
HybridStore: An Efficient Data Management System
for Hybrid Flash-Based Sensor Devices

Baobing Wang and John S. Baras

Department of Electrical and Computer Engineering
The Institute for Systems Research

University of Maryland, College Park
{briankw,baras}@umd.edu

Abstract. In this paper, we propose HybridStore, a novel efficient resource-
aware data management system for flash-based sensor devices to store and query
sensor data streams. HybridStore has three key features. Firstly, it takes advantage
of the on-board random-accessible NOR flash in current sensor platforms to guar-
antee that all NAND pages used by it are fully occupied and written in a purely
sequential fashion, and expensive in-place updates and out-of-place writes to an
existing NAND page are completely avoided. Thus, both raw NAND flash chips
and FTL-equipped (Flash Translation Layer) flash packages can be supported ef-
ficiently. Secondly, HybridStore can process typical joint queries involving both
time windows and key value ranges as selection predicate extremely efficiently,
even on large-scale datasets. It organizes a data stream into segments and ex-
ploits a novel index structure that consists of the inter-segment skip list, and
the in-segment β-Tree and Bloom filter of each segment. Finally, HybridStore
can trivially support time-based data aging without any extra overhead because
no garbage collection mechanism is needed. Our implementation and evalua-
tion with a large-scale real-world dataset in TinyOS reveals that HybridStore can
achieve remarkable performance at a small cost of constructing the index.

1 Introduction

One of the main challenges in wireless sensor networks is the storage and retrieval of
sensor data. Traditional centralized data acquisition techniques (e.g., [8]) suffer from
large energy consumption, as all the readings are transmitted to the sink. In long-term
deployments, it is preferable to store a large number of readings in situ and transmit
a small subset only when requested [7]. This framework becomes practically possible
with the new generation NAND flash that is very energy efficient with high capacity.
Recent studies show that the NAND flash is at least two orders of magnitude cheaper
than communication and comparable in cost to computation [10]. Therefore, extending
the NAND flash to off-the-shelf low-end sensor platforms can potentially improve in-
network processing and energy-efficiency substantially.

However, due to the distinctly different read and write semantics of the NAND flash,
and tightly constrained resource on sensor platforms, designing an efficient resource-
aware data management system for flash-based sensor devices is a very challenging
task. Existing techniques, such as LA-Tree [1], μ-Tree [5], B-File [13], FlashDB [14]

P. Demeester, I. Moerman, and A. Terzis (Eds.): EWSN 2013, LNCS 7772, pp. 50–66, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

HybridStore: An Efficient Data Management System 51

and PBFilter [18], are not applicable to sensor platforms due to their large RAM foot-
prints. Capsule [9] provides a stream-index object to store data stream efficiently, how-
ever, with very limited supports for general queries. Other works, such as TL-Tree [6]
and FlashLogger [12], can only process time-based queries.

The most related works are Antelope [17] and MicroHash [7]. Antelope is a light-
weight database management system for low-end sensor platforms, which enables run-
time creation and deletion of databases and indexes. However, its main index for value-
based queries, MaxHeap, requires expensive byte-addressable random writes in flash.
Therefore, Antelope is more suitable for the NOR flash, which limits its performance
because the NOR flash is much slower and more energy-consuming compared to the
NAND flash. In addition, it can only retrieve discrete values in value-based range
queries. MicroHash is an efficient index structure for NAND flash-based sensor de-
vices, supporting value-based equality queries and time-based range queries separately.
However, it suffers from out-of-place writes to existing pages, resulting in long chains
of partially occupied pages. They alleviate this problem by combining multiple such
pages into a fully occupied page, which induces extensive page reads and writes during
insertions. More importantly, neither Antelope nor MicroHash can support joint queries
involving both time windows and value ranges as selection predicate efficiently. That
means, even though a query just wants to search readings within a certain value range
in a small time window, they still needs to traverse the whole global index.

Existing works do not take advantage of both the on-board random-accessible NOR
flash that is quite suitable for index structures, and external economical energy-efficient
NAND flash with high-capacity, which is ideal for massive data storage. In this pa-
per, we propose HybridStore, a novel efficient data management system for resource-
constrained sensor platforms, which exploits both the on-board NOR flash and external
NAND flash to store and query sensor data streams. In order to completely avoid ex-
pensive in-place updates and out-of-place writes to an existing NAND page, the index
structure is created and updated in the NOR flash. To handle the problem that the ca-
pacity of the NOR flash on low-end sensor platforms is very limited (512KB to 1MB),
HybridStore divides the sensor data stream into segments, the index of which can be
stored in one or multiple erase blocks in the NOR flash. Since the NAND flash is much
faster and more energy-efficient for reading, the index of each segment is copied to the
NAND flash after it is full. Therefore, all NAND pages used by HybridStore are fully
occupied and written in a purely sequential fashion, which means it can support both
raw NAND flash chips and FTL-equipped flash packages efficiently.

HybridStore can process typical joint queries involving both time windows and key
value ranges as selection predicate extremely efficiently even on large-scale datasets,
which sharply distinguishes HybridStore from existing works. The key technique is a
novel index structure that consists of the inter-segment skip list, and the in-segment β-
Tree and Bloom filter of each segment. The inter-segment skip list can locate the desired
segments within the time window of a query, and skip other segments efficiently. The
β-Tree of a segment is the key data structure to support value-based queries. It exploits
a simple prediction-based method to split each node in the tree adaptively to generate
a rather balanced tree, even when key values are very unevenly distributed. The Bloom
filter of a segment facilitates value-based equality queries inside that segment, which

52 B. Wang and J.S. Baras

can detect the existence of a given key value efficiently. Our index can eliminate a
substantial number of unnecessary page reads when processing joint queries.

In addition, HybridStore can trivially support time-based data aging without any
extra overhead, because no garbage collection mechanism is needed here, which will
induce extensive page reads and writes to move valid pages within the reclaimed erase
blocks to new locations. HybridStore can be used as a storage layer to provide a higher-
level abstraction to applications that need to handle a large amount of data. For ex-
ample, the design and implementation of Squirrel [11] can become much simpler if
HybridStore is adopted for storage management.

The rest of this paper is organized as follows. We discuss the design considerations in
Section 2. In Section 3, we explain the design of HybridStore. Our experimental results
and analysis are presented in Section 4. Finally, Section 5 concludes this paper.

2 Design Considerations

In this section, we first discuss various constraints that make the design of HybridStore
challenging. Then we discuss several design principles that result from these constraints.

2.1 Design Constraints

Flash Constraints Flash memory complicates the design of HybridStore by prohibit-
ing in-place updates. Unlike magnetic disks, flash memories only allow bits to be pro-
grammed from 1 to 0. To reset a bit to 1, a large block of consecutive bytes must be
erased, which is typically several kilobytes large [17]. There are two kinds of flash
memories. The NOR flash is byte-addressable and permits random access I/O, but the
erase blocks are very large. The NAND flash is page-oriented and limited to sequential
writes within an erase block that can be significantly smaller than a NOR flash block.
Reads and writes on the NAND flash happen at a page granularity. Since each page
can be written only once after each complete block erasure, out-of-place writes to an
existing NAND page are complex and very expensive. Portable flash packages such as
SD cards and CF cards exploit a Flash Translation Layer (FTL) to hide many of these
complexities and provide a disk-like interface. However, random page writes on current
FTL-equipped devices are still well over two orders of magnitude more expensive than
sequential writes, while semi-random writes are very efficient [13].

Table 1. Performance of flash memory operations

Read Write Block Erase
Latency Energy Latency Energy Latency Energy

Atmel NOR (per byte) 12.12μs 0.26μJ 12.6μs 4.3μJ 12ms/2KB 648μJ/2KB
Toshiba NAND (per page) 969.61μs 57.83μJ 1081.42μs 73.79μJ 2.6ms/16KB 65.54μJ/16KB

Energy Constraints. NOR flash and NAND flash are very different in speed and
energy-efficiency. Table 1 shows the latency and energy consumption of each operation
on the 512KB Atmel AT45DB041B NOR flash [3,10] equipped on the Mica family,

HybridStore: An Efficient Data Management System 53

and the 128MB Toshiba TC58DVG02A1FT00 NAND flash [9] used extensively in the
research community. Each NAND block consists of 32 pages of 512B each. We can
observe that the NAND flash has a much larger storage capacity, and much faster and
more energy-efficient I/O, while the only advantage of the NOR flash is random access
and byte-addressable. These features influence the design of HybridStore extensively.

Memory Constraints. RAM is very limited on sensor platforms. Current low-end sen-
sor platforms (e.g., MicaZ, Iris and Tmote Sky) are equipped with no more than 10KB
RAM. Even on advanced sensor platforms (e.g., iMote2) with tens of megabytes RAM,
RAM is still a very precious resource, because complex data processing applications
with much higher RAM demands are expected to run on these platforms. Therefore,
HybridStore must be designed to minimize the RAM footprint.

2.2 Design Principles

Given the above constraints, the design of HybridStore should follow a few design
principles. Firstly, the system should take advantage of both the on-board NOR flash
and external NAND flash. To support both raw NAND flash and FTL-equipped devices,
random page writes should be avoided. To increase the energy-efficiency, out-of-place
writes to an existing NAND page should be eliminated as well. Secondly, writes should
be batched to match the write granularity of the NAND flash, which can be satisfied
by using a page write buffer in RAM. In addition, since the NAND flash is much faster
and more energy-efficient, most or even all reads should happen in the NAND flash.
Thirdly, the system should support multiple storage allocation units and align them to
erase block boundaries to minimize reclamation costs. Moreover, the system should
maintain most data structures and information in flash whenever possible to minimize
the RAM footprint. Finally, HybridStore should support data aging to reclaim space for
new data when the NAND flash starts filling up with minimum overhead.

3 HybridStore

HybridStore provides the following interface to insert and query sensor readings:

– command error t insert(float key, void* record, uint8 t length)
– command error t select(uint64 t t1, uint64 t t2, float k1, float k2)

The select function supports joint queries involving both time windows ([t1, t2]) and
key ranges ([k1, k2]) as their selection predicate. We assume that a sensor mote generates
readings periodically or semi-periodically as in adaptive sensing, and each reading can
contain measurements from multiple types of sensors.

HybridStore consists of the following main components: Storage Manager, Index
Manager, Query Processor, and Data Aging and Space Reclamation Module.

54 B. Wang and J.S. Baras

3.1 Storage Manager

The Storage Manager allocates storage space from the NOR flash and the NAND flash
for index construction and data storage upon request. Fig. 1a shows the storage hierar-
chy. Both the NOR flash and the NAND flash are organized as circular arrays, resulting
in the minimum RAM overhead, because we do not need to maintain a data structure
in RAM to track free blocks. In addition, this organization directly addresses the write
constraints, space reclamation, and wear-leveling requirements (Section 3.4).

Bloom
Filter Buffer

Write
Buffer

Read
Buffer

Skip List Header

...

Adaptive
Binary Tree

Bloom Filter

...

Segment Segment Segment
...

RAM

NOR

NAND

NOR
Segment

NOR
Segment

(a) Storage hierarchy

Bloom Filter

Tree
...

Readings ...

Readings ...

Tree

Readings

Readings

}Header
Page

(b) NAND segment structure

Fig. 1. System architecture

At the highest level, the NOR flash is divided into equally-sized segments, each of
which consists of one or multiple consecutive erase blocks. The NOR flash is allocated
and reclaimed at the granularity of a segment. The NAND flash is allocated at the gran-
ularity of an erase block, but reclaimed at the granularity of a segment, which logically
consists of several consecutive erase blocks storing readings, the index copied from the
corresponding NOR segment (colored in green and purple), and the header page, as
shown in Fig. 1b.

To minimize the RAM footprint of HybridStore, and comply with the write and
read granularity of the NAND flash, only four absolutely necessary data structures are
maintained in RAM. The write buffer is of one page size to batch the writes of readings
to the NAND flash, and the read buffer is two pages large (one for index page reads and
the other for data page reads). The other two data structures are the skip list header and
Bloom filter buffer that are discussed in the next section.

3.2 Index Manager

In this section, we present the most important component of HybridStore: the Index
Manager. HybridStore leverages a memory hierarchy to achieve more efficient index
operations. Specifically, HybridStore divides a sensor data stream into dynamically-
sized partitions, each of which is stored in a logical NAND segment. The index for this
partition is first “cached” in a NOR segment, which is then copied to the correspond-
ing logical NAND segment when it is filled. Next, HybridStore allocates a new NOR
segment for the next partition, and stores its readings in a new NAND segment.

HybridStore: An Efficient Data Management System 55

HybridStore exploits an inter-segment skip list to locate the segments covered by
[t1, t2] efficiently. Within each segment, HybridStore maintains an in-segment β-Tree
to locate all readings within [k1, k2] efficiently. To speed up the processing of value-
equality queries (i.e., k1 = k2), an in-segment Bloom filter is also created for each
segment to quickly detect the existence of a given key.

HybridStore chooses the partition-based index scheme instead of a global index as
in [7,17] for the following reasons. Firstly, typical queries on sensor data always involve
time windows. Since each logical NAND segment only stores the readings of a parti-
tion that corresponds to a small time window, many logical NAND segments outside the
query time window can be skipped, reducing a substantial number of unnecessary page
reads during query processing. Secondly, the number of readings in a partition is very
limited compared to that in the whole steam. This allows index structure optimization
and much cheaper index construction costs. Thirdly, the range of the key values of read-
ings in a partition is very small. When processing a query with a value range within its
selection predicate, many logical NAND segments outside the query value range can be
skipped as well, further reducing many unnecessary page reads. Therefore, HybridStore
is extremely efficient to process joint queries with both time windows and value ranges
as their selection predicates. Finally, since all logical NAND segments are relatively
independent of each other, HybridStore can support time-based data aging without any
garbage collection mechanism, resulting in the substantially reduced overhead.

Now we discuss the index structure of HybridStore in details, which consists of three
main modules: the inter-segment skip list, the in-segment β-Tree, and the in-segment
Bloom filter. In the last subsection, the procedure to copy the “cached” index from the
NOR flash to the NAND flash is described as well.

Inter-segment Skip List. The key issue to process a query is to locate the segments
containing the readings within [t1, t2]. A naive approach is to scan the headers of all the
segments one by one, if the time window of all the readings in a segment is available
in its header and all segments are chained using previous segment address pointers.
The expected cost is linear with the number of segments. However, we actually can do
much better by exploiting the fact that the time windows of all segments are naturally
ordered in descending order. To efficiently locate the desired segments, we organize all
segments as a skip list [16]. A skip list is an ordered linked list with additional forward
links added randomly, so that a search in the list can quickly skip parts of the list. The
expected cost for most operations is O(log n), where n is the number of items in the list.
Since segments are created in descending timestamp order, a new segment is always
inserted at the front of the skip list, which can be efficiently implemented in a flash.

The skip list consists of a header node in RAM and a node in the header page of each
segment (colored in blue in Fig. 1). Each node keeps MaxLevel number of forward
pointers, each of which references the address of the header page of a segment and the
timestamp of the first (oldest) reading stored in that segment. All pointers in the header
node are initialized to null at first. When a segment is full, the skip-list node in its header
page is created and inserted into the skip list before a new segment starts as follows.
Firstly, a level l ∈ [1,MaxLevel] is generated for it, randomly, such that a fraction p
(p = 1

2 typically) of the nodes with level i can appear in level i+ 1. The maximum level
of all segments in the current system, curMaxLevel, is updated if it is smaller than l.

56 B. Wang and J.S. Baras

Then every pointer in level i ∈ [1, l] in the skip-list header, is copied as the level i pointer
to the header page. Finally, the timestamp of the first reading in this segment and the
header page address are written as the new level i pointer to the skip-list header.

The header page of each segment contains the timestamps of the first and the last
readings stored in this segment. To search the segments containing readings within [t1,
t2], we first locate the most recent segment with a start timestamp smaller than t2, using
an algorithm similar to the search algorithm in [16]. The subsequent segments can be
located by following the level 1 pointer in the skip-list node of each segment, until a
segment with a start timestamp smaller than t1 is encountered.

In-segment β-Tree. To support value-based equality and range queries, HybridStore
exploits an adaptive binary tree structure, called β-Tree, to store the index for each
segment. The β-Tree consists of a set of equally-sized buckets, each of which stores
index entries within a certain value range. The header of a bucket consists of its value
range, the bucket IDs of its two children, and the value to split its value range to obtain
the value ranges for its children. The β-Tree is first created and updated in a NOR
segment, and then copied to the corresponding logical NAND segment.

An index entry < key, addr > is inserted into the β-Tree as follows. Suppose the
current bucket is b and key ∈ (b.min, b.max], then this entry is appended to b. Otherwise,
we traverse the β-Tree to locate the leaf bucket b′ such that key ∈ (b′.min, b′.max], and
append this entry to b′. If b (or b′) is full, its value range is split into (min,mid] and
(mid,max], and a new bucket bnew is allocated as its left child if key ≤ mid, or as its right
child otherwise. Then the headers of both b (or b′) and bnew are updated correspondingly
and this entry is inserted into bnew. Since the children of a bucket are allocated only if
necessary, it is possible to have b′ = null in the above case if, for example, b′ is the
left child of its parent but only the right child of its parent has been allocated since its
splitting. In this case, a new bucket is allocated for b′ first.

Instead of splitting the value range evenly as in [7,17], HybridStore uses a prediction-
based adaptive bucket splitting method, because readings are temporally correlated,
which can be used to predict the value range of the following readings based on the
most recent readings, and split a bucket range accordingly. This method is preferred for
the following reasons. Firstly, each partition contains readings in a small value range.
If the very large range for all possible key values is split evenly in each step, the index
tree of a segment may degenerate to a long list at the beginning, resulting in more
time and energy consumption to traverse the index. Secondly, although the whole range
is very large, most readings will belong to a much smaller range due to their uneven
distribution. As shown in Fig. 11 in [7], over 95% of the temperature measurements
belong to [30 ◦F, 80 ◦F], while the whole range is [−60 ◦F, 120 ◦F]. Again, the evenly
splitting method will result in a rather unbalanced tree.

HybridStore exploits the Simple Linear Regression estimator for prediction due to
its simplicity in computation, negligible constant RAM overhead, and high accuracy for
temporally correlated data. HybridStore buffers the keys of the most recent m readings
and predicts the value range for the following 2m readings, where m is the number of
entries that can be stored in a bucket. Suppose the range of the current bucket is (x, y]
and the predicted range is [l, h], the splitting point mid is computed as:

HybridStore: An Efficient Data Management System 57

mid =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(l + h)/2 if [l, h] ⊆ (x, y]

(x + y)/2 if (x, y] ⊆ [l, h]

(x + h)/2 if l ≤ x < h ≤ y and 2m ∗ (h − x)/(h − l) > m

max(h, (x + y)/2) if l ≤ x < h ≤ y and 2m ∗ (h − x)/(h − l) ≤ m

(l + y)/2 if x ≤ l < y ≤ h and 2m ∗ (y − l)/(h − l) > m

min(l, (x + y)/2) if x ≤ l < y ≤ h and 2m ∗ (y − l)/(h − l) ≤ m

Compared to MaxHeap [17], an evenly splitting scheme, HybridStore can generate a
more balanced tree. For example, suppose each bucket can store the index entries gen-
erated in half an hour, the current temperature is 80 ◦F and will increase 1 ◦F every half
an hour, and the whole range is [−60 ◦F, 120 ◦F]. Assuming HybridStore can predict
accurately, the root will be split with mid = 82 ◦F, and its right child will be split with
mid = 84 ◦F. The resulting β-tree will have three layers for readings in the following 2.5
hours, while MaxHeap degenerates to a list with 5 buckets. In addition, MaxHeap allo-
cates two child buckets at the same time when a bucket needs to be split, resulting in
more wasted space with empty buckets. To handle the uneven distribution of key values,
MaxHeap selects a bucket for an index entry based on the hashed key value, but store the
unhashed key. As a result, MaxHeap can only retrieve discrete values in a range search.
More importantly, however, any spatial correlations of index insertions are destroyed.
After hashing, the index entries for consecutive readings are very likely to be stored
in many different buckets, which will increase the read costs both for bucket locating
and query processing substantially. On the contrary, these entries will be stored in the
same bucket in the β-Tree. Finally, different from [7,17], our prediction-based adaptive
splitting scheme does not require a priori knowledge of the whole range, which makes
HybridStore more suitable for general applications.

In-segment Bloom Filter. A special case of value-based queries is value-based equal-
ity search that is also often desired [17]. Although β-Trees can support this kind of
queries, HybridStore needs to traverse the whole β-Tree even when the given key does
not exist in a segment. To better support these queries, HybridStore creates a Bloom fil-
ter [4] for each segment to detect the existence of a key value in this segment efficiently.

A Bloom Filter (BF) is a space-efficient probabilistic data structure for membership
queries in a set with low false positive rate but no false negative. It uses a vector of v bits
(initially all set to 0) to represent a set of n elements, and q independent hash functions,
each producing an integer ∈ [0, v − 1]. To insert an element a, the bits at positions
h1(a), . . . , hq(a) in the bit vector are set to 1. Given a query for element a′, all bits at
positions h1(a′), . . . , hq(a′) are checked. If any of them is 0, a′ cannot exist in this set.
Otherwise we assume that a′ is in this set.

Since a Bloom filter requires bit-level random writes, it must be buffered in RAM.
However, if a Bloom filter is used to represent all readings in a segment, this buffer size
may be very large in order to keep p very low. For example, suppose a segment can
store 4096 readings and three hash functions are used, in order to keep p ≈ 3.06%, then
the size of its Bloom filter buffer must be at least 4KB.

To reduce the RAM footprint, HybridStore horizontally partitions the large Bloom
filter of a segment into a sequence of small fix-sized Bloom filters sections, and allocates

58 B. Wang and J.S. Baras

a small buffer in RAM for a section. Suppose the buffer size is v bits, the number of
hash functions is q, and the desired false positive rate is p, the maximum number n of
readings that a BF section is able to represent can be calculated from the equation p =
(

1 −
(

1 − 1
v

)qn)q
. Whenever n readings have been inserted into the current BF section,

the BF buffer is flushed to the current NOR segment, and then initialized for the next
section. In our implementation, v = 2048 bits, q = 3, p = 3.06%, and n = 256.

Algorithm 1. checkBF(addr, l, k)
Input: addr: start address of the BF pages, l: length of a BF fragment in bytes, k: key value
Output: true if there is a record with the given key in this segment; f alse otherwise
1: h← hashcode(k); bv ← createBitVector(� NAND Page S ize

l �);
2: for i = 0→ h.size do
3: f ← loadPage(addr + � h[i]

8l � ∗ NAND Page S ize); bv.setAll();
4: for j = 0→ bv.size do
5: mask ← 0x80 >> (h[i] % 8); o f f set ← h[i] % 8l;
6: if f [j ∗ l + � o f f set

8 �] & mask == 0 then bv.clear(j); end if
7: end for
8: exist ← f alse;
9: for i = 0→ bv.size do

10: exist = exist | bv.get(i);
11: end for
12: if !exist then return f alse; end if
13: end for
14: return true;

A drawback of horizontal partitioning is that all BF sections of a segment must be
scanned to decide whether the given key exists in this segment. HybridStore addresses
this drawback by vertically splitting these BF sections into fragments and group them
into pages when the NOR segment is copied to the logical NAND segment. Assume
there are s BF sections in the current segment when it is full. Then the size of a fragment
is l =

⌊
NAND Page S ize

s

⌋

bytes, so that the bits in the range [i ∗ 8l, (i + 1) ∗ 8l − 1] from

every BF section are grouped to page i ∈
[

0, �NAND Page S ize
l � − 1

]

. Thus HybridStore

only needs to scan at most q pages at
⌊

h1(k)
8l

⌋

, . . . , � hq(k)
8l � when checking key k, as shown

in Algorithm 1. For each hash code hi(k), HybridStore firstly loads the page containing
all the hi(k)-th bits of every BF section (Line 3), and then check the corresponding bit
in each BF fragment (Line 4–7). If the corresponding bit is not set in any fragment in
that page (Line 9–11), we can conclude that this key does not exist (Line 12). Note that
a segment cannot store more than n ∗ NAND Page S ize readings to guarantee l � 0.

Copy Index from the NOR Flash to the NAND Flash. Since the NAND flash is much
faster and more energy-efficient, the index of a segment that is created and updated in the
NOR flash is copied to the NAND flash after this segment is full as follows. Firstly, the
β-Tree is copied and multiple consecutive buckets are written to the same page if they can
fit in. The Query Processor is able to translate the bucket ID to the right page address and
offset to read a desired bucket. Therefore, the bucket size should be 1

2i of the NAND page
size. Secondly, the BF sections are copied as described above. Finally, the time window

HybridStore: An Efficient Data Management System 59

and value range of all readings in this segment, the addresses of the first page for readings,
of the β-Tree, and of the Bloom filter, the length of a BF fragment, and the skip-list node
are written to the next page, which is the header page of this segment. Therefore, all page
writes in the NAND flash are purely sequential; the reason why HybridStore can support
both raw NAND flash chips and FTL-equipped NAND flash cards efficiently.

3.3 Query Processor

Algorithm 2 describes how HybridStore can efficiently process joint queries. The basic
idea is to skip all the segments that do not satisfy the selection predicate by checking
their header pages, or do not contain the given key by checking their Bloom filters.

Algorithm 2. select(t1, t2, k1, k2)
Input: Time window [t1, t2] and key value range [k1, k2] of a query
Output: The records that satisfy the query criteria
1: addr← skipListSearch(t2);
2: while addr ≥ 0 do
3: addr← segmentSearch(addr, t1, t2, k1, k2);
4: end while
5: signal f inished;
6: function segmentSearch(addr, t1, t2, k1, k2)
7: f ← loadPage(addr);
8: if [k1, k2] ∩ [f .minK, f ,maxK] � ∅ then
9: if t1 == t2 then � Simple time-based equality query

10: scaleBinarySearch(f .dataBList, t1);
11: return -1;
12: else if k1 == k2 then � Value-based equality query
13: if checkBF(f .b f Addr, f .b f FragS ize, k1) == f alse then
14: return (f .startT > t1 && f .sl[0].time ≥ S ystem.minT) ? f .sl[0].addr : −1;
15: end if
16: end if
17: q← createQueue(f .idxBList[0]); � Traverse β-tree
18: while !q.empty() do
19: b← loadBucket(q.dequeue());
20: for i = 0→ b.record.size do
21: if (b.record[i] � null) && (b.record[i].key ∈ [k1, k2]) then
22: dataP ← loadPage(b.record[i].addr);
23: if dataP[b.record[i].addr % P].timestamp ∈ [t1, t2] then
24: signal dataP[b.record[i].addr % P];
25: end if
26: end if
27: end for
28: if (b.le f t � null) && (b.middle ≥ k1) then q.enqueue(b.le f t); end if
29: if (b.right � null) && (b.middle < k2) then q.enqueue(b.right); end if
30: end while
31: end if
32: return (f .startT > t1 && f .sl[0].time ≥ S ystem.minT) ? f .sl[0].addr : −1;
33: end function

60 B. Wang and J.S. Baras

HybridStore starts by locating the most recent segment within the time window us-
ing the inter-segment skip list (Line 1), and then scans segments sequentially until the
whole time window has been covered (Line 2–4). For each segment, its header page
is loaded first. If this segment potentially contains readings within the value range of
the query (Line 8), HybridStore begins to traverse its index. Otherwise, this segment
will be skipped. Two special cases are treated separately. Time-based equality queries
are processed using a scale binary search (Line 9) on the pages storing readings, which
exploits the fact that sensor readings are generated periodically or semi-periodically
to refine the middle in each iteration, similar to [7]. For value-based equality queries,
HybridStore first checks the existence of the key in this segment using Algorithm 1
(Line 12). If this key does not exist, this segment will be skipped as well. For general
joint queries, the β-Tree of this segment is traversed using the Breadth-First Search
algorithm (Line 17–30).

To reduce the RAM footprint, HybridStore returns readings on a record-by-record
basis. Actually, the β-Tree traversal is also implemented in a split-phase fashion (bucket-
by-bucket using the signal-post mechanism), although a queue-based implementation
is presented here for clarity. In addition, to take advantage of the temporal correlations
and spatial locality of readings, a small record pool is applied here to buffer the data
page addresses that will be loaded in increasing order. Therefore, instead of loading
the data page immediately (Line 22), the address of each reading is translated to the
corresponding page address that is then added to the pool. When the pool is full or the
β-Tree traversal is finished, HybridStore loads these pages in order and scans each page
to return the readings that satisfy the selection predicates.

3.4 Data Aging and Space Reclamation

As shown in [10], a sensor mote can store over 10GB data during its lifetime. If the
capacity of the external NAND flash is not big enough to store all these data, some data
need to be deleted to make room for future data as the flash starts filling up. HybridStore
exploits a simple time-based data aging mechanism to discard the oldest data. When no
space is available on the NAND flash to insert the current reading, HybridStore will
locate the oldest segment and erase all the blocks in that segment. Then the minimum
timestamp of all the readings currently stored in the system (i.e., System.minT) is
updated. Since the NAND flash is organized as a circular array, wear leveling is trivially
guaranteed. In addition, since segments are independent of each other, no garbage col-
lection mechanism is needed here. On the contrary, other index schemes (e.g., [2,9,17]),
require extensive page reads and writes to move valid pages within the reclaimed erase
blocks to new locations, and maintain extra data structures in flash or RAM.

Note that we do not need to delete the pointers referencing the reclaimed segment
from the skip list, even though they become invalid now. This problem is handled by
the select algorithm (Line 14 and 32). Whenever a pointer with a timestamp smaller
than System.minT is encountered, the select algorithm knows that this pointer is
invalid and the query processing is completed successfully. On the contrary, for each
invalid index entry, MicroHash [7] must load the referenced data page to learn that this
page has been deleted and re-used, resulting in many unnecessary page reads.

HybridStore: An Efficient Data Management System 61

4 Implementation and Evaluation

In this section, we describe the details of our experiments. HybridStore is implemented
in TinyOS 2.1 and simulated in PowerTOSSIMz [15], an accurate power modeling ex-
tension to TOSSIM for MicaZ sensor platform. We additionally developed an emulator
for a Toshiba TC58DVG02A1FT00 NAND flash (128MB), and a library that intercepts
all communications between TinyOS and flash chips (both the NOR and the NAND
flash) and calculate the latency and energy consumption based on Table 1. With all fea-
tures included, our implementation requires approximately 16.5KB ROM and 3.2KB
RAM, which is well below the limit of most constrained sensor platforms.

We adopt a trace-driven experimental methodology in which a real dataset is fed into
the PowerTOSSIMz simulator. Specifically, we use the Washington Climate Dataset,
which is a real dataset of atmospheric information collected by the Department of At-
mospheric Sciences at the University of Washington. Our dataset contains 2, 630, 880
readings on a per-minute basis between 01/01/2000 and 12/31/2004. Each reading con-
sists of temperature, barometric pressure, etc. We only index the temperature values and
use the rest as part of the data records, each of which is of 32 bytes. To simulate data
missing (e.g., reading drops due to the long latency during long queries and block era-
sures, or adaptive sensing), 5% readings are deleted randomly. For each kind of queries,
1000 instances are generated randomly and their average performance is presented here.

We compare HybridStore with MicroHash [7], Antelope [17] and the system in [2].
Since we do not have enough details to reproduce their complete experiments, we di-
rectly use the results reported in their papers if necessary. We use the same dataset as
MicroHash, and fully implement the static bucket splitting scheme used in [7,17].

4.1 Insertions

We first insert all readings into the sensor mote and record the performance of each in-
sertion. Fig. 2 shows the average performance of the β-Tree and the static bucket split-
ting scheme used in [7,17]. Compared to the β-Tree, the latter scheme consumes 13.24%
more energy, induces 16.76% more space overhead, and results in 18.47% more latency
on average. The latency and energy consumption of each insertion approximately equal
to the write of 1.31 NAND pages and 0.91 NAND pages, respectively.

64 128 256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

NOR Flash Segment Size (KB)

Ti
m

e
(m

s)

β−Tree Static tree

(a) Latency

64 128 256
0

10

20

30

40

50

60

70

80

90

NOR Flash Segment Size (KB)

En
er

gy
 (μ

J)

β−Tree Static tree

(b) Energy

64 128 256
0

5

10

15

20

25

30

35

40

NOR Flash Segment Size (KB)

Sp
ac

e
Ov

er
he

ad
 (%

)

β−Tree Static tree

(c) Space Overhead

Fig. 2. Performance per insertion

62 B. Wang and J.S. Baras

Fig. 3 shows part of the timeline for insertions at the beginning when the NOR
segment size is 64KB. Our key observations are as follows. First, although it is very
energy-consuming (26.8mJ) to transfer the index from NOR flash to NAND flash, it
only happens once every 3–4 days and is independent of the data record size. Sec-
ond, during regular operation, each insertion consumes only 34.4μJ. When a reading
is not within the current bucket range, the proper bucket can be located or created af-
ter traversing about 8–10 bucket headers in β-Tree, even when the current segment is
almost full. Since there are about 236 buckets in the β-tree for each segment, our adap-
tive bucket splitting scheme generates a rather balanced tree. The points corresponding
to around 0.15mJ and 1.2mJ additionally include the energy consumption to flush the
write buffer to NAND flash and the Bloom filter buffer to NOR flash, respectively.

Jan/03 00:00 Jan/03 06:00 Jan/03 12:00 Jan/03 18:00 Jan/04 00:00 Jan/04 06:00

0.15

1.2

26.8

0.034
0.07

Timeline

E
ne

rg
y

(m
J)

Fig. 3. Energy consumption of insertions

4.2 Time-Based Equality Queries

We also investigate the performance to process a time-equality query to find a record
with a specific timestamp (i.e., t1 = t2). Fig. 4 shows that even though the query time
window is quite large (i.e., over 2.5 million readings in 5 years), HybridStore is able to
locate the record with about 5–6 page reads. Such a high performance can be achieved
due to the following reasons. Firstly, the β-Tree improves the storage efficiency, re-
sulting in fewer segments to store the same number of readings. Secondly, the skip
list can locate the segment containing the required timestamp efficiently. Thirdly, the
scale binary search can locate the page quickly because all readings are stored continu-
ously in each segment, avoiding traversing through a block chain. Therefore, compared
to a global index (e.g., MicroHash requires about 5.4 page reads to process such a
query when the buffer size is 2.5KB, as shown in Fig. 14 in [7]), HybridStore has al-
most the same performance, while consuming less RAM. Compared to Antelope [17],
HybridStore can achieve a much better performance if the same dataset is used.

4.3 Joint Queries: Time-Based Range and Value-based Equality

In this scenario, we study the impact of Bloom filter on joint time-based range and
value-based equality queries. Fig. 5 shows the average performance per query to search
nonexistent key values. We can observe that the in-segment Bloom filter can signif-
icantly improve the performance of value-based equality queries (more than 3 times
improvement when the NOR segment size is 64KB and the time range is more than 3
months). In addition, the β-Tree can reduce the latency and energy consumption for
queries involving large time window by about 4ms and 230μJ, respectively. Finally,

HybridStore: An Efficient Data Management System 63

64 128 256
0

2

4

6

8

NOR Flash Segment Size (KB)

T
im

e
(m

s)

β−Tree
Static tree

(a) Latency

64 128 256
0

100

200

300

400

500

600

NOR Flash Segment Size (KB)

E
ne

rg
y

(μ
J)

β−Tree
Static tree

(b) Energy

Fig. 4. Performance of time-equality queries: HybridStore (β-Tree) v.s. Antelope [17]

HybridStore is extremely efficient to check the existence of key values. When the NOR
segment size is 256KB, HybridStore can decide the existence of a key value in over 0.5
million readings spanning one year time window in 26.18ms, consuming only 1.56mJ.

1 day 1 week 1 month 3 month 1 year
0

50

100

150

200

250

300

Time Range

T
im

e
(m

s)

β−Tree (64KB)
β−Tree (128KB)
β−Tree (256KB)
β−Tree (64KB w/o BF)
Static (128KB)

(a) Latency

1 day 1 week 1 month 3 month 1 year
0

2

4

6

8

10

12

14

16

18

Time Range

E
ne

rg
y

(m
J)

β−Tree (64KB)
β−Tree (128KB)
β−Tree (256KB)
β−Tree (64KB w/o BF)
Static (128KB)

(b) Energy

Fig. 5. Impact of Bloom Filter on value-based equality queries for nonexistent keys

We also investigate the average performance per query to search existing key values,
which is shown in Fig. 6. The key values vary in [40 ◦F, 60 ◦F]. We can observe that
the in-segment Bloom filter can reduce the latency and energy consumption for queries
involving large time window by 38–116ms and 3–7mJ, respectively. More importantly,
HybridStore requires approximately only 826 page reads to get all readings with the
given key value in one year time window when the NOR segment size is 256KB. Com-
paratively, MicroHash requires about 8700 page reads on average to search a given key
value ∈ [40 ◦F, 60 ◦F] in five years time window (inferred from Fig. 15 in [7]). Even
if we assume that MicroHash can “intelligently” stop searching when a reading below
the lower bound of the query time window is encountered, it still requires much more
than 1740 page reads for one year time window, because many index pages and data
pages are read unnecessarily.

64 B. Wang and J.S. Baras

1 hour 1 day 1 week 1 month 3 months 6 months 1 year
0

200

400

600

800

1000

1200

Time Range

T
im

e
(m

s)

64KB + BF
64KB
128KB + BF
128KB
256KB + BF
256KB

(a) Latency

1 hour 1 day 1 week 1 month 3 months 6 months 1 year
0

10

20

30

40

50

60

70

Time Range

E
ne

rg
y

(m
J)

64KB + BF
64KB
128KB + BF
128KB
256KB + BF
256KB

(b) Energy

Fig. 6. Impact of Bloom Filter on value-based equality queries for existing keys

4.4 Joint Queries: Both Time-Based and Value-based Ranges

In this scenario, we investigate the most common type of queries that involves both time
windows and value ranges as selection predicates. Fig. 7 shows the average performance
per query when the NOR segment size is 64KB. We can observe that HybridStore is ex-
tremely efficient to process such queries. When the value range is 1 ◦F and the time
window is 1 month (typical queries, because readings in small time windows are more
interesting), HybridStore can finish the query in 461.6ms, consumes only 27.5mJ and
returns 2678 readings. For queries involving a large value range (e.g., 9 ◦F) and a long
time window (e.g., 1 year), HybridStore can return 120, 363 readings in 11.08s, con-
suming only 660.7mJ (92.04μs and 5.48μJ per reading on average). Compared to An-
telope [17], since the NOR flash is much slower and less energy-efficient, Antelope will
take about 20s to retrieve 50% readings from a table with only 50, 000 tuples in a range
query (shown in Fig. 8 in [17]).

1 day 1 week 1 month 3 months 6 months 1 year
0

2

4

6

8

10

12

Time Range

T
im

e
(s

)
/ Q

ue
ry

1 degree
3 degree
5 degree
7 degree
9 degree

(a) Total Latency per query

1 day 1 week 1 month 3 months 6 months 1 year
0

100

200

300

400

500

600

700

Time Range

E
ne

rg
y

(m
J)

 /
Q

ue
ry

1 degree
3 degree
5 degree
7 degree
9 degree

(b) Total energy per query

Fig. 7. HybridStore performance per query of full queries

Another index scheme proposed in [2] can support range queries. It will consume
about 40mJ on average to process a query with 5-degree range on about only 100, 000

HybridStore: An Efficient Data Management System 65

readings (about 13, 000 readings are returned). Comparatively, HybridStore will con-
sume 75.61mJ to return the same number of readings by processing the same query on
more than 2.5 million readings. While our dataset size is 25 times larger than the dataset
used in [2], HybridStore consumes only 89% more energy. Therefore, HybridStore is
more energy efficient to support queries on large-scale datasets. Besides, the size of
each reading in [2] is much smaller, which consists of only a timestamp and a temper-
ature value (12B is enough, while our record size is 32B), resulting in much less data
pages. Finally, their scheme requires much more RAM resource (close to 10KB, shown
in Page 10 in [2]), because the per-partition B-tree index, interval table, and the last
page of each interval’s list must be maintained in RAM.

5 Conclusions

In this paper, we proposed HybridStore, an efficient data management system for low-
end sensor platforms, which exploits both the on-board NOR flash and external NAND
flash to store and query sensor data. Compared to existing works that can only sup-
port simple queries, HybridStore can process typical joint queries involving both time
windows and key value ranges as selection predicates extremely efficiently, even on
large-scale datasets. Our evaluation with a large-scale real-world dataset reveals that
HybridStore can achieve remarkable performance at a small cost of constructing the in-
dex. Therefore, HybridStore provides a powerful new framework to realize in situ data
storage in WSNs to improve both in-network processing and energy-efficiency.

Acknowledgements. We would like to thank our shepherd, Luca Mottola, and the
anonymous reviewers for their insight and detailed feedback. This work is partially sup-
ported by DARPA and SRC through grant award 013641-001 of the FCRP, by the Na-
tional Science Foundation (NSF) under grant award CNS-1035655, and by the National
Institute of Standards and Technology (NIST) under grant award 70NANB11H148.

References

1. Agrawal, D., Ganesan, D., Sitaraman, R., Diao, Y., Singh, S.: Lazy-adaptive tree: an opti-
mized index structure for flash devices. In: ACM VLDB, pp. 361–372 (2009)

2. Agrawal, D., Li, B., Cao, Z., Ganesan, D., Diao, Y., Shenoy, P.: Exploiting the interplay
between memory and flash storage in embedded sensor devices. In: 16th IEEE Intl. Conf. on
Embedded and Real-Time Computing Systems and Applications, pp. 227–236 (2010)

3. Atmel Inc.: AT45DB041B, http://www.atmel.com/Images/doc3443.pdf
4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications

of the ACM 13(7), 422–426 (1970)
5. Kang, D., Jung, D., Kang, J.U., Kim, J.S.: μ-tree: an ordered index structure for NAND flash

memory. In: ACM EMSOFT, pp. 144–153 (2007)
6. Li, H., Liang, D., Xie, L., Zhang, G., Ramamritham, K.: TL-Tree: flash-optimized storage

for time-series sensing data on sensor platforms. In: ACM SAC, pp. 1565–1572 (2012)
7. Lin, S., Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D.: Efficient indexing data struc-

tures for flash-based sensor devices. ACM Trans. on Storage 2(4), 468–503 (2006)

66 B. Wang and J.S. Baras

8. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an acquisitional query
processing system for sensor networks. ACM TODS 30(1), 122–173 (2005)

9. Mathur, G., Desnoyers, P., Ganesan, D., Shenoy, P.: Capsule: an energy-optimized object
storage system for memory-constrained sensor devices. In: ACM SenSys, pp. 195–208
(2006)

10. Mathur, G., Desnoyers, P., Ganesan, D., Shenoy, P.: Ultra-low power data storage for sensor
networks. In: ACM/IEEE IPSN, pp. 374–381 (2006)

11. Mottola, L.: Programming storage-centric sensor networks with squirrel. In: ACM IPSN, pp.
1–12 (2010)

12. Nath, S.: Energy efficient sensor data logging with amnesic flash storage. In: ACM/IEEE
IPSN, pp. 157–168 (2009)

13. Nath, S., Gibbons, P.B.: Online maintenance of very large random samples on flash storage.
In: ACM VLDB, pp. 970–983 (2008)

14. Nath, S., Kansal, A.: FlashDB: dynamic self-tuning database for NAND flash. In: ACM/IEEE
IPSN, pp. 410–419 (2007)

15. Perla, E., Catháin, A.O., Carbajo, R.S., Huggard, M., Mc Goldrick, C.: PowerTOSSIMz:
realistic energy modelling for wireless sensor network environments. In: Proc. of the 3rd
ACM workshop on Performance monitoring and measurement of heterogeneous wireless
and wired networks, pp. 35–42 (2008)

16. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications of the
ACM 33(6), 668–676 (1990)

17. Tsiftes, N., Dunkels, A.: A database in every sensor. In: ACM SenSys, pp. 316–332 (2011)
18. Yin, S., Pucheral, P., Meng, X.: A sequential indexing scheme for flash-based embedded

systems. In: ACM EDBT, pp. 588–599 (2009)

