dropping rate since
the Internet traffic is bursty. When packets are lost,
the TCP protocol dramatically reduces the flow rate
during the congestion avoidance phase [1]. Therefore,
after a buffer overflow event in a drop-tail queue, all
connections sense packet loss and slow down the transfer
rate simultaneously. In order to prevent this global syn-
chronization phenomenon and increase link utilization,
many active queue management schemes such as RED
(Random Early Detection) [2] have been proposed and
received increasing attention.

The basic idea of RED is to randomly drop packets to
prevent buffer overflow and the global synchronization

Research partially supported by DARPA through SPAWAR, San
Diego under contract No. N66001-00-C-8063.

problem. The dropping probability is a non-decreasing
function of the queue length. A TCP connection with
a higher flow rate has a better chance to get packets
dropped and reduce its rate more rapidly. By dropping
packets actively, RED keeps the queue length within a
desired region. However, some simulation and analysis
results [3] [4] [5] have demonstrated that the perfor-
mance of RED is very sensitive to parameter settings.
Based on the original idea of RED, there have been
some modifications such as Stabilized RED (SRED) [6],
Flow RED (FRED) [7], Weighted RED [8], Random
Early Marking (REM) [9], BLUE [10] and Adaptive
RED [11] [12]. The Adaptive RED scheme dynamically
updates the maximum dropping probability according
to the exponentially weighted moving average (EWMA)
of the queue length, and makes itself more robust with
respect to the congestion level.

The Adaptive RED policy provides good rate con-
trol for TCP connections operating in the congestion
avoidance phase [13] [12]. However, a great portion of
Internet traffic is web and UDP traffic. Since most web
connections involve transfer of several small files, these
connections have a short life and are mostly operated
in the TCP slow start phase with a small congestion
window. Dropping web packets in this phase is not an
effective way to control the traffic rate and alleviate the
congestion at the bottleneck router. Furthermore, from
the viewpoint of a web user, one or several packet
losses in the slow start phase would lead to extra delay
for retransmission or even TCP timeout. It would also
force TCP to enter the congestion avoidance phase
prematurely with a small congestion window and result
in a low throughput. The delay and low throughput
would severely degrade the performance of delivering
short messages such as web pages, and web browsers
experience long waiting times even with a high speed
network. On the other hand, the Adaptive RED fails
to maintain the queue length within the desired region
due to the bursty nature of web traffic. To address
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these problems, we propose a parallel virtual queue
structure for active queue management in this paper.
In this structure, real time (web, UDP) and non-real
time (FTP) traffic are separated into two different virtual
queues which share the same physical buffer memory.
The drop-tail policy is applied at the first virtual queue
to serve real time applications. In order to have a small
mean delay, the service rate of this drop-tail queue is
dynamically determined by its virtual queue length. The
remaining non-real time traffic is directed to an Adaptive
RED virtual queue. Simulation shows that this parallel
virtual queue structure not only has the advantages of
Adaptive RED such as high link utilization and small
delay, but also greatly reduces the total packet loss rate at
the router. Despite that the bandwidth is shared with the
bursty drop-tail virtual queue, the Adaptive RED queue
has a small length variation.

The original Adaptive RED dynamically changes the
maximum dropping probability Pmax to keep the queue
length within the thresholds. However, for some non-real
time applications, high goodput (low packet dropping
rate) is more important than short packet delay. Hence
we explore a modified Adaptive RED policy for the non-
real time applications at the second virtual queue, where
the queue length thresholds are dynamically adjusted
to maintain the dropping probability of Adaptive RED
algorithm in a desired range.

The remainder of the paper is organized as follows.
In Section II, we demonstrate the vulnerability of the
Adaptive RED in the presence of web and UDP traffic.
The parallel virtual queue structure is described in Sec-
tion III. Comparison of this approach with the original
Adaptive RED scheme is given through simulation in
Section IV. In Section V, we present the modified Adap-
tive RED policy with dynamic queue length thresholds.
Performance analysis is provided for both virtual queues
(the drop-tail and the modified Adaptive RED queue) in
Section VI. Finally we conclude in Section VII.

II. VULNERABILITY OF ADAPTIVE RED TO

WEB-MICE

In this section we consider a scenario containing
short-life TCP (WEB), UDP (CBR) and long-life TCP
(FTP) traffic. The purpose is to demonstrate that the
performance of the Adaptive RED scheme is severely
degraded by the short-life web traffic. The network in
our ns2 experiment has a simple dumbbell topology
with the bottleneck link bandwidth C=3.0Mbps. One
side of the bottleneck consists of 800 web clients. Each
client sends a web request and has a think time of
Exponential distribution with mean 50s after the end
of each session. The other side contains 800 web servers,

running HTTP 1.1 protocol and having a Pareto [14]
file size distribution with parameters (Kp=2.3Kbytes,
α=1.3) (mean 10Kbytes). The round-trip propagation
delay of HTTP connections is uniformly distributed in
(16, 240)ms. Note that the mean rate of the aggregate
web traffic is around 1.2Mbps. There is one CBR traffic
source which periodically generates a 1Kbytes UDP
packet every 50ms. Besides these short web connections
and UDP traffic, there are 10 persistent FTP connections
sharing the bottleneck link with round-trip propagation
delay of 64ms. Figure 1 shows that the Adaptive RED
works well with those FTP connections before the web
traffic comes in. However, after the CBR source and web
servers begin to share the bandwidth at time t=100s,
the queue length of Adaptive RED deviates dramatically
from the desired region. Since the Adaptive RED scheme
relies on average queue length to determine the dropping
probability and control the TCP flow rate, the extra queue
length perturbation contributed by the bursty web traffic
makes the Adaptive RED increase/decrease its dropping
probability rapidly. This over-reaction causes a great
queue length variation and poor performance in packet
delay and loss.
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Fig. 1. Queue length of the Adaptive RED: 10 FTP starting at t=0
and 800 WEBs and 1 CBR coming in at t=100s.

Since most web pages contain one or several very
small files, these TCP connections are mostly operated in
their slow start phase during the session life. According
to the TCP protocol, the congestion control window is
just beginning to increase its size from the initial value
and the flow rate is low. Dropping packets in the slow
start phase cannot efficiently alleviate the congestion
level at the bottleneck router. In other words, any random
dropping/marking policy such as RED is unable to effec-
tively control the congestion level without considering
short-life TCP (and UDP) traffic. Furthermore, losing
one or two packets in the slow start phase not only causes
a very low throughput and extra delay, but also leads to
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a high probability of connection timeout. This is further
illustrated below.

From the viewpoint of a web browser, a short-life TCP
session may only need several round-trip times (RTT) to
finish the whole transmission. When the sender senses
a packet loss, the slow start threshold ssthresh will
be reduced to min(cwnd, rcv window)/2 [1] and the
new congestion window size cwnd is also decreased
depending on different TCP versions (For TCP Reno,
the new cwnd = ssthresh and TCP enters the fast re-
covery phase. For TCP Tahoe, cwnd = MSS (maximum
segment size) and TCP begins a new slow start phase).
Since original cwnd is just beginning to increase its
size from its initial value MSS in the first slow start
phase, one packet loss during the initial several round-
trip times leads TCP to enter the congestion avoidance
phase with a very small ssthresh and cwnd. In the
congestion avoidance phase, TCP slowly increases cwnd
(the increment is about one MSS per round-trip time)
from the current ssthresh. Therefore, losing one packet
in the slow start phase takes TCP a long time to complete
a short message. In addition, since the web traffic is short
but bursty, these web connections usually experience a
higher packet loss rate (see the web packet loss rates
of the Adaptive RED and the drop-tail policies in Table
III).

The default initial value of ssthresh is 64KB and the
packet size is 1KB in this paper. Assuming a typical
packet dropping probability Pd=0.04 when using the
Adaptive RED, the probability of losing one or more
packets in the slow start phase is equal to 1− (1−Pd)64

= 0.9267 (assuming that packets are dropped indepen-
dently). Therefore, most TCP connections have at least
one packet dropped in their first slow start phase. For
example, assuming that the 15th packet is dropped by
the Adaptive RED, ssthresh decreases from 64KB to
4KB and the new congestion window cwnd is decreased
from 8KB to 1KB (Tahoe). The situation gets worse
if one packet is dropped earlier (in the first 3 round-
trip times). The congestion window at this moment is
so small that the sender may not have enough data
packets to trigger the receiver to generate three duplicate
acknowledgements. If packets cannot be recovered by
this fast recovery scheme, TCP has to depend on the
protocol timer for error recovery. The default value of
the protocol timer is usually large and the delivery
delay could be increased dramatically by timeout events.
Moreover, the probability of losing two or more packets
of the same congestion window in the slow start phase
also cannot be ignored. These events lead to a high
probability of TCP timeout and connection reset.

For illustration we conduct simulation of transferring a

TABLE I

DELIVERY DELAY OF SMALL FILE: MEAN AND STANDARD

DEVIATION

Pd 0.00 0.02 0.04 0.08
30KB 0.88(.0006) 1.60(1.88) 2.74(4.27) 5.88(7.79)
90KB 1.18(.0008) 2.79(2.39) 4.81(3.91) 9.24(6.30)
150KB 1.34 (0.0008) 3.51(1.90) 6.51(4.60) 13.38(8.87)

small web file in a stand alone and one hop environment.
There is no other traffic sharing the bandwidth and
packets are dropped intentionally. Figure 2 shows the
mean delivery delay v.s. the dropping probability for
file sizes 30KB-210KB, and Table I lists the mean and
standard deviation of the delay. For example, TCP takes
about 4.81s to complete transmission of a 90KB file if
Pd = 0.04; in comparison, in the loss free case, the file
can be delivered in 1.18s. Since most web pages have
sizes in the above range, a web browser will experience
a long response time when the dropping probability of
the Adaptive RED is high.
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Fig. 2. Mean delivery delay of small file v.s. dropping probability
Pd with file sizes 30, 60, ..., 210Kbytes, bandwidth 3Mbps and
round-trip time 128ms.

III. A PARALLEL VIRTUAL QUEUES STRUCTURE

To solve the problem discussed in Section II, we
propose a parallel virtual queue structure in the router.
The first virtual queue deals with the short-life real-time
traffic (web, UDP). Since dropping these packets cannot
effectively alleviate the congestion level, but severely
increases delivery delay, it would be good to keep them
in the queue unless the total buffer (shared with the
other queue) has overflowed. Hence, the queuing policy
of the first virtual queue is chosen to be drop-tail to
minimize the packet loss rate. In order to have a short
delivery delay for web browsers and UDP connections,
the service rate C1(t) is changed dynamically according
to its virtual queue length q1(t).
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The second virtual queue serves long-life TCP con-
nections such as FTP with large file sizes, where the
Adaptive RED is used. Although the available band-
width of this queue is determined by C2(t)=C-C1(t),
the Adaptive RED scheme is expected (and will be
verified by simulation in Section IV) to keep its virtual
queue length q2(t) in a desired region for the following
reason. When there is a heavy workload at the drop-
tail queue, C2(t) decreases quickly. FTP receivers ex-
perience slower packet arrival rates and send acknowl-
edgement packets (ACK) back more slowly. Without
increasing the dropping probability at the Adaptive RED
queue, the slower ACK arrival rates from the receivers
make FTP senders reduce flow rates automatically with-
out shrinking their congestion window sizes. On the
other hand, when the congestion level is alleviated, the
Adaptive RED queue receives more bandwidth. Since
the congestion window sizes are still large in the FTP
servers, the throughputs of FTP is quickly recovered by
faster arrival rates of ACK packets from the receivers.

With this parallel virtual queue structure (which will
be called RED+Tail policy in this paper), we can keep
the benefits of Adaptive RED such as high (100%) link
utilization. Furthermore, the packet loss rate of the short-
life TCP and UDP connections is greatly reduced by
the drop-tail policy and a shared buffer. The packet loss
rate of long-life TCP traffic is also reduced due to the
suppressed bandwidth, larger thresholds (longer RTT )
and more stable average virtual queue length for the
Adaptive RED queue.

We now discuss how to implement the RED+Tail
policy. The first problem is how to split the long-life
traffic from other short-life web traffic at the router. To
this end, the router has to know the age or elapsed time
of each TCP connection. Unfortunately, this information
is hidden in the TCP header which is not available to
the IP router. However, one may roughly estimate the
elapsed time by using the following approach:

• When a packet arrives with a new source-destination
pair which has not been seen by the router in the
past T sec, we treat it as a new TCP connection and
identify this connection as a short-life connection;

• Send the new connection packets to the drop-tail
queue;

• Set a counter for the number of packets of this
connection;

• If the cumulative packets number is greater than a
threshold N , we assume that the file size is large
enough and this TCP connection has already left its
slow start phase. We redirect the subsequent packets
of this connection to the Adaptive RED queue;

• Remove the counter if there is no packet arrival in

the last T sec.

Preliminary simulation results show that this approach
successfully prevents small web traffic from entering the
RED queue. The probability of false alarm is less than
0.02 in our scenario. Since the web traffic has small
file sizes and short session times, there is no harm if the
short-life connection packets are misdirected to the RED
queue after time T .

Figure 3 shows the RED+Tail parallel queue structure
in the router. Recall that C1(t) and C2(t) denote the
service rates of the drop-tail queue and the Adaptive
RED queue at time t respectively. In order to allocate
bandwidth dynamically to both queues and assign a
desired region of queue length for the Adaptive RED
queue, we define the maximum threshold maxthi and
minimum threshold minthi for i = 1, 2. The service
rates C1(t) and C2(t) are given by the following algo-
rithm:

• if q1 = 0, then C1(t) := 0.
• if 0 < q1 < minth1, then C1(t):=C1min.
• if minth1 ≤ q1, then C1(t):=min(C q1

maxth1
,

C1max).
• C2(t) := C − C1(t),

where C is the link bandwidth. The variable q1 denotes
the queue length of the drop-tail queue. The constant
C1max preserves the minimum available bandwidth C −
C1max for the RED queue to prevent FTP connections
from timeout.

C1

C2

Router

Adaptive RED 

Drop−Tail
Short−life TCP & UDP 

Long−life TCP

Fig. 3. The parallel virtual queue structure for active queue
management.

IV. SIMULATION AND COMPARISON

In this section, we compare the RED+Tail scheme
with the Adaptive RED on typical TCP performance
metrics. For the Adaptive RED, we use the parameter
settings suggested by Floyd et al [12] (α and β of the
AIMD algorithm). Both schemes were implemented in
the ns2 simulator. The network topology and scenario are
as described in Section II. Table II lists the parameters
for the RED+Tail policy and the Adaptive RED policy.
Note that the virtual queues of the RED+Tail scheme
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share the total physical buffer size, i.e., the packets in
the drop-tail virtual queue will not be dropped unless
the physical memory is full. The Adaptive RED is set in
a “gentle” mode meaning that the dropping probability
between (maxth2, 2maxth2) is linear in (Pmax, 1).

TABLE II

EXPERIMENT SETTINGS

Virtual Qu. i Buffer Size minthi maxthi α β
i = 1 160KB 2KB 30KB - -
i = 2 shared 20KB 80KB 0.01 0.9

Adapt. RED 160KB 20KB 80KB 0.01 0.9

The performance for a connection is evaluated by the
packet loss rate, delay and throughput. However, we
are more concerned about packet loss rate and delay
for web (short-TCP) and CBR (UDP) connections, and
more concerned about throughput for FTP (long-TCP).
We replaced the Adaptive RED with RED+Tail scheme
at the router and repeated the experiment of Section II.
For comparison, an experiment with the drop-tail policy
was also conducted. The random seed of the simulator
was fixed so that the processes of web requests and
file sizes had the same sample paths in all experiments.
Table III lists the performance metrics under RED+Tail,
the Adaptive RED and the traditional drop-tail scheme
respectively.

Figure 4 shows the queue lengths of the RED+Tail
scheme, which demonstrates that the virtual queue length
q2 is quite stable and stays in the desired region even
after the web and CBR traffic begins to share the band-
width at time t=100s. The actual dropping probability
for the FTP traffic is reduced from 4.15% to 2.75%
by a longer queuing delay (184ms, see Table III). This
scheme prevents the over-reaction behavior of RED in
the original Adaptive RED case and keeps the mean
queue length q2 in a desired region (Compare to Figure
1).

TABLE III

PERFORMANCE METRICS

Policy Loss % Delay Sec. Rate KB/s
RED+Tail:FTP 2.747 0.184 209.465
RED+Tail:WEB 1.278 0.114 144.455
RED+Tail:CBR 0.300 0.109 19.867

AdaptRED:FTP 4.149 0.143 217.531
AdaptRED:WEB 4.514 0.143 137.124
AdaptRED:CBR 3.950 0.141 19.140

DropTail:FTP 1.916 0.349 215.243
DropTail:WEB 4.234 0.340 138.983
DropTail:CBR 1.550 0.342 19.601
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Fig. 4. Queue lengths of RED+Tail virtual queues: 10 FTPs starting
at t=0 go to virtual queue 2, and 800 WEBs + 1 CBR starting at t=100
go to virtual queue 1.
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Fig. 5. Packet losses (packets/sec.) of Adaptive RED and RED+Tail.

Figure 5 shows the packet loss rates of FTP, web
and CBR connections under the Adaptive RED and
RED+Tail schemes. We see that RED+Tail provides
great improvement in packet loss for web and CBR
connections. The web packet loss rate is reduced from
4.51% to 1.28% and CBR packet loss rate is reduced
from 3.95% to 0.30%.

Figure 6 compares the packet delays. The mean queu-
ing delay of web and CBR packets in the RED+Tail
scheme is shortened at the cost of the FTP packets
delay. The web and CBR packet delay depends on how
much bandwidth is allocated to the drop-tail queue. One
can satisfy a mean delay requirement for the web and
CBR connections by properly adjusting the parameter
maxth1. For example, the maxth1 of the RED+Tail
scheme is set to be 30Kbytes so that the estimate of
mean delay at the drop-tail queue is about 80ms. How-
ever, the service rate C1 reaches its maximum C1max

when q1 > maxth1. The actual mean delay should
be larger than expected. For our simulation the mean
delay of web and CBR traffic is around 110ms (refer to
analysis in Section VI-A).



6

0 100 200 300 400
0

0.5

1

F
T

P

Adaptive RED

0 100 200 300 400
0

0.1

0.2

0.3

0.4

W
E

B

0 100 200 300 400
0

0.1

0.2

0.3

0.4

C
B

R

0 100 200 300 400
0

0.5

1
RED+Tail

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0 100 200 300 400
0

0.1

0.2

0.3

0.4

Fig. 6. Packet delays (sec.) of Adaptive RED and RED+Tail.

0 100 200 300 400
0

100

200

300

400

F
T

P

Adaptive RED

0 100 200 300 400
0

100

200

300

400

W
E

B

0 100 200 300 400
0

10

20

30

C
B

R

0 100 200 300 400
0

100

200

300

400

F
T

P

RED+Tail

0 100 200 300 400
0

100

200

300

400

W
E

B

0 100 200 300 400
0

10

20

30

C
B

R

Fig. 7. Throughputs (KBytes/sec.) of Adaptive RED and RED+Tail.

Figures 7 and 8 show the throughputs of FTP, web
and CBR traffic. Both schemes achieve 100% utilization
of the link bandwidth. Due to the bandwidth allocation
scheme in the RED+Tail scheme, FTP has a slightly
smaller throughput. However, the saved bandwidth al-
lows web burst to pass through the bottleneck link faster.

Figure 9 compares the small web file delivery time
under different schemes. Since the RED+Tail policy has
a small packet loss rate, its delivery time is almost equal
to the loss free case in Table I. On the other hand, the
Adaptive RED has a loss rate 4.5%, its delivery time
is three times longer. Note that the drop-tail queue has
a similar loss rate (4.2%) as Adaptive RED for web
packets. However, the file delivery time of the drop-tail
scheme is about 2.5 times longer than Adaptive RED’s.
This is mainly due to the long queuing delay (0.340sec)
of the drop-tail policy.

V. DYNAMIC THRESHOLDS FOR ADAPTIVE RED
AND FAIRNESS

The Adaptive RED relies on adjusting the dropping
probability to control the flow rates of TCP connections
and keep the average queue length in a desired region.
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However, for those applications with large file sizes,
the goodput is more important than the packet delay.
The packet loss rate is a key factor in determining the
connection goodput. Since the minimum and maximum
thresholds of the Adaptive RED scheme are fixed, the
dropping probability of Adaptive RED is high when
a congestion happens. This high dropping probability
causes frequent retransmissions and low goodput.

To maintain a low packet loss rate, we propose
the following modified Adaptive RED scheme for the
Adaptive RED virtual queue where minth2 and maxth2

are dynamically adjusted while D=maxth2 −minth2 is
maintained constant.

• Pick 0 < γ < 1 (γ=0.05 in this paper).
• If P̄d > PU , then minth2 := minth2(1 + γ),

maxth2 := minth2 + D.
• If P̄d < PL, then minth2 := minth2(1 − γ),

maxth2 := minth2 + D,
where P̄d is the average dropping probability obtained by
the EWMA algorithm and (PL, PU ) is the desired region
of dropping probability. Note that if we set PU < Pmax,
the floating thresholds do not change the current slope
of dropping probability function dramatically, since the
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distance between the thresholds is fixed.
The rationale behind the above scheme is that, by

increasing the thresholds (when P̄d > PU ), the queuing
delay is increased and the flow rates are reduced. Since
the average TCP throughput is proportional to 1

RTT
√

Pd
,

we achieve the same throughput without raising the
packet loss rate. Figures 10 and 11 compare the Adaptive
RED schemes with fixed and dynamic thresholds re-
spectively. There are 20 persistent FTP servers sharing a
6Mbps bottleneck link. Another 20 FTP servers arrive at
time 100s and leave at time 300s. It can be seen that the
fixed threshold scheme has a small queue length variation
and a large dropping probability (0.05). In contrast, the
dynamic threshold scheme has a much lower average
dropping probability (0.014 with PL=0.01, PU =0.02),
but a higher packet delay. Note that both schemes achieve
100% link utilization so that each FTP connection has
the same throughput. However, with a much lower packet
loss rate, the dynamic threshold scheme achieves a
higher goodput. This dynamic threshold scheme allows
us to consider the trade-off between packet loss and
queuing delay in an Adaptive RED queue.

Dynamically varying the thresholds may also have
implications in achieving throughput fairness among
multiple Adaptive RED queues. Since the flow rates of
TCP connections are determined by the corresponding
dropping probabilities and queuing delays at different
queues, connections with shorter link propagation delays
and higher throughputs can be suppressed by raising the
queue length thresholds at the router.
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The NS2 simulation in Section IV is conducted again
with the modified Adaptive RED serving the second
virtual queue. Parameters (except minth2 and maxth2,
which are dynamically adjusted) used are as listed in Ta-
ble II. The desired region of dropping probability for the
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Fig. 11. Dropping probability with fixed and dynamic thresholds:
20 FTP starting at t=0, and another FTP 20 starting at t=100s
and leaving at t=300s, C=6Mbps, dk=64ms (Inst. P: instantaneous
dropping probability; Avg. P: EWMA average of Inst. P).

TABLE IV

PERFORMANCE METRICS:RED+TAIL WITH DYNAMIC

THRESHOLD SCHEME

Policy Loss % Delay Sec. Rate KB/s
Dyn. Thres.:FTP 0.899 0.318 209.455
Dyn. Thres.:WEB 2.306 0.093 144.505
Dyn. Thres.:CBR 0.519 0.091 19.827

Adaptive RED queue is set to be (PL,PU )=(0.005,0.010).
Figure 12 shows the lengths of both virtual queues and
the dropping probability at the Adaptive RED queue. The
dropping probability stays in the desired region most of
the time as expected. Note that the flow rate of FTP con-
nections are reduced without increasing the queue length
q2(t) and the dropping probability dramatically when the
bursty web traffic arrives at t=100. This is because that
the available bandwidth for FTP connections is reduced
and FTP senders see a longer round-trip time (longer
packet delay at q2, see Figure 14).

Figures 13 and 14 show the packet losses and de-
lays for FTP, web and CBR connections respectively.
Table IV collects the corresponding performance metrics.
Comparing to Figure 5, 6 and Table III, The packet
loss rate of FTP connection is reduced from 2.747%
to 0.988% at the cost of packet delay (increased from
0.184s to 0.318s). Since the average queue length at
the Adaptive RED queue is about 80KBytes instead
of 60KBytes in the fixed threshold scheme, web and
UDP packets see a smaller shared buffer at the drop-tail
queue and experience a higher loss rate from 1.278%
to 2.306% and from 0.300% to 0.519%, respectively.
However, the average delays of web and UDP packets
are slightly shorter for a smaller shared buffer space at
the drop-tail queue. The delay and loss at the drop-tail
queue can be improved by increasing the buffer size
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and using a more aggressive bandwidth allocation policy
(smaller maxth1). Finally, Tables III and IV also show
that the throughputs for the fixed threshold scheme and
the dynamic threshold scheme are almost the same.
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Fig. 12. Dynamic threshold scheme: Virtual queue lengths of
RED+Tail and dropping probability of the Adaptive RED queue, 10
FTPs starting at t=0 and 800 WEBs + 1 CBR starting at t=100.
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RED+Tail.

VI. PERFORMANCE ANALYSIS FOR THE PARALLEL

VIRTUAL QUEUES

A. Drop-Tail Queue with Adaptive Service Rate

First, we investigate the queuing delay of CBR and
web traffic at the drop-tail queue. Note that the service
rate C1(t) of this queue is a function of minth1, maxth1

and the current length of drop-tail queue q1(t) (Figure
15).

Without loss of generality, we let C1min = 0 and
C1max = C in the analysis. When a packet enters the
drop-tail queue at time t, it sees an instant queue length
q1(t) and a service rate

C1(t)
�
= max(C1min,min(

q1(t)C
maxth1

, C1max)). (1)
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Fig. 14. Dynamic threshold scheme: Packet delays (sec.) of
RED+Tail.
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Fig. 15. Dynamic bandwidth allocation at the drop-tail queue:
C1(t)=max( C1min, min( Cq1(t)

maxth1
, C1max)).

Since C1(t) ≤ q1(t)C
maxth1

, maxth1/C is a lower bound of
the average queuing delay at the drop-tail queue.

We redo the experiment in Section IV with parameters
listed in Table II except maxth1 being varied from
10KB to 80KB. Figure 16 shows the mean packet delay
of CBR and web traffic at the drop-tail queue and that
of FTP traffic at the Adaptive RED queue as maxth1 is
varied. The simple lower bound of average queuing delay
maxth1/C is seen to provide a good approximation.
Note that the packet delay at the Adaptive RED queue
with fixed thresholds is almost a constant even when
maxth1 is decreasing. That is because the Adaptive RED
queue has fixed thresholds (minth2, maxth2) and the
average queue length of RED queue is always around
q̄2=(minth2+maxth2)/2. Since the dynamic bandwidth
allocation policy does not dramatically change the long-
term average of bandwidth allocation C̄2, the mean delay
at the Adaptive RED queue is around q̄2/C̄2.

For some real time applications such as video con-
ference and voice, small delay jitter is very important
for the connection quality. Figure 16 also shows that the
drop-tail queue has a very small delay variance. Note
that the delay variance at the Adaptive RED queue is
slightly increased when a smaller value of maxth1 at the
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drop-tail queue is applied. According to these results, the
mean packet delay requirements at both queues can be
satisfied by properly designing the values of (minth1,
maxth1) and (minth2, maxth2).
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Fig. 16. Mean delays (sec.) of CBR and WEB packets at the drop-
tail queue and mean delay of FTP packets at the Adaptive RED queue
(with fixed thresholds) with maxth1= 10, 20,...,80 (KBytes).

B. Adaptive RED Queue with Dynamic Thresholds

In Section V we proposed the modified Adaptive
RED scheme with dynamic thresholds in the parallel
queue structure for controlling the flow rate of non-real
time applications. The maximum threshold maxth2 and
minimum threshold minth2 are changed dynamically
to keep the packet dropping probability Pd within a
desired small region (PL, PU ) at the cost of packet
delay variation. In this subsection we analyze issues
related to the stability of this virtual queue. For ease
of analysis, it is assumed that the dropping probability
Pd of the Adaptive RED at the bottleneck router is fixed
so that the average flow rate of each TCP connection can
be approximated by a simple function of its round-trip
time. Note that this assumption is not very restrictive
considering the interval (PL, PU ) is small.

Consider N persistent TCP flows. Define T n
k as the

average flow rate of the k th TCP connection during time
slot n. Let d′k be the link round-trip propagation delay
of connection k. At the beginning of time slot n the kth

connection sees a round-trip time Rn
k , which is equal

to the sum of link propagation delay and the average
queuing delay in the forward direction qn/C and in the
backward direction qn

b /C:

Rn
k = d′k +

qn

C
+

qn
b

C
, (2)

where C is the link bandwidth, qn and qn
b are the forward

queue length and the backward queue length at the
beginning of time slot n, respectively. We assume that

congestion only happens in the forward direction and
the queuing delay qn

b /C in the backward direction is a
constant. Hence we can write Rn

k = dk + qn/C with
dk = d′k + qn

b /C .
Based on the assumption of fixed dropping probabil-

ity at the router, each TCP connection experiences a
fixed packet loss rate Pd and the corresponding average
congestion window size is assumed to be a constant
W̄ . Hence, the average flow rate T n

k of the kth TCP
connection at slot n is

T n
k =

W̄

Rn
k

+ En
k (3)

where En
k is a white Gaussian process with zero mean

and variance σ2 modeling the flow rate perturbation of
the kth connection at slot n.

Given the arrival rate of each TCP connection, the dy-
namics of queue length qn follows the Lindley equation:

qn+1 = min{B,max[0, qn + (
N∑

k=1

T n
k − C)S]}, (4)

where B is the buffer size and S is the duration of one
time slot. Since the queue length of Adaptive RED is
mostly operated in a region far from the boundary, we
first ignore the max and min operations in (4) and have
a simplified nonlinear dynamic system:

qn+1 = f(qn) + ξn, (5)

where

f(qn)
�
= qn + S{(

N∑

k=1

W̄C

qn + dkC
) − C}, (6)

and

ξn �
= S

N∑

k=1

En
k . (7)

To avoid the trivial case q ≡ 0, we assume that the sum
of possible peak rates of all connections is greater than
the link bandwidth at the bottleneck router:

N∑

k=1

W̄

dk
≥ C. (8)

Figure 17 shows the queue length dynamics (and
the throughput of a persistent TCP connection) based
on the model (5), where the flow rate deviations σ
= 77021, 128490 (bits/s) for N=20, 40 are measured
from the simulation in Section V, respectively. For both
N = 20 and N = 40, Figure 17 shows consistent steady
state behavior with simulation results in Figure 10. The
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with S=RTT.

mapping f(·) is plotted in Figure 18 for N = 20 and
N = 40.

We first analyze the stability of the equilibrium of
the model (5) when there is no flow disturbance., i.e.,
En

k = 0. An equilibrium qe of qn+1 = f(qn) should
satisfy

N∑

k=1

W̄

dk + qn/C
= C. (9)

Since
∑N

k=1
W̄
dk

≥ C by assumption, (9) has a unique
solution qe in [0,∞). qe is located at the intersection of
the graph of f with the 45o line (see Figure 18).

It is well known that qe is locally asymptotically stable
if |f ′(qe)| < 1. In the following we give conditions for
qe to be globally asymptotically stable.
Proposition 6.1: If the rate update interval S satifies

S <
2C

W̄ (
∑N

k=1 d−2
k )

, (10)

the equilibrium qe is globally asymptotically stable.
Furthermore, |qn − qe| < ρn|q0 − qe| for some ρ ∈ (0, 1)

dependent on q0.
Proof: First we observe that the function f is convex

since

f ′′(q) =
N∑

k=1

2SW̄C

(q + dkC)3
> 0, ∀q ∈ [0,∞). (11)

For any B0 such that B0 > qe and

B0 ≥ f(0) = (
N∑

k=1

W̄

dk
− C)S, (12)

one can verify that f maps [0, B0] to [0, B0] due to
convexity of f and

f ′(q) = 1 − S
N∑

k=1

W̄C

(q + dkC)2
< 1, ∀q ∈ [0,∞).(13)

When restricted to [0, B0], f ′(q) ≤ ρ1 with ρ1 ∈ (0, 1).
If (10) is satisfied, f ′(q) > −1, ∀q ∈ [0,∞], and f ′(q) ≥
−ρ2, ∀q ∈ [0, B0], with ρ2 ∈ (0, 1).

Hence |f ′(q)| ≤ ρ
�
= max(ρ1, ρ2) < 1 ∀q ∈ [0, B0],

which implies that f is a contraction mapping on [0, B0].
By the Contraction Mapping Principle [15],

|qn − qe| < ρn|q0 − qe|, if q0 ∈ [0, B0]. (14)

Since B0 can be arbitrarily large (as long as B0 <
∞), qe is globally asymptotically stable. Note that the
contraction constant ρ depends on B0 and thus on q0.
�

From Proposition 6.1, when rate update is frequent
enough, the equilibrium will be asymptotically stable
(the equilibrium itself does not depend on S). Another
sufficient condition for asymptotic stability is the follow-
ing:
Proposition 6.2: If f ′(qe) ≥ 0, then qe is a globally

asymptotically stable.
Proof: As shown in the proof of Proposition 6.1, f

is convex. If f ′(qe) ≥ 0, graphical analysis reveals that

|qn+1 − qe| ≤ |qn − qe|,
where the equality holds if and only if qn = qe. The
claim thus follows. �

For the homogeneous case dk = d, we have qe =
NW̄ − dC . And the condition f ′(qe) ≥ 0 is equivalent
to S ≤ NW̄

C = qe/C +d. In other words, qe is asymptot-
ically stable if the rate update interval S is no larger
than the round-trip time (RTT). Figure 19 shows the
mapping f and the equilibrium qe for different S. Figure
20 shows the queue length dynamics (noise is included)
for S=RTT and 2RTT , respectively. We can see that in
the case S=RTT , the queue length stays around qe with
small variation, while in the case S=2RTT , the queue
length dynamics is much more chaotic.
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For the heterogeneous case, a sufficient condition S ≤
( C

W̄
− N(N−1)

(qe+Dm)2 )−1 for stability can be derived.
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Fig. 19. Mapping function and equilibrium point when N=40 with
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Fig. 20. Queue length with N=40, S=RTT and 2RTT.

Next we consider the Lindley equation with random
perturbation ξn = S

∑N
k=1 En

k :

qn+1 �
= g(qn, ξn) = min{B,max[0, f(qn) + ξn]} (15)

Note that since {En
k } is white and stationary, so is

{ξn}. It turns out that stability of the equilibrium of the
deterministic system qn+1 = f(qn) is closely related to
stochastic stability of the system (15).
Proposition 6.3: The stochastic system (15) admits

an invariant probability measure µ∗ for the queue length
qn. Furthermore, if the condition (10) on Proposition 6.1
is satisfied, this system is weakly asymptotically stable,
i.e., the queue length distribution µn for qn converges
to µ∗ weakly.
Sketch of Proof. Since f is continuous and {ξn} is

identically and independently distributed, the system (15)
is a regular stochastic dynamic system [16].

Since [0, B] is compact, the system admits an invari-
ant probability measure µ∗ by the Krylov-Bogolubov

Theorem [16]. When condition (10) is satisfied, g is a
contraction mapping with respect to its first argument,
i.e.,

|g(x, ξ) − g(y, ξ)| < ρ|x − y|, ∀x, y ∈ [0, B],∀ξ,(16)

where ρ ∈ (0, 1). Hence the system is weakly asymptot-
ically stable by Theorem 12.6.1 of [16]. �

The invariant probability measure µ∗ has probability
masses at q = 0 and q = B, and has probability density
on (0, B). An approximation to µ∗ can be obtained by
numerically advancing the probability distribution µn

for the queue length qn. We have discretized the queue
length and consequently obtained a Markov chain for the
dynamics of the queue length distribution.

Let the packet size have a fixed length L (bits),
zn:=ceil(qn/L) be the number of packets in the queue at
time n and πn = [Pr(zn = 0), ..., P r(zn = B)] denote
the corresponding probability vector. We have

πn+1 = πnT, (17)

π∗ = π∗T, (18)

where π∗ = limn→∞ πn is the steady state distribution
and T (i, j) = Pr[zn+1 = j|zn = i]is the corresponding
transition matrix of the Markov chain. The conditional
probability Pr[zn+1 = j|zn = i] is obtained as

Pr[j ≤ (min{B,max[0, f(iL) + ξ})/L < (j + 1)]. (19)

On the other hand, when the buffer size B is far
greater than the equilibrium queue length and the per-
turbation magnitude is small, the transformation g(q, ξ)
can be linearized around the equilibrium point qe. Let

Qn �
= qn − qe. Then

Qn+1 �
= f

′
(qe)Qn + ξn. (20)

Since {ξn} is white Gaussian process with zero mean
and variance NSσ2, {Qn} will be a Gaussian process
with zero mean and normalized variance

V ar[Qn/S] =
Nσ2

1 − |f ′(qe)|2 . (21)

From (21) the normalized queue length variation will
be minimal if f

′
(qe) = 0, which corresponds to S =

RTT for the homogeneous case.
Figure 21 shows the queue length distributions ob-

tained through empirical estimation from ns2 simulation,
numerical computation based on (17), and linear approx-
imation based on (21), repectively. Three distributions
agree well, which verifies that our nonlinear model (15)
captures the queue length dynamics under the Adaptive
RED scheme with dynamic thresholds.
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Fig. 21. Steady state queue length distributions for N=20 and 40,
S=RTT.

VII. CONCLUSIONS

In this paper we have first demonstrated the vulnera-
bility of Adaptive RED scheme to bursty web traffic,
and then proposed a parallel virtual queue structure
for active queue management at the router. A simple
detection algorithm is employed to separate the short-
life and long-life TCP connections into different virtual
queues. The packet loss rate and mean delay for short-
life traffic can be greatly reduced by dynamic bandwidth
allocation with this parallel queue structure. This scheme
combines the advantages of drop-tail and Adaptive RED
policies. The simulation results in the study show that
this scheme achieves a shorter mean delay for real time
applications and keeps a high throughput for the best
effort connections as well as greatly reduces the packet
loss rate in both queues.

This parallel virtual queue structure also offers more
degrees of freedom for AQM due to its flexibility in
accommodating variants of the Adaptive RED scheme
and different dynamic bandwidth allocation algorithms.
We have explored a modified Adaptive RED scheme with
sliding queue length thresholds. This scheme is able to
maintain the dropping probability within a small interval
and improve the goodput of non-real time connections.
The queue length variation under this policy has been
analyzed and conditions for it stability have been given.
The dynamic threshold Adaptive RED might also be
useful for achieving throughput fairness among multiple
RED queues.

As to the dynamic bandwidth allocation policy for the
drop-tail queue, we only used the current virtual queue
length information. However, it is well-known that web
traffic is strongly correlated and has a long range de-

pendency property. Based on observations of the “recent
past” traffic, the future bandwidth demand of the web
traffic is predictable. In future work optimal bandwidth
allocation based on prediction of the congestion level
will be explored.
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