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Abstract— We present a framework for generating trajecto-
ries of the hand movement during manipulation actions from
demonstrations so the robot can perform similar actions in
new situations. Our contribution is threefold: 1) we extract and
transform hand movement trajectories using a state-of-the-art
markerless full hand model tracker from Kinect sensor data; 2)
we develop a new bio-inspired trajectory segmentation method
that automatically segments complex movements into action
units, and 3) we develop a generative method to learn task
specific control using Dynamic Movement Primitives (DMPs).
Experiments conducted both on synthetic data and real data
using the Baxter research robot platform validate our approach.

I. INTRODUCTION

Developing personalized cognitive robots that help with
everyday tasks is one of the on-going topics in robotics
research. Such robots should have the capability to learn how
to perform new tasks from human demonstrations. However,
even simple tasks, like making a peanut jelly sandwich, may
be realized in thousands of different ways. Therefore, it is
impractical to teach robots by enumerating every possible
task. An intuitive solution is to have a generative model to
enable the robot to perform the task learned from observing a
human. Since the essence of human actions can be captured
by skeletal hand trajectories, and most of the daily tasks
we are concerned with are performed by the hands, learning
new tasks from observing the motion of the human hands
becomes crucial.

There are several previous approaches for learning and
generating hand movements for a robot, but they either use
external markers or special equipments, such as DataGloves,
to capture the example trajectories [4], [15], [3]. Such
approaches are not practical for the kind of actions of daily
living, which we consider here. In this work, our system
makes use of a state-of-the-art markerless hand tracker [16],
which is able to reliably track a 26 degree of freedom
skeletal hand model. Its good performance is largely due to
reliable 3D sensing using the Kinect sensor and a GPU based
optimization. Building on this tool, we propose to develop a
user-friendly system for learning hand movements.

The generation of trajectories from example movements
using data gloves has been a hot topic in the field of
humanoids recently. Krug and Dimitrov [7] addressed the
problem of generalizing the learned model. They showed
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Fig. 1. Overview of learning hand movements for humanoid tasks. Placing
task is an example shown here, and the drawing on hand in demonstration
video is indicating hand tracker.

that with proper parameter estimation, the robot can automat-
ically adapt the learned models to new situations. Stulp and
Schaal [5] explored the problem of learning grasp trajectories
under uncertainty. They showed that an adaptation to the
direction of approach and the maximum grip aperture could
improve the force-closure performance.

Following the idea that human hand movements are com-
posed of primitives [14], [6], the framework of Dynamic
Movement Primitives (DMPs) has become very popular for
encoding robot trajectories recently. This representation is
robust to perturbations and can generate continuous robot
movements. Pastor et al. [1] further extended the DMPs
model to include capabilities such as obstacle avoidance
and joint limits avoidance. The ability to segment complex
movements into simple action units plays an important role
for the description. With proper segmentation, each action
unit can be well fit into one DMP [19], [21].

This paper proposes an approach for learning the hand
movement from markerless demonstrations for humanoid
robot tasks. Fig. 1 gives an overview of our framework. The
main contributions of the paper are: 1) We demonstrate a
markerless system for learning hand actions from movement
demonstrations. The demonstrations are captured using the
Kinect sensor; 2) Our approach autonomously segments an
example trajectory into multiple action units, each described
by a movement primitive, and forms a task-specific model
with DMPs; 3) We learn a generative model of a human’s
hand task from observations. Similar movements for different
scenarios can be generated, and performed on Baxter Robots.

II. RELATED WORK

A variety of methods [17] have been proposed to visu-
ally capture human motion. For full pose estimation both



appearance-based and model-based methods have been pro-
posed. Appearance-based methods [18] are better suited for
the recognition problem, while model-based methods [16]
are preferred for problems requiring an accurate estimation
pose. To capture hand movement, Oikonomidis et al. [16]
provide a method to recover and track the real world 3D
data from Kinect sensor data using a model-based approach
by minimizing the discrepancy between the 3D structure and
the appearance of hypothesized 3D model instances.

The problem of real-time, goal-directed trajectory gen-
eration from a database of demonstration movements has
been studied in many works [8]-[10]. Ude et al. [8] have
shown that utilizing the action targets as a query point in an
example database could generate the learned movement to
new situations. Asfour et al. [9] use Hidden Markov Models
to generalize movements demonstrated to a robot multiple
times. Forte et al. [10] further address the problem of gener-
alization from robots’ learned knowledge to new situations.
They use Gaussian process regression based on multiple
example trajectories to learn task-specific parameters.

Ijspeert et al. [2], [14] have proposed the DMP framework.
They start with a simple dynamical system described by
multiple linear differential equations and transform it into
a weakly nonlinear system. It has many advantages in gen-
erating motion: It can easily stop the execution of movement
without tracking time indices as it doesn’t directly rely on
time, and it can generate smooth motion trajectories under
perturbations. In [5], Stulp et al. present an approach to gen-
erate motion under state estimation uncertainties. They use
DMP and a reinforcement learning algorithm for reaching
and reshaping. Rather than grasping an object at a specific
pose, the robot will estimate the possibility of grasping based
on the distribution of state estimation uncertainty.

The segmentation of complex movements into a series of
action units has recently received attention due to its impor-
tance to many applications in the field of robotics. Meier et
al. [20], [21] develop an expectation maximization method
to estimate partially observed trajectories. They reduce the
movement segmentation problem to a sequential movement
recognition problem. Patel et al. [11] use a Hierachical
Hidden Markov Model to represent and learn complex tasks
by decomposing them into simple action primitives.

III. APPROACHES

Our hand movement learning method has three steps:
1) acquire trajectories in Cartesian space from demonstra-
tion; 2) segment the trajectories using key points and 3)
represent each segment with a generative model. Firstly,
the data collected from observed trajectories of the move-
ments of the palm and the fingertips using the markerless
hand tracker [16] are pre-processed by applying moving
average smoothing to reduce the noise. Next a trajectory
segmentation method is applied to find in a bio-inspired way
the GRASP and RELEASE points that reflect the phases
of movement [22]. Then, because of the complexity of
the hand’s movement when manipulating objects, a second
round of segmentation is applied to the trajectories between

the GRASP and RELEASE points to decompose the real
movement into periodical sub-movements. Finally, we train
the model of Dynamical Movement Primitives (DMPs) [15]
to generatively model each sequential movement.

A. Data Acquisition from Markerless Demonstrations

The Kinect FORTH Tracking system [16] has been widely
used as a state-of-the-art markerless hand tracking method
for manipulation actions [23]. The FORTH system takes as
input RGB + depth data from a Kinect sensor. It models
the geometry of the hand and its dynamics using a 26
DOF model, and treats the problem of tracking the skeletal
model of the human hand as an optimization problem using
Particle Swarm Optimization. The hand model parameters
are estimated continuously by minimizing the discrepancy
between the synthesized appearances from the model and
the actual observations.

Unlike most other hand data capturing approaches such
as those using DataGloves, the FORTH system is a fully
markerless approach, which makes it possible to achieve a
natural human-robot interaction in daily life activities, such
as teaching humanoids kitchen actions with bare hands.

In this paper, our humanoid is equipped with the FORTH
system to track the hand. The observed 3D movement
trajectories of the hand, palm, and finger joints are stored
as training data.

B. Pre-processing

Since our goal is to generate human-like hand movement
on humanoids, we first convert the collected data from
Kinect space into Robot space. The robot space is the base
frame which takes the robot body center as origin. Then
we transform the data from absolute trajectories to relative
trajectories with respect to the demonstrator’s body center,
which is fixed during the demonstration. Then we perform a
moving average smoothing on the transformed data to reduce
the noise.

In order to learn movements down to the finger level, we
also compute the distance between the index finger and the
thumb to the DMPs. Without loss of generality, we assumed
the robot gripper would have a fixed orientation which is set
the same as the demonstrator’s.

C. Dynamic Movement Primitives (DMPs) Model

DMPs [10] are widely used for encoding stereotypical
movements. A DMP consists of a set of differential equations
that compactly represents high dimensional control policies.
As an autonomous representation, they are goal directed and
do not directly depend on time, thus they allow the generation
of similar movements under new situations.

In this paper we use one DMP to describe one segment of
the robot trajectory. The discrete trajectory of each variable,
y, of the robot hand’s Cartesian dimensions, is represented
by the following nonlinear differential equations:

τ v̇ = αv(βv(g − y)− v) + f(x) (1)
τ ẏ = v (2)
τ ẋ = −αxx, (3)



where (1) and (2) include a transformation system and a
forcing function f , which consists of a set of radial basis
functions, Ψ(x), (equations (4) and (5)), to enable the robot
to follow a given smooth discrete demonstration from the
initial position y0 to the final configuration g. Equation (3)
gives a canonical system to remove explicit time dependency
and x is the phase variable to constrain the multi-dimensional
movement in a set of equations. v is a velocity variable. αx,
αv , βv and τ are specified parameters to make the system
converge to the unique equilibrium point (v, y, x) = (0, g, 0).
f(x) and Ψ(x) are defined as:

f(x) =

∑N
k=1 ωkΨk(x)

ΣN
k=1Ψk(x)

x (4)

Ψk(x) = exp(−hk(x− ck)
2), hk > 0, (5)

where ck and hk are the intrinsic parameters of the radial
basis functions distributed along the training trajectory.

1) Learning from observed trajectory: The parameters ωk

in (4) are adapted through a learning process such that the
nonlinear function f(x) forces the transformation system to
follow the observed trajectory y(t). To update the parameters,
the derivatives v(t) and v̇(t) are computed for each time
step. Based on that, the phase variable x(t) is evaluated by
integrating the canonical system in (3). Then, ftarget(x) is
computed according to (1), where y0 is the initial point and g
is the end point of the training trajectory. Finally, the param-
eters ωk are computed by linear regression as a minimization
problem with error criterion J =

∑
x(ftarget(x)− f(x))2.

2) Movement generation: To generate a desired trajectory,
we set up the system at the beginning. The unique equilib-
rium point condition (v, y, x) = (0, g, 0) is not appropriate
here since it won’t be reached until the system converges
to a final state. The start position is set to be the current
position y′0, the goal is set to be the target position gtarget,
and the canonical system is reset by assigning the phase
variable x = 1. By substituting the learned parameters ωk

and adapting the desired movement duration τ , the desired
trajectory is obtained via evaluating x(t), computing f(x),
and integrating the transformation system (1).

D. Movement Segmentation

In human movement learning, a complex action is com-
monly segmented into simple action units. This is real-
istic since demonstrations performed by humans can be
decomposed into multiple different movement primitives.
Specifically for most common human hand movements, it is
reasonable to assume that the observed trajectory generally
has three subaction units: 1) A reach phase, during which the
hand moves from a start location till it comes in contact with
the object, just before the grasp action; 2) A manipulation
phase, during which the hand conducts the manipulation
movement on the object; 3) A withdraw phase, which is the
movement after the point of releasing the object.

In both the reach and the withdraw phases, the movements
usually can be modelled well by one DMP. However, the
manipulation movement could be too complicated to model
it with only one or two DMPs. Therefore, our approach is

to run a second round of segmentation on the manipulation
phase. In this phase we segment it at detected key points and
model each segment with a different DMP. The generated
trajectory from these DMPs would best fit the training one.
Next we describe our segmentation algorithm in detail:

1) Grasp & Release Candidates: The first step of our
algorithm is to identify the GRASP and RELEASE points in
the observed trajectories. Given the observed trajectory y, the
velocity v and acceleration v̇ can be computed by deriving
first and second order derivatives followed by a moving
average smoothing. Following the studies on human move-
ment [19], the possible GRASP and RELEASE points are
derived as the minima points in the motion of the palm. We
selected the palm since humans intentionally grasp/release
the objects stably by slowing the hand movement. The
GRASP point occurs after the human closes the hand, and
we find it as the local maxima in the motion of the finger-gap
trajectory. The RELEASE point happens before the human
opens the hand, and it can be found in a similar way. In
this paper, we compute a reference trajectory s(t) for each
Cartesian dimension representing the motion characteristics
as a combination of v and v̇ as s(t) = v(t)2 + v̇(t)2. We
compute s(t)gap for the finger-gap trajectory. Therefore, for
each dimension, the first local minima of s(t) follows the
first maxima of s(t)gap, and is considered a possible GRASP
point candidate. The last local minima of s(t) succeeds
the last maxima of s(t)gap, and is considered a possible
RELEASE point candidate. We take up to three extrema
for grasping and three for releasing, and put them into the
candidate set Cgrasp and Crelease.

2) Manipulation Segmentation: Given the pair of GRASP
and RELEASE points, we can get the manipulation phase tra-
jectories. We then attempt to segment the manipulation phase
trajectories into subactions. Following the same assumption
that hand movements may change at the local minima of the
velocity and acceleration, we extract the candidates of the
first key points by selecting the first local minima, which
follows the first maxima of s(t) during the manipulation
phase for each Cartesian dimensional trajectory. If there
is no such candidate, our algorithm directly models the
current trajectory’s segment by one DMP and returns the
error between the model-generated and observed trajectories.
If there is one possible key point candidate, we use one
DMP to model the former part of the trajectory segmented
by it and compute the error. Then we recursively apply the
same algorithm for the rest of the trajectories to compute key
points as well as errors. By summing up the errors, we select
the key point with minimal error among all candidates. The
selected key point is added to the key point set. Please refer
to Algorithm 1 for details.

3) Evaluation: We consider the movement segmentation
as a minimization problem with error criterion J(t) =∑

i=1,2,3(y(t)
i − y(t)igenerated)

2. It sums up the errors over
all dimensions of the trajectories. For each possible pair of
GRASP and RELEASE points (tgrasp ∈ Cgrasp , trelease ∈
Crelease), we first use two separate DMPs to model the reach
and withdraw phase trajectories and compute their errors as



Jreach =
∑tgrasp

t=1 J(t) and Jwithdraw =
∑end

t=trelease
J(t).

Given the manipulation phase trajectory, we segment it
further as described above in order to model complex move-
ment, for example chopping. The error for the manipulation
phase trajectory (Jmanipulation) is then computed. The total
error (Jwhole = Jreach + Jwithdraw + Jmanipulation) is
used as the target function. The final GRASP and RE-
LEASE points are obtained by solving (t∗grasp, t

∗
release) =

arg min Jwhole.

Algorithm 1 Manipulation Phase Segmentation
Input: tstart, tend

Output: Keys,Jerror
procedure SEGMENT

Keysc = ∅,Keys = ∅
for all Cartesian dimension i ∈ (1, 2, 3) do

Setmin ← FINDMINS(s(t)i, tstart, tend)
Setmax ← FINDMAXS(s(t)i, tstart, tend)
if ∃tc ∈ Setmin > Setmax(0) then

Keysc ← Keysc+ smallest tc
end if

end for
Jerror ← FITDMP(y(t), tstart, tend)
if Keysc = ∅ then return Keys, Jerror
end if
for all tc ∈ Keysc do

Jformer ← FITDMP(y(t), tstart, tc)
Keyslatter, Jlatter ← SEGMENT(tc, tend)
if Jerror > Jformer + Jlatter then

Jerror ← Jformer + Jlatter
Keys← tc + Keyslatter

end if
end for
return Keys, Jerror

end procedure

E. Generative Model for Hand Movement

After we have found the best GRASP and RELEASE
points along with the key points set (t1, t2, · · · , tn) during
the manipulation phase, our system now is able to model the
hand movement by:

1) DMPs: Including two DMPs for the reach and with-
draw phases and a set of DMPs for each segment in the
manipulation phase, yielding n+ 3 DMPs.

2) Key Points Set: A series of best key points
(t0, t1, t2, · · · , tn+1) for movement segmentation
and their corresponding relative motion vectors
(M⃗V 1, M⃗V 2, · · · , M⃗V n). The relative motion vectors
are computed as M⃗V i = y⃗(ti) − y⃗(ti−1), i = 1, · · · , n,
where t0 = tgrasp, tn+1 = trelease. Note that the relative
motion vectors from tn to tn+1 are abundant for our model.

3) Grasping Finger-gap: Given the best GRASP and
RELEASE points, we compute the average of the finger-gaps
during the manipulation phase for representing the distance
a parallel gripper should generate for the same object.

F. Trajectory Generation

Given the testing inputs: the initial locations of the robots
palm, the new locations of the object to grasp and release,
and the expected movement time, our generative model
generates the motion trajectories using the following 3 steps:
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Fig. 2. Data acquisition and preprocessing for chopping task: (a) Transform
action of Kinect sensor data to trajectories in robot space; (b) Computed
motion reference trajectories s(t) for Cartesian dimensions and finger-gap.

Step 1) Generate new key points’ locations during the
movement (y⃗(ti)′, i = 0, 1, · · · , n + 1). Taking the learned
relative motion vectors, we compute locations of new key
points as y⃗(ti)

′ = y⃗(ti−1)
′ + M⃗V i, i = 1, · · · , n, where

y⃗(t0)
′ is the new grasping location and y⃗(tn+1)

′ is the new
releasing location for different scenarios.

Step 2) Scale the duration time of each segment based on
the new total time/speed. Since we have a key points set in
the learned model, the new duration time for each segment
in the manipulation phase τi, i = 0, · · · , n can be computed.

Step 3) Use learned DMPs to generate each of the seg-
ments accordingly. The reach and withdraw phases are gen-
erated directly with the test inputs, while the segments in the
manipulation phase are generated according to inputs com-
puted from the above steps. For example, (y⃗(ti−1)

′, y⃗(ti)
′, τ ′i )

would be used as input to the ith DMP for generating the
ith segment trajectory in the manipulation phase.

We then concatenate the generated trajectories into the new
movement trajectory y⃗(t)′, which is then used to control the
robot effector. At the same time, we also enforce the learned
grasping finger-gap on the robot’s parallel gripper during the
manipulation phase.

IV. EXPERIMENTS

This section describes experiments conducted to demon-
strate that our system can learn from markerless demonstra-
tions and generate similar actions in new situations. We first
had our robot observe demonstrations. The object was placed
on a table, and a human was asked to move his right hand to
grasp the object, manipulate it, then release it and withdraw
his hand. Three typical tasks are considered: Place, Chop
and Saw. In order to validate our method, for each task we
collected two sequences. One was used for learning and the
other was used for testing. The movement was tracked by
the FORTH system [16] at 30 fps and the raw data was
transformed into robot space, as shown in Fig. 2(a).

A. DMPs Model training

We calculated the motion reference trajectories s(t), found
the local minima and maxima (Sec. III), as shown in
Fig. 2(b). Applying the learning algorithms by fixing the
number of basis functions to 30 in each DMP model, our
system generated trajectories (Fig. 3). The learned finger-
gap for grasping and the error for the whole trajectories are
also reported in Table I.



0 5 10 150.4

0.6

0.8

Time (s)

x 
(m

)

0 5 10 15−1

−0.5

0

Time (s)

y 
(m

)

0 5 10 15−0.5

0

0.5

Time (s)

z 
(m

)

(a)

0 5 10 15 200.4

0.6

0.8

Time (s)

x 
(m

)

0 5 10 15 20−1

−0.5

0

Time (s)

y 
(m

)

0 5 10 15 20−0.2

0

0.2

Time (s)

z 
(m

)
(b)

0 5 10 15 200

0.5

1

Time (s)

x 
(m

)

 

 
Observed Trajectory
Key Points
Generated Trajectory

0 5 10 15 20−1

−0.5

0

Time (s)

y 
(m

)

 

 

0 5 10 15 20−0.2

−0.1

0

Time (s)

z 
(m

)

 

 

(c)

Fig. 3. Generated trajectories for learning different hand tasks: a) Place,
b) Chop, c) Saw.

TABLE I
HAND MOVEMENT LEARNING FOR DIFFERENT TASKS

Task Place Chop Saw
Grasp finger-gap (m) 0.0753 0.0878 0.0736
Trajectory error (m2) 0.3887 0.3538 0.5848

B. Experiments in Simulation

We show how well our approach is able to generalize
movement trajectories for different actions by comparing
with the testing sequences. For the testing sequence, we
applied the same pre-processing to transform it into robot
space. We also extracted the grasping and releasing locations,
as well as their duration times. We passed them as parameters
to the trained model. The trajectories generated are shown
in Fig. 4.

The motion patterns generated by different humans for the
same action largely differ from each other. After comparing
the generated trajectories with the observed trajectories of the
testing sequences of different tasks, we found that in general
their motion patterns are quite similar. Even for relatively
complex tasks for example chop, our generated trajectories
are similar to the observed human trajectories. This shows
that our proposed model is good for learning and generating
hand movements for manipulation tasks.

We further tested our trained model by generating trajecto-
ries for different grasping and releasing locations. We offset
the grasping and releasing locations by 5, 10 and 20 cm
on the table away from the location of the demonstration.
The generated trajectories for the Chop task are shown in
Fig. 5. The figure shows that the motion trajectories are still
consistent and the generated movements are still quite similar
to the ones from the demonstrations. Our approach achieves
a certain level of spatial generality while maintaining human-
like trajectories.
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Fig. 4. Comparison between generated trajectories and observed testing
trajectories for different hand tasks: a) Place, b) Chop, c) Saw.
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Fig. 5. Generated trajectories with different scenarios for chopping task:
a) object is shifted 5 cm in x direction, b) object is shifted 10 cm in y
direction, c) object is shifted 20 cm in both x and y directions.

Fig. 6. Baxter Experiment: Front view and 3D trajectory of generated
movement for chopping task.

C. Test on the Robot

In this experiment, we showed that our approach can
be used to teach the Baxter robot to perform a similar
task from demonstrations using the FORTH hand tracking
data. We mounted a Kinect sensor on our Baxter. Given
the object location, using our method, we could generate
the hand movement trajectories and use them to control
Baxter’s gripper movement. Fig. 6 shows the front view and
3D trajectory of the generated movement for the chopping
task running on Baxter.

D. Grammar Induction for Hand Task

A study by [25] suggested that a minimalist generative
grammar, similar to the one in human language, also exists
for action understanding and execution. In this experiment,
we demonstrated the applicability of our generative model
in grammar induction for hand tasks.

With learned DMPs as primitives, we induced a context-
free action grammar for the task as follows. Firstly, we
concatenated the learned parameters from the different di-
mensions of the DMPs into feature vectors and applied PCA
to transform these vectors into a lower dimensional space.
Then we applied K-means clustering with multiple repeti-
tions to cluster DMPs into groups. Besides the two groups
of DMPs for Reach and Withdraw phases, we considered
two other groups of DMPs for stretching and contraction in
the Manipulation phase.

The labelled data from two trails of the chopping task in
PCA space are shown in Fig. 7(a). Based on clustering labels,
we could label each DMP and generate the primitive labels
for the observed task. For example, the Chop task in Fig. 7(a)
can be represented by the sequence of primitives: “Reach
Chop1 Chop2 Chop1 Chop2 Chop1 Chop2 Chop1 Chop2
Withdraw”. Similar sequences can be found in other Chop
trails. After applying the grammar induction technique [26]
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Fig. 7. DMPs clusters in 2D PCA space for Chop task

TABLE II
GRAMMAR RULES INDUCED FROM OBSERVED CHOP TASK.

S → Reach A Withdraw (1)
A → A Chop1 Chop2

| Chop1 Chop2 (2)

With learnt DMPs as primitives, we induced a context-free
action grammar for the task as follows. Firstly, we concate-
nated learnt parameters from each dimension of DMPs as
feature vectors and applied Principle Component Analysis to
transform these vectors into a lower dimensional space. Then
we applied K-means clustering with multiple repetitions
to cluster DMPs into groups. Besides the two groups of
DMPs for Reach and Withdraw phases, we considered two
other groups of DMPs for stretching and contraction in the
Manipulation phase.

The labelled data from two trails of the chopping task in
PCA space is shown in Fig. 7. Based on clustering labels,
we could label each DMP and generate the primitive labels
for the observed task. For example, the Chop task in Fig. 7
can be represented by the sequence of primitives: “Reach
Chop1 Chop2 Chop1 Chop2 Chop1 Chop2 Chop1 Chop2
Withdraw”. Similar sequences can be found in other Chop
trails.

After applying the grammar induction technique [27] on
the sequences of the primitives, we can induce a set of
context-free grammar rules in table. II. S is the starting non-
terminal. This action grammar enables us to produce gener-
atively new Chop actions and it shows that our generative
model is well suited as basis for further research on learning
hand actions gudied by semantic principles.

V. CONCLUSION AND FUTURE WORK

We presented a framework for learning hand movement
from demonstration for humanoids. The proposed method
provides a potentially fully automatic way to learn hand
movements for humanoid robots from demonstration, and
it does not require special hand motion capturing devices.

1) Due to the limitation of Baxter’s effector, we can
only map finger-level movements onto a parallel gripper by
transfering the orientation and distance between the thumb
and the index finger. In future work we want to further
investigate the eligibility of using our current model to map
finger-level movements onto robot hands with fingers.

2) Recent studies on human manipulation methods [13],

[23] show that they generally follow a grammatical, recursive
structure. We would like to further investigate the possi-
bility of combining bottom-up (the trajectory segmentation
algorithms presented here) with top-down processing (action
semantics) and develop a method to learn action grammars
for hand movements based on action units segmented by the
presented framework.

3) In this paper, in order to focus on the trajectory
generation problem, we assumed the object location as input
from perception. Currently, we investigate how to integrate
with additional information about objects, such as their
affordances. The modules evaluating object affordance detect
the graspable parts of daily kitchen and workshop tools
using a deep learning mechanism [25]. This will enable our
humanoid to know not only how to grasp, but also where to
grasp.
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(b) Grammar rules induced
from observed movement.

Fig. 7. DMPs clustering and Grammar Induction for chopping task

With learnt DMPs as primitives, we induced a context-free
action grammar for the task as follows. Firstly, we concate-
nated learnt parameters from each dimension of DMPs as
feature vectors and applied Principle Component Analysis to
transform these vectors into a lower dimensional space. Then
we applied K-means clustering with multiple repetitions
to cluster DMPs into groups. Besides the two groups of
DMPs for Reach and Withdraw phases, we considered two
other groups of DMPs for stretching and contraction in the
Manipulation phase.

The labelled data from two trails of the chopping task
in PCA space is shown in Fig. 7(a). Based on clustering
labels, we could label each DMP and generate the primitive
labels for the observed task. For example, the Chop task in
Fig. 7(a) can be represented by the sequence of primitives:
“Reach Chop1 Chop2 Chop1 Chop2 Chop1 Chop2 Chop1
Chop2 Withdraw”. Similar sequences can be found in other
Chop trails.

After applying the grammar induction technique [27] on
the sequences of the primitives, we can induce a set of
context-free grammar rules in table. ??. S is the starting
non-terminal. This action grammar enables us to produce
generatively new Chop actions and it shows that our gener-
ative model is well suited as basis for further research on
learning hand actions gudied by semantic principles.

V. CONCLUSION AND FUTURE WORK

We presented a framework for learning hand movement
from demonstration for humanoids. The proposed method
provides a potentially fully automatic way to learn hand
movements for humanoid robots from demonstration, and
it does not require special hand motion capturing devices.

1) Due to the limitation of Baxter’s effector, we can
only map finger-level movements onto a parallel gripper by
transfering the orientation and distance between the thumb
and the index finger. In future work we want to further
investigate the eligibility of using our current model to map
finger-level movements onto robot hands with fingers.

2) Recent studies on human manipulation methods [13],
[23] show that they generally follow a grammatical, recursive
structure. We would like to further investigate the possi-
bility of combining bottom-up (the trajectory segmentation
algorithms presented here) with top-down processing (action

semantics) and develop a method to learn action grammars
for hand movements based on action units segmented by the
presented framework.

3) In this paper, in order to focus on the trajectory
generation problem, we assumed the object location as input
from perception. Currently, we investigate how to integrate
with additional information about objects, such as their
affordances. The modules evaluating object affordance detect
the graspable parts of daily kitchen and workshop tools
using a deep learning mechanism [25]. This will enable our
humanoid to know not only how to grasp, but also where to
grasp.
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Fig. 7. Grammar induction for chopping task: (a) DMPs clusters in 2D
PCA space; (b) Grammar rules induced from observed movement.

on the sequences of the primitives, we induced a set of
context-free grammar rules, as shown in table. 7(b). S is
the starting non-terminal. This action grammar enables us to
produce generatively new Chop actions and it shows that our
generative model is well suited as a basis for further research
on learning hand actions guided by semantic principles.

V. CONCLUSION AND FUTURE WORK

We presented a framework for learning hand movement
from demonstrations for humanoids. The proposed method
provides a potentially fully automatic way to learn hand
movements for humanoid robots from demonstrations, and
it does not require special hand motion capturing devices.

1) Due to the limitation of Baxter’s effector, we can
only map finger-level movements onto a parallel gripper by
transfering the orientation and distance between the thumb
and the index finger. In future work we want to further
investigate the eligibility of using our current model to map
finger-level movements onto robot hands with fingers.

2) Recent studies on human manipulation methods [13],
[22] show that they generally follow a grammatical, recursive
structure. We would like to further investigate the possi-
bility of combining bottom-up (the trajectory segmentation
algorithms presented here) with top-down processing (action
semantics) and develop a method to learn action grammars
based on action units segmented by the presented framework.

3) In this paper, in order to focus on the trajectory
generation problem, we assumed the object location as input
from perception. Currently, we investigate how to integrate
additional information about objects, such as their affor-
dances. The modules evaluating object affordances detect the
graspable parts of daily kitchen and workshop tools using
different learning mechanisms [24]. This will enable our
humanoid to know not only how but also where to grasp.
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