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I. ABSTRACT

Extensive research efforts have been devoted to distributed
consensus with adversaries. Many diverse applications drive
this increased interest in this area including distributed collab-
orative sensor networks, sensor fusion and distributed collabo-
rative control. We consider the problem of detecting Byzantine
adversaries in a network of agents with the goal of reaching
consensus. We propose a novel trust model that establishes
both local trust based on local evidences and global trust based
on local exchange of local trust values. We describe a trust-
aware consensus algorithm that integrates the trust evaluation
mechanism into the traditional consensus algorithm and pro-
pose various local decision rules based on local evidence. To
further enhance the robustness of trust evaluation itself, we
also provide a trust propagation scheme in order to take into
account evidences of other nodes in the network. The algorithm
is flexible and extensible to incorporate more complicated
designs of decision rules and trust models. Then we show by
simulation that the trust-aware consensus algorithm can effec-
tively detect Byzantine adversaries and excluding them from
consensus iterations even in sparse networks with connectivity
less than 2f + 1, where f is the number of adversaries. These
results can be applied for fusion of trust evidences as well as
for sensor fusion when malicious sensors are present like for
example in power grid sensing and monitoring.
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II. INTRODUCTION

In distributed systems, nodes in the network are pro-
grammed to calculate given functions of nodes’ values. How-
ever, due to message transmission delays, crashes, value do-
main errors, or even Byzantine behavior of malicious nodes,
different nodes would probably have different views of the
input vector of these parameters. Consensus requires that every
correct agent in the network reach an agreement on some
value. We will study the problem of consensus in the face
of Byzantine adversaries.

The issue of consensus has been investigated for decades
in the computer science, communication and control commu-
nities. There are mainly two types of failures discussed. One
is crash failure and the other is Byzantine failure. A crash
failure refers to the case when a process stops working, while a
Byzantine process may send arbitrary data to other processes.
Byzantine failures are far more disruptive since they allow
arbitrary behaviors.

In the computer science community, the consensus problem
is to design a distributed protocol that allows processes to
agree on a single decision value, which should be one of the
initial values. Based on different failure types, oracle-based
consensus protocols [1] and condition-based approaches [2]
have been proposed to achieve the goal. For asynchronous
distributed systems, Chandra and Toeug [3] introduced the
concept of Failure Detector (FD) and showed that with FD,
consensus can be achieved and possible failure processes
can be found. In [4] a probabilistic solution was applied to
solve the consensus problem under Byzantine failures with
the condition fb < 1

5n, where n is the total number of
processes and fb is the number of Byzantine failures. The
leader-based consensus developed by [1] Mostefaoui et al.
required fc < 1

2n to reach consensus with crash failures, where
fc is the number of crash failures, and the time and message
costs of the protocol can be reduced when fc < 1

3n. Later in
[2], the leader oracle approach, the random oracle approach
and the condition-based approach are combined to provided
a hybrid consensus protocol. [5] connected Error-Correcting
Codes (ECC) to the condition-based approach and showed that
consensus can be solved despite fc crash failures if and only
if the condition can be mapped to a code whose Hamming
distance is fc + 1, and Byzantine consensus can be solved
despite fb Byzantine faults when the Hamming distance of
the code is 2fb + 1.

Different from the consensus problem discussed in the
computer science community, consensus in a network of
connected agents means reaching an agreement regarding the
states (or values of certain agent variables) of all (benign)
agents that are used in computing certain functions (or func-
tion). Without considering failures, for a certain node, the
consensus problem can be as simple as a weighted average
of its neighbors’ states [6]. Ren [7], [8] proposed update
schemes for consensus under dynamically changing directed
interaction topologies, provided that the union of the directed
interaction graphs have a spanning tree frequently enough as
the system evolves. However the linear updating rules may
not be resilient to misbehaving nodes; it was shown in [9]
that a single misbehaving node can cause all agents to reach
consensus on a wrong value, which potentially will result in
a dangerous situation in physical systems. The framework
for posing and solving consensus problems for multi-agent
networked systems was analyzed in [9], [10], where key results
on theory and applications of consensus problems in networked
systems are presented. [11] showed that the resilience of
a partially connected network to Byzantine adversaries is



characterized by its network topology, and a well-behaving
agent can calculate any arbitrary function of all node values
when the number of malicious nodes (f ) is less than 1/2 of
the network connectivity, i.e the connectivity should be at least
2f + 1. [12] used system theory to reach a similar conclusion
regarding network connectivity that the number of disjoint
paths between any two nodes in the network should be greater
than twice the number of adversaries. LeBlanc et al. developed
the Adversarial Robust Consensus Protocol (ARC-P) [13],
[14], which applied ideas from both the consensus algorithms
resilient to Byzantine faults in distributed computing and the
linear consensus protocols used for coordination of networked
agents, and formulated the problem into a linear control
problem where consensus could be reached among cooperative
agents via agreement and validation conditions.

Applications of both kinds of consensus problems and
formulations are appropriate for, and have been used in our ear-
lier work, distributed filtering and estimation in heterogeneous
sensor networks networks with applications to power grids
[15]–[17]. A Model-Based Systems Engineering framework
for distributed heterogeneous sensor networks was presented
in [18].

Network connectivity conditions in most previous works
are hard to satisfy in reality. In addition, the robustness
condition in [13] is itself hard to verify. These motivate
us to design a Byzantine adversary detection scheme based
on trust evaluation. We introduce the notion of trust in the
context of consensus algorithms with Byzantine adversaries.
Works related to application of trust to distributed algorithms
inlcude [15], [17] who embedded trust evaluation to distributed
Kalman filtering (DKF) with applications to sensor networks
in power grids, and [19] who proposed RoboTrust algorithm
in consensus algorithms. Our work differs from [19] in the
following ways: 1) The trust model is different; and 2) Trust in
[19] is established only by local evidence while our trust model
also depends on second-hand evidence. 3) Trust propagation
in evaluating global trust is resistant to malicious voting. Our
contributions are as follows:

• We propose a trust model with various decision rules
based on local evidences in the setting of Byzantine
adversaries.

• Our trust-aware algorithm is flexible and can be easily
extended to incorporate more complicated designs of
trust models and decision rules.

• Simulations show that our proposed trust-aware con-
sensus algorithm can effectively detect various ma-
licious strategies even in sparse networks where
connectivity < 2f + 1, where f is the number of
adversaries.

III. PROBLEM FORMULATION

Consider a communication network modeled by a directed
graph G(k) = (V,E(k)), where V denotes the set of nodes in
the network and E(k) the set of edges at time k. If eij(k) ∈
E(k), it means node i can hear node j’s message at time k,
i.e. node j is a neighboring node of i at time k. Whether node
i is able to receive node j’s message depends on their relative
distance and j’s transmission power. A node can reach a larger

portion of nodes in the network if it transmits messages with
higher power. Let Ni(k) = {j|eij(k) ∈ E(k), j 6= i} denote
the set of neighbor nodes that node i can hear from at time k,
and N+

i (k) = Ni(k)
⋃
{i} denote the extended neighbor set

of node i at time k. We assume all nodes’ transmission power
is fixed. Therefore we have Ni(k) = Ni,∀k ≥ 0.

Let X(k) denote the N-dimensional vector of all nodes’
states at time k. The nodes’ beliefs evolve in time according
to the dynamics:

xi (k) =
∑
j∈Ni

wij (k)xj (k − 1) + wii (k)xi (k − 1) (1)

where X(k) = [x1(k), x2(k), · · · , xN (k)]
T , and xi(k) denotes

node i’s updated state at time k and wij(k) > 0, j 6= i is the
weight that node i puts on node j’s belief at the previous time
instant for the calculation of its state update. wii(k) > 0 is the
weight that node i puts on its own previous state. Coefficients
are normalized and satisfy

∑
j∈Ni(k) wij(k) + wii(k) = 1.

We denote by W (k) the N ×N matrix with element Wij(k).
Equation (1) is a standard module where all nodes are normal.

In a distributed environment, due to lack of central moni-
toring, nodes are subject to various attacks. In the worst case,
some nodes might be hacked and do not function as they are
originally programmed. We consider the following Byzantine
adversary model:

Definition 3.1: Byzantine adversary may behave arbitrar-
ily. It does not follow the prescribed distributed consensus
update rule, i.e. at some time instant k > 0, a Byzantine
adversary i sends incorrect message vi(k) other than xi(k)
in equation (1) to its neighbors. We assume a broadcast
model here, meaning adversaries send the same message to
different neighbors. In addition, the adversary is assumed to
have complete knowledge of the network topology, the states
of all other nodes in the network, and the consensus update
rule for all nodes.

Next, we define a normal node’s behavior and the infor-
mation it can get access to.

Definition 3.2: A normal node behaves according to the
distributed consensus specification, i.e. it updates its states by
combining the messages received from its neighbors using the
specified coefficients. The normal node has access to just local
information such as from its neighborhood, the messages sent
by them, the coefficients it uses for updating states. Moreover,
it does not know whether a neighbor is normal or malicious.

From the above definitions, we can see that a normal node
i has no way of determining whether one of its neighbors j is
malicious or not since it can not get access to all the messages
sent by its 2-hop neighbors l ∈ Nj \ {i}. To detect malicious
nodes locally, we introduce the trust model and establish local
trust between nodes based on first-hand evidence and define
several decision rules that map from local evidence to local
decisions. Often local evidence is not sufficient to reach useful
decisions. We therefore define global trust based on both first-
hand evidence and evidence of other nodes in the network. Our
proposed trust-aware consensus algorithm takes global trust
values as input.



IV. TRUST MODEL

There are two possible connections from node i to node
j. One is communication connection. If j ∈ Ni(k), node j is
said to be in the communication neighborhood of node i at
time instant k. The other is trust connection. Denote the set
of trust relations at time instant k as Ec(k). A directed edge
from node i to node j, denoted as ecij(k) ∈ Ec(k), represents
the trust relation node i has towards node j. We assume that
if there is communication connection from node i to node j
at time k, there must exist trust relation eci,j(l),∀l ≥ k since
node i receives message from node j at time k which forms
the direct evidence for i to evaluate j’s trustworthiness at the
current iteration k and future iterations. However, if there exists
trust relation ecij(k), communication connection eij does not
necessarily exist because the trust relation is possibly derived
from indirect observations of other nodes in the network.

We associate a local trust value cij(k) ∈ [0, 1) with the
trust connection ecij(k) ∈ Ec(k). It represents the belief node
i holds about j at time instant k based on its local interactions
with node j. The value cij(k) can be seen, in node i’s
perspective, as the probability of node j behaving normally
at time instant k. It depends on both the interaction between i
and j at time k and history records i has on node j. We utilize
the Beta reputation system [20] to model local trust values.
Denote the probability that node j behaves normally at time
instant k in node i’s perspective as pij(k). pij(k) is assumed
to have beta distribution with parameter αij(k) and βij(k):

f (pij(k)|αij(k), βij(k))

=
Γ (αij(k) + βij(k))

Γ (αij(k)) Γ (βij(k))
pij(k)αij(k)−1 (1− pij(k))

βij(k)−1

(2)
where Γ is Gamma distribution. Let rij(k) = αij(k)− 1 and
sij(k) = βij(k) − 1, to represent the number of events that
node j is normal and the number of events j is malicious up
to time k in the perspective of node i respectively. The local
trust value cij(k) is defined to be the mean value of pij(k),
i.e.

cij(k) = E [pij(k)] =
rij(k) + 1

rij(k) + sij(k) + 2
(3)

Considering the time-varying behavior of node j, old records
are less important than more recent observations. We introduce
positive forgetting factors ρ1 and ρ2 such that

rij(k + 1) = ρ1rij(k) + Iij(k + 1)

sij(k + 1) = ρ2sij(k) + 1− Iij(k + 1),
(4)

where Iij(k+1) equals 1 if node i believes that node j behaves
normally at time k+1 and equals 0 otherwise. In practice, we
may choose ρ1 < ρ2 so that bad behaviors are remembered
for longer period of time relative to good behaviors. Note that
Iij(k + 1) can also take fractional values from [0, 1] which
allows us to encode the uncertainty of local decisions.

A. Local Trust Evaluation

We now discuss the question of evaluating the indicator
function Iij(k) based on node i’s local observation about
node j at time instant k, which involves the interplay of the
consensus algorithm and the trust computation. To answer
this question, we have to examine what can be used as

local evidence for node i to determine whether a neighbor j
behaves normally or maliciously at time instant k. Essentially,
we want to find a mapping from trust evidence to a binary
decision. There are many choices of evidences available and
the mapping can also be arbitrary. Denote the values vj(k)
received from j ∈ Ni(k) as the vector ri(k). We discuss three
decision rules (mappings) below. One is based on clustering
technques, the second is based on distance of the messages,
and the third on the consistency of 2-hop messages.

1) Clustering-based Decision Rule: The motivation behind
clustering-based decision rules is the observation that the
malicious node’s message tends to deviate from normal nodes’
messages. Therefore the node whose message is far away from
the rest is likely to be malicious. Formally, we define the
deviation of a message sent by node j from the all other
messages received by node i as

devij(k) =
∑
l∈N+

i

|vl(k)− vj(k)|2

|N+
i |

(5)

The ranking of the deviation in equation (5) itself can not
indicate whether node j is malicious or not because a normal
node might be the one deviating the most when convergence
is almost reached and all nodes’ messages are close to each
other. Therefore we propose a decision rule based on relative
ranking:

Iij(k) =

{
1 if devij(k) ≤ Thi ∗median ({devij(k)})
0 o.w

(6)
where Thi is the threshold used by node i and median(·)
denotes the median of values within the bracket. The above de-
cision rule reflects the heuristics that the node whose message
is too far away from the median is deemed to be malicious.

2) Distance-based Decision Rule: Denote the distance be-
tween node i’s state at time instant k, xi(k) and the value
vj(k) as

dij (xi(k − 1), vj(k − 1)) = ‖xi(k − 1)− vj(k − 1)‖2 (7)

dij (xi(k − 1), vj(k − 1)) measures the degree of disagree-
ment of node j from node i at time k − 1. We measure the
degree of cooperation by ∆ij(k) defined as:

∆ij(k) = dij (xi(k − 1), vj(k − 1))− dij (xi(k − 1), vj(k))
(8)

∆ij(k) measures the degree of cooperation in the sense that if
node j cooperates (normal), its state is expected to be closer
to node i as the iteration goes on and that if node j does
not cooperate (Byzantine), it may sends value vj(k) that are
far away from xi(k − 1). The decision rule therefore can be
specified as:

Iij(k) =

{
1 if ∆ij(k) ≥ 0
0 o.w (9)

3) Consistency-based Decision Rule: For node i, to verify
the correctness of message vj(k), it needs more information
than vj(k). We propose to augment the message sent from
node j as follows. Several new notations will be introduced.
The inner message of node j at time instant k is defined as
the messages that node j collects from its neighbors and we
denote it as X∗j (k) = {x∗jl(k − 1), l ∈ N+

j } with x∗jj(k −



1) = xcj(k − 1), the calculated state of node j at super-step
k − 1. The caculated state is defined in Table I. Similarly, we
define the outer message of node j at time instant k to be the
messages broadcast by node j and we denote it as Xj(k) =
{xjl(k − 1), l ∈ N+

j }, where xjj(k − 1) might not equal to
xcj(k − 1) for malicious nodes. For normal nodes, the inner
message and the outer message equals, i.e. Xj(k) = X∗j (k).
However, for malicious nodes, they can choose to broadcast
messages different from inner message, i.e. Xj(k) 6= X∗j (k).
The local decision node i makes about node j is not a scalar
value. Instead, it consists of a set of values I lij(k),∀l ∈ N+

j ,

where I lij(k) is node i’s local decision about node j’s message
xjl(k − 1). Therefore the decision rule becomes

I lij(k) =


1, x∗il(k − 1) = xjl(k − 1), l ∈ Ni
0, x∗il(k − 1) 6= xjl(k − 1), l ∈ Ni
0.5, l /∈ Ni

(10)

where x∗il(k− 1) denotes the inner message element acquired
by node i about l’s state if node l can be heard by node i. When
l /∈ Ni, local evidence available to node i is not sufficient
to reach any decision. Therefore I lij(k) = 0.5. We need to
specify a function that maps from these atomic decisions I lij(k)
to a single scalar decision about j. We choose the following
mapping as in [21]:

Iij(k) =
∏
l∈Nj

I lij(k) (11)

Since I lij(k) ∈ [0, 1], it can be interpreted as the probability
of node j behaving maliciously regarding xjl. The mapping
in equation (11) indicates that Iij is closer to 1 only if all
I lij(k)′s are closer to 1 and that Iij is closer to 0 if any I lij(k)
is closer to 0. The aggregated decision toward node j at super
step k, Iij(k), is then used to update node i’s local trust value
toward node j, cij , according to equation (3).

B. Global Trust Evaluation

Node i maintains its local trust opinion cij(k) about node
j for j ∈ Ni. However, when node i wants to get a more
accurate estimation of the trustworthiness of node j, it needs
to rely on the observations of other nodes in the network,
i.e. node i needs to aggregate local trust values through
trust propagation (we use global trust evaluation and trust
propagation interchangably from now on). Denote the global
trust of node j in the perspective of node i as tij . [22]
suggests to aggregate local trust values by weighing node
i’s neighbors’ local trust opinions about node j. Before the
consensus algorithm advance to the next iteration, we want to
obtain the equilibrium global trust opinion through the trust
propagation subroutine, which is also an iterative process.
Therefore, we assume cij ,∀i, j remain constant during the
iterations to obtain global trust and use τ to denote the iteration
number of global trust values. It is a smaller time scale
compared to consensus iteration number k. Omitting the time
instant k for convenience, we have

tτij =

{
1 if i = j

1
zi

∑
l∈Ni,l 6=j cilt

τ−1
lj if i 6= j

(12)

where the normalizing constant is zi =
∑
l∈Ni,l 6=j cil.

Note that in a distributed environment, only cil, l ∈ Ni are
stored locally at node i while clj is sent by node i’s neighbor
l. However, node l might be malicious and lying about clj .
Specifically, if node j is normal node, node l intentionally
report to node i that clj = 0. Similarly, if node j is Byzantine,
node l protects its peer by reporting clj = 1. To cope with
this concern, we introduce a set of pre-trusted nodes in the
network, namely headers.

Definition 4.1: Headers are a set of pretrusted nodes be-
sides V . They are equipped with more security measures
and therefore more reliable. The header’s identity remains
anonymous, i.e. neither a normal node in V nor an adversary
knows if a given node is header or not. Therefore, a normal
node can choose to trust or distrust a header since it does not
know which node is header.

The introduction of anonymous headers induce costs since they
come with higher level of reliability. Therefore we might prefer
to deploy headers in denser areas instead of sparse areas in
order to make the most use of them. The problem of how
to deploy headers optimally with fixed number of headers is
beyond the scope of this paper.

Denote the trust that node i places on a header h as pih.
Node i aggregates local trust from both its neighbors in Ni
and headers that it can receive message from. The global trust
vector ~ti evolves according to:

tτij =

{
1 if i = j

1
zi+bH

(∑
l∈Ni,l 6=j cilt

τ−1
lj +

∑
h∈H pihchj

)
if i 6= j

(13)
where H is the set of headers, bH =

∑
h∈H pih,∑

m∈Ni,m6=j cil, and zi+bH as a whole serves as normalizing
constant. Since node i does not know which node is header,
pih might be smaller than 1.

The introduction of trust propagation (global trust evalua-
tion) to the trust model can incur high computational cost since
it is an embedded iterative process. Therefore, we can choose
to either activate this part or mute it wisely in practice. In this
paper, we give simulation results for both cases and leave the
discussion of when to activate trust propagation and when to
mute it as future work.

V. TRUST AWARE CONSENSUS ALGORITHM

Given the trust model above, we are now in the position
to propose our trust-aware consensus algorithm. The state
dynamics goes as follows:

xi(k) =
1

Ai(k)

∑
j∈Ni

tij(k)vj(k − 1) (14)

where Ai(k) =
∑
j∈Ni tij(k), tij(k) is the equilibrium global

trust value of node j in equation (13), and vj(k − 1) is the
message sent by node j. If j is malicious, vj(k − 1) is not
necessarily xj(k− 1). Using tij(k) as the linear coefficient to
combine message vj(k−1) is just one way to do it. There are
other more complex choices.

Note that the trust model as well as the decision rules
defined in the previous section become a pluggable component
to the trust-aware consensus algorithm because it only needs
as input the trust dynamics given states, ignoring the details



of trust model design and decision rules. This makes the
algorithm highly extensible to future developments of more
complicated trust models and decision rules.

The full algorithm consisting of the trust-aware consensus
algorithm and the trust model based on cluster-based decision
rule or distance-based decision rule is shown in Algorithm 1.

Algorithm 1: Trust-Aware Consensus Algorithm
Input: initial states xi(0),∀i ∈ V and initial local trust

cij(0),∀i ∈ V \ F ,∀j ∈ V ∪H , ε
Output:
for ∀i ∈ V \ F do

repeat
Receive messages from neighbors
vj(k − 1),∀j ∈ Ni
// Update local trust values
for ∀j ∈ Ni do

rij(k + 1) = ρ1rij(k) + Iij(k + 1)
sij(k + 1) = ρ2sij(k) + 1− Iij(k + 1)

cij(k) = E [pij(k)] =
rij(k)+1

rij(k)+sij(k)+2

end
// Compute global trust values

tij(k)
for ∀j ∈ Ni do

// The local trust values cij(k)
remain constant within
trust iterations.

repeat
update tτij(k) according to equation (13)

until |tτij(k)− tτ−1ij (k)| < ε;
end
Update state xi based on global trust values
according to equation (14)

until |xi(k)− xi(k − 1)| < ε;
end

The trust-aware consensus algorithm with consistency-
based decision rule based on augmented messages is shown in
Algorithm 2. In practice, an ensemble of the various choices
of decision rules will be used.

Note that the actions within the for loops in Algorithm 1
and Algorithm 2 are executed in parallel instead of in a
sequential way. Our trust-aware consensus algorithm is not
restricted to the three decision rules in Section IV. We can
readily place more delicate decision rules into the algorithm.
Moreover, the model can incorporate more complex update
schemes for trust compared to equation (4). Therefore, the
trust-aware consensus algorithm is highly extensible. Table I
shows the common notations used in this paper.

VI. SIMULATIONS

We consider a sensor network with 7 nodes (sensors) shown
in Fig. 2. The shaded node is a Byzantine adversary and all the
other nodes are normal nodes. In the simulation, each normal
node uses both cluster-based decision rule and distance-based
decision rule to generate local decisions. The consistency-
based decision rule is evaluated theorectically in [21]. We
assume the probability of choosing either one is set to 0.5.

Algorithm 2: Trust-Aware Consensus Algorithm Based
on Consistency

Input: initial states xi(0),∀i ∈ V and initial local trust
cij(0),∀i ∈ V \ F ,∀j ∈ V ∪H , ε

Output:
for ∀i ∈ V \ F do

repeat
Receive augmented message vectors from
neighbors Xj(k − 1),∀j ∈ Ni
// Update local trust values
for ∀j ∈ Ni do

compute I lij(k + 1) according to
equation (10)
compute Iij(k + 1) according to
equation (11)
rij(k + 1) = ρ1rij(k) + Iij(k + 1)
sij(k + 1) = ρ2sij(k) + 1− Iij(k + 1)

cij(k) = E [pij(k)] =
rij(k)+1

rij(k)+sij(k)+2

end
// Compute global trust values

tij(k)
for ∀j ∈ Ni do

// The local trust values cij(k)
remain constant within
trust iterations.

repeat
update tτij(k) according to equation (13)

until |tτij(k)− tτ−1ij (k)| < ε;
end
Update state xi based on global trust values
according to equation (14)

until |xi(k)− xi(k − 1)| < ε;
end

TABLE I. COMMONLY USED NOTATIONS

Notation Definition
k time step at the top layer (communication graph)
τ time step at the bottom layer (trust graph) which is a smaller time scale

compared to k
V set of nodes in the network (nodes are the same in both layers)

xcj (k) calculated state of node j according to equation (14)
xj(0) initial state of node j
X∗
j (k) messages that node j hears from its neighbors N+

j (k − 1)

Xj (k) messages that node j broadcast about what it hears and what it calculates
cij (k) local trust value node i has about node j at iteration k for consensus

algorithm
tτij(k) global trust opinion held by node i toward j at iteration τ for kth round

of consensus algorithm
tij(k) equilibrium global trust opinion held by node i toward j at iteration k

for consensus algorithm

In practice, each node (sensor) can have its own parameters
for the probabilities of randomly choosing decision rules. For
simulation purposes, we consider the following 4 malicious
strategies adopted by the Byzantine adversary:

1) Remain constant: the adversary, disregarding the update
rule in equation (14), holds a constant value.

2) Random vibration: the adversary switches between several
values randomly at each iteration.

3) Random noise: the adversary adds a random noise to the
state calculted if it is a normal node.

4) Fixed noise: the adversary adds a fixed input to the state



calculated if it is a normal node.

The simulation results are shown in Fig. 1. First look at
Fig. 1(a) and Fig. 1(b). When no adversaries exist, the use
of global trust (trust propagation) can speed up convergence.
When node 7 is set to be adversary and it adopts remain
constant strategy, all nodes can still reach convergence as
shown in Fig. 1(c). However, all nodes are dragged to closer to
the constant input of node 7 because local evidence of nodes
are not sufficient to reach good decision at the beginning of
the consensus iterations and it takes a period of time before
all other nodes can detect the adversary and exclude it from
consensus updates. This problem is mitigated when we invoke
global trust and take advantage of trust decisions made by other
nodes in the network as shown in Fig. 1(d). Nodes can detect
adversary much faster than in Fig. 1(c) and all normal nodes
remain relatively unaffected by node 7. The effects of earlier
detection also happpens for use of trust propagation when
adversary adopts random vibration strategy as in Fig. 1(e)
and Fig. 1(f). Detection of adversary with random noise and
fixed noise is more subtle. Local evidences are not sufficient
to detect this malicious behavior as shown in Fig. 1(g) and
Fig. 1(i). With global trust, adversaries can still be detected
Fig. 1(h) and Fig. 1(j).

Next we present the performance of trust-aware consensus
algorithm in an even sparser sensor network shown in Fig. 3.
The communication graph contains seven nodes numbering
from 1 to 7 plus a triangle node. The triangle node is a header
node and the links connecting the header node and others are
not part of the communication graph. However, the dotted
links are in the trust graph. Therefore network connectivity
of the communication graph in this example network is 2,
rendering connectivity-based approaches in most of previous
works invalid because connectivity < 2f+1. The header node
does not participate in consensus iterations but is involved
in the global trust evaluation process in equation (13). The
dotted lines indicate that node 5 and node 6 can obtain
trust decisions from header. We assume header node can
provide trust decisions about node 1 and 4 and since header is
anonymous in the eye of normal nodes, normal nodes do not
necessarily trust headers. Therefore we set the local trust value
from node 5 and 6 toward header to be 0.5. The results are
shown in Fig. 4. We observe that even in this sparse network,
normal nodes can still detect node 7 and reach consensus
eventually.

VII. CONCLUSIONS

In this paper, we proposed a trust model with various
decision rules based on local evidence in the setting of dis-
tributed consensus with adversaries. The global trust evaluation
(trust propagation) can be used to obtain more accurate trust
evaluation results if local evidences alone are not sufficient.
The design of the trust-aware consensus algorithm is flexible
in that it can incorporate more delicate decision rules and
trust models. To evaluate the performance of the trust-aware
consensus algorithm, we ran simulations and we showed that
our proposed trust-aware consensus algorithm could effectively
detect various malicious strategies even in network with very
low connectivity. The results can be applied to distributed
collaborative sensor networks, sensor fusion and collaborative
control.
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(a) No trust propagation and no adver-
saries.
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(b) No adversary. Use trust propaga-
tion.
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(c) Node 7 is adversary. No trust prop-
agation and adversary adopts remain
constant strategy.
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(d) Node 7 is adversary. Use trust
propagation. Adversary adopts remain
constant strategy.
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(e) Node7 is adversary. No trust prop-
agation and adversary adopts random
vibration strategy.
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(f) Node 7 is adversary. Use trust
propagation. Adversary adopts random
vibration strategy.
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(g) Node 7 is adversary. No trust
propagation. Adversary adopts random
noise strategy.
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(h) Node 7 is adversary. Use trust
propagation. Adversary adopts random
noise strategy.
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(i) Node 7 is adversary. No trust prop-
agation. Adversary adopts fixed noise
strategy.
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(j) Node 7 is adversary. Use trust prop-
agation. Adversary adopts fixed noise
strategy.

Fig. 1. Trust-aware consensus algorithm in situations with or without trust
propagation, with or without adversary, and under 4 simulated adversary
strategies.
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Fig. 2. Sensor network of 7 nodes (sensors) with the centering shaded node
as Byzantine adversary.
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Fig. 3. Network of 8 nodes (sensors) with the centering shaded node as
Byzantine adversary and triangle node as header. The dotted links incident on
the header node are not in the communication graph. Instead, they belong to
trust graph. Nodes 1 to 7 form a communication graph of connectivity 2.

ACKNOWLEDGMENT

Research partially supported by grants AFOSR MURI FA-
9550-10-1-0573, NSF CNS-1035655, NIST 70NANB11H148,
NSF CNS-1018346.

REFERENCES

[1] A. MOSTEFAOUI and M. RAYNAL, “Leader-based consensus,” Par-
allel Processing Letters, vol. 11, no. 01, pp. 95–107, 2001.
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